
The luamplib package

Hans Hagen, Taco Hoekwater, Elie Roux, Philipp Gesang and Kim Dohyun
Current Maintainer: Kim Dohyun

Support: https://github.com/lualatex/luamplib

2026/01/27 v2.38.3

Abstract

Package to have metapost code typeset directly in a document with LuaTEX

Contents

1 Documentation 2
1.1 TEX . 3

1.1.1 \mplibforcehmode . 3
1.1.2 \everymplib, \everyendmplib . 3
1.1.3 \mplibsetformat . 3
1.1.4 \mplibnumbersystem . 4
1.1.5 \mplibshowlog . 4
1.1.6 \mpliblegacybehavior . 4
1.1.7 \mplibtextextlabel . 5
1.1.8 \mplibcodeinherit . 6
1.1.9 \mplibglobaltextext . 6
1.1.10 Separate metapost instances . 6
1.1.11 \mplibverbatim . 7
1.1.12 \mpdim . 7
1.1.13 \mpcolor . 7
1.1.14 \mpfig, \endmpfig . 8
1.1.15 About cache files . 8
1.1.16 About figure box metric . 9
1.1.17 luamplib.cfg . 9
1.1.18 Tagged PDF . 9

1.2 MetaPost . 11
1.2.1 mplibdimen, mplibcolor . 11
1.2.2 mplibtexcolor, mplibrgbtexcolor . 11
1.2.3 withmplibcolors . 11
1.2.4 withtransparency . 12

1

https://github.com/lualatex/luamplib

1.2.5 withshadingmethod . 12
1.2.6 withfademethod . 13
1.2.7 mplibgraphictext . 14
1.2.8 mplibglyph . 15
1.2.9 mplibdrawglyph, and its friends . 15
1.2.10 mpliboutlinetext . 16
1.2.11 \mppattern, withmppattern . 16
1.2.12 asgroup . 19
1.2.13 \mplibgroup . 20
1.2.14 mpliblength, mplibuclength . 21
1.2.15 mplibsubstring, mplibucsubstring . 21

1.3 Lua . 21
1.3.1 runscript . 21
1.3.2 luamplib.instances . 22
1.3.3 luamplib.process_mplibcode . 22
1.3.4 luamplib.registerpattern . 22
1.3.5 luamplib.registergroup . 23

2 Implementation 23
2.1 Lua module . 23
2.2 TEXpackage . 91

3 The GNU GPL License v2 112

1 Documentation

This package aims at providing a simple way to typeset directly metapost code in a document
with LuaTEX. LuaTEX is built with the Lua mplib library, that runs metapost code. This package
is basically a wrapper for the Lua mplib functions and some TEX functions to have the output
of the mplib functions in the PDF.

Using this package is easy: in Plain, type your metapost code between the macros
\mplibcode and \endmplibcode, and in LATEX in the mplibcode environment.

The resulting metapost figures are put in a TEX hboxwith dimensions adjusted to the meta-
post code.

The code of luamplib is basically from the luatex-mplib.lua and luatex-mplib.tex files from
ConTEXt. They have been adapted to LATEX and Plain by Elie Roux and Philipp Gesang and new
functionalities have been added by Kim Dohyun. The most notable changes are:

• Possibility to use btex ... etex to typeset TEX code. textext 〈string〉 is a more versatile
macro equivalent to TEX 〈string〉 from TEX.mp. TEX is also allowed and is a synonym of
textext. The argument of mplib’s primitive maketext will also be processed by the same
routine.

2

• Possibility to use verbatimtex ... etex to run a TEX code. VerbatimTeX 〈string〉 is a more
versatile macro corresponding to verbatimtex command. Of course the behavior can-
not be the same as the stand-alone mpost, so that you cannot include \documentclass,
\usepackage etc. When these TEX commands are found in verbatimtex ... etex, the entire
code will be ignored.

The treatment of verbatimtex command has changed a lot since v2.20: see below § 1.1.6.

• In the past, the package required PDF mode in order to have some output. Starting with
v2.7 it works in DVI mode as well, though DVIPDFMx is the only DVI tool currently
supported.

It seems to be convenient to divide the explanations of some more changes and cautions
into three parts: TEX, MetaPost, and Lua interfaces.

1.1 TEX

1.1.1 \mplibforcehmode

When this macro is declared, every metapost figure box will be typeset in horizontal mode;
so \centering, \raggedleft etc. will have effects. \mplibnoforcehmode, being default, reverts this
setting.1

1.1.2 \everymplib{...}, \everyendmplib{...}

\everymplib and \everyendmplib redefine the Lua table entry containing metapost code which
will be automatically inserted at the beginning and ending of each metapost code chunk.

\everymplib{ beginfig(0); }
\everyendmplib{ endfig; }
\begin{mplibcode}
% beginfig/endfig not needed
draw fullcircle scaled 1cm;

\end{mplibcode}

1.1.3 \mplibsetformat{plain|metafun}

There are (basically) two formats for metapost: plain and metafun. By default, the plain
format is used, but you can set the format to be used by future figures at any time using
\mplibsetformat{〈format name〉}.

n.b. As metafun is such a complicated format, we cannot support all the functionalities
producing special effects provided bymetafun. At least, however, transparency (actually opac-
ity), shading (gradient colors) and transparency group are fully supported, and outlinetext is
supported by our own alternative mpliboutlinetext (see below § 1.2.10). You can try other ef-
fects as well, though we did not fully tested their proper functioning.

1Actually these commands redefine \prependtomplibbox. So you can redefine this macro with anything suitable
before a box. But see § 1.1.18 on Tagged PDF.

3

transparency (texdoc metafun § 8.2) Transparency is so simple that you can apply it to
an object, with plain format as well as metafun, just by appending withprescript
"tr_transparency=〈numeric〉" to the sentence. (0 ≤ 〈numeric〉 ≤ 1)

From v2.36, withtransparency is available with plain format as well. See below § 1.2.4.

shading (texdoc metafun § 8.3) One thing worth mentioning about shading is: when a color
expression is given in string type, it is regarded by luamplib as a color expression of
TEX side. For instance, when withshadecolors("orange", 2/3red) is given, the first color
"orange" will be interpreted as a color, xcolor or l3color’s expression.
From v2.36, shading is available with plain format as well with extended functionality.
See below § 1.2.5.

transparency group (texdoc metafun § 8.8) As for transparency group, the current metafun
document is not correct. The true syntax is:

draw <picture>|<path> asgroup <string>

where 〈string〉 should be "" (empty), "isolated", "knockout", or "isolated,knockout". Be-
ware that currently many of the PDF rendering applications, except Adobe Acrobat, can-
not properly render the isolated or knockout effect.

Transparency group is available with plain format as well with extended functionality.
See below § 1.2.12.

1.1.4 \mplibnumbersystem{scaled|double|decimal}

Users can choose numbersystem option. The default value is scaled, which can be changed by
declaring \mplibnumbersystem{double} or \mplibnumbersystem{decimal}.

1.1.5 \mplibshowlog{enable|disable}

Default: disable. When \mplibshowlog{enable}2 is declared, log messages returned by the meta-
post process will be printed to the .log file. This is the TEX side interface for luamplib.showlog.

1.1.6 \mpliblegacybehavior{enable|disable}

Legacy behavior By default, \mpliblegacybehavior{enable} is already declared for backward
compatibility, in which case TEX code in verbatimtex ... etex that comes just before beginfig()
will be inserted before the following metapost figure box. In this way, each figure box can be
freely moved horizontally or vertically. Also, a box number can be assigned to a figure box,
allowing it to be reused later.3

\mplibcode
verbatimtex \moveright 3cm etex; beginfig(0); ... endfig;

2As for user’s setting, enable, true and yes are identical; all others are identical to disable.
3But the recommended way to reuse a figure is using \mplibgroup command. See below § 1.2.13.

4

verbatimtex \leavevmode etex; beginfig(1); ... endfig;
verbatimtex \leavevmode\lower 1ex etex; beginfig(2); ... endfig;
verbatimtex \endgraf\moveright 1cm etex; beginfig(3); ... endfig;

\endmplibcode

n.b. \endgraf should be used instead of \par inside mplibcode environment.
On the other hand, TEX code in verbatimtex ... etex between beginfig() and endfig will be

inserted after flushing out the metapost figure. An example:4

\mplibcode
D := sqrt(2)**9;
beginfig(0);

draw fullcircle scaled D;

diameter: 22.62764bp.VerbatimTeX("\gdef\Dia{" & decimal D & "}");
endfig;

\endmplibcode
diameter: \Dia bp.

New and recommended way By contrast, when \mpliblegacybehavior{disable} is declared,
any verbatimtex ... etex, along with btex ... etex, will be run sequentially one by one. So,
some TEX code in verbatimtex ... etex will have effect on btex ... etex codes thereafter.

\begin{mplibcode}
beginfig(0);

draw btex ABC etex;
verbatimtex \bfseries etex; ABC DEF GHI
draw btex DEF etex shifted (1cm,0); % bold face
draw btex GHI etex shifted (2cm,0); % bold face

endfig;
\end{mplibcode}

1.1.7 \mplibtextextlabel{enable|disable}

Default: disable. \mplibtextextlabel{enable} enables the labels typeset via textext instead of
infont operator. So, label("my text", origin) thereafter is exactly the same as label(textext
"my text", origin).

n.b. In the background, luamplib redefines infont operator so that the right side argument
(the font part) is totally ignored. Therefore the left side arguemnt (the text part) will be typeset
with the current TEX font.

From v2.35, however, the redefinition of infont operator has been revised: when the char-
acter code of the text argument is less than 32 (control characters), or is equal to 35 (#), 36 ($),
37 (%), 38 (&), 92 (\), 94 (^), 95 (_), 123 ({), 125 (}), 126 (~) or 127 (DEL), the original infont
operator will be used instead of textext operator so that the font part will be honored. De-
spite the revision, please take care of char operator in the text argument, as this might bring
unpermitted characters into TEX.

4But the recommended way to access metapost variables from TEX (or Lua) side is to use Lua code via
luamplib.instances. For details see below § 1.3.2.

5

1.1.8 \mplibcodeinherit{enable|disable}

Default: disable. \mplibcodeinherit{enable} enables the inheritance of variables, constants,
and macros defined by previous metapost code chunks. On the other hand, \mplibcodeinherit
{disable} will make each code chunk being treated as an independent instance, never affected
by previous code chunks.

1.1.9 \mplibglobaltextext{enable|disable}

Default: disable. Formerly, to inherit btex ... etex boxes as well as other metapost macros,
variables and constants, it was necessary to declare \mplibglobaltextext{enable} in advance.
But from v2.27, this is implicitly enabled when \mplibcodeinherit is enabled. The command
still remains mostly for backward compatibility.

\mplibcodeinherit{enable}
%\mplibglobaltextext{enable}
\everymplib{ beginfig(0);} \everyendmplib{ endfig;}
\mplibcode
label(btex $\sqrt{2}$ etex, origin);
draw fullcircle scaled 20;

√
2

√
2picture pic; pic := currentpicture;

\endmplibcode
\mplibcode
currentpicture := pic scaled 2;

\endmplibcode

1.1.10 Separate metapost instances

luamplib v2.22 has added the support for several named metapost instances in LATEX environ-
ment mplibcode or Plain TEX commands \mplibcode ... \endmplibcode. The syntax for LATEX is:

\begin{mplibcode}[instanceName]
% some mp code

\end{mplibcode}

The behavior is as follows.

• All the variables and functions are shared only among all the environments belonging
to the same instance.

• \mplibcodeinherit only affects the environments with no instance name set (since if a
name is set, the code is intended to be reused at some point).

• btex ... etex boxes are also shared and do not require \mplibglobaltextext.

• When an instance names is set, respective \currentmpinstancename is set as well.

In parellel with this functionality, we support optional argument of instance name for
\everymplib and \everyendmplib, affecting only those mplibcode environments of the same name.

6

Unnamed \everymplib affects not only those instances with no name, but also those with name
but with no corresponding \everymplib. The syntax is:

\everymplib[instanceName]{...}
\everyendmplib[instanceName]{...}

1.1.11 \mplibverbatim{enable|disable}

Default: disable. Users can issue \mplibverbatim{enable}, after which the contents of mplibcode
environment will be read verbatim. As a result, except for \mpdim and \mpcolor (see § 1.1.12 and
§ 1.1.13), all other TEX commands outside of the btex or verbatimtex ... etex are not expanded
and will be fed literally to the mplib library.

1.1.12 \mpdim{...}

Besides other TEX commands, \mpdim is specially allowed in the mplibcode environment. This
feature is inpired by gmp package authored by Enrico Gregorio. Please refer to the manual of
gmp package for details.

draw origin--(.4\mpdim{\linewidth},0)
withpen pencircle scaled 4 dashed evenly scaled 4
withcolor \mpcolor{orange}
;

1.1.13 \mpcolor[...]{...}

With \mpcolor command, color names or expressions of color, xcolor and l3color module/pack-
ages can be used in the mplibcode environment (after withcolor command, in principle). See
the example above at § 1.1.12. The optional [...] denotes the option of xcolor’s \color com-
mand. For spot colors, l3color (in PDF/DVI mode), colorspace, spotcolor (in PDF mode) and
xespotcolor (in DVI mode) packages are supported as well.

n.b. Formerly, only the first object would have been colored as intended among multi-
ple graphical objects in a metapost image, because \mpcolor always produced withprescript
command internally. Since v2.38.1, now that \mpcolor returns a metapost color expression if
possible, users can issue the sentence as follows without worrying about the location of the
color command:

draw image (drawarrow (left--right) scaled 5)
scaled 7
withcolor \mpcolor{red!50}
;

Be aware, however, that even after v2.38.1 \mpcolor will still insert the withprescript command
when the color specified is a spot color (or named color in DVI mode). Users therefore have to
revise the code so that the color can have effect inside the image. For instance:

draw image (drawarrow (left--right) scaled 5 withcolor \mpcolor{spotA})
scaled 7
;

7

1.1.14 \mpfig ... \endmpfig

Besides the mplibcode environment (for LATEX) and \mplibcode ... \endmplibcode (for Plain), we
also provide unexpandable TEX macros \mpfig ... \endmpfig and its starred version \mpfig* ...
\endmpfig to save typing toil. The former is roughly the same as follows:

\begin{mplibcode}[@mpfig]
beginfig(0)

token list declared by \everymplib[@mpfig]
...
token list declared by \everyendmplib[@mpfig]

endfig;
\end{mplibcode}

and the starred version is roughly the same as follows:

\begin{mplibcode}[@mpfig]
...

\end{mplibcode}

In these macros \mpliblegacybehavior{disable} is forcibly declared. Again, as both share the
same instance name, metapost codes are inherited among them. A simple example:

\everymplib[@mpfig]{ drawoptions(withcolor 1/3[red,white]); }
\mpfig* input boxes \endmpfig
\mpfig Box 1
circleit.a(btex Box 1 etex); drawboxed(a);

\endmpfig

Users can change the instance name (default value: @mpfig) by redefining \mpfiginstancename,
after which a new mplib instance will start and code inheritance too will begin anew. \let
\mpfiginstancename\empty will prevent code inheritance if \mplibcodeinherit is not true.

1.1.15 About cache files

To support btex ... etex in external .mp files, luamplib inspects the content of each and every
.mp file and makes caches if nececcsary before returning their paths to the mplib library. This
could waste the compilation time, as most .mp files do not contain btex ... etex commands. So
luamplib provides macros as follows, so that users can give instructions about files that do not
require this functionality.

• \mplibmakenocache{〈filename〉[,〈filename〉,...]}

• \mplibcancelnocache{〈filename〉[,〈filename〉,...]}

where 〈filename〉 is a filename excluding .mp extension. Note that .mp files under $TEXMFMAIN/
metapost/base and $TEXMFMAIN/metapost/context/base are already registered by default.

By default, cache files will be stored in $TEXMFVAR/luamplib_cache or, if it’s not avail-
able (mostly not writable), in the directory where output files are saved: to be specific,

8

$TEXMF_OUTPUT_DIRECTORY/luamplib_cache, ./luamplib_cache, $TEXMFOUTPUT/luamplib_cache, and .,
in this order. $TEXMF_OUTPUT_DIRECTORY is normally the value of --output-directory command-
line option.

Users can change this behavior by the command \mplibcachedir{〈directory path〉}, where
tilde (~) is interpreted as the user’s home directory (on a windows machine as well). As back-
slashes (\) should be escaped by users, it would be easier to use slashes (/) instead.

1.1.16 About figure box metric

Notice that, after each figure is processed, the macro \MPwidth stores the width value of the
latest figure; \MPheight, the height value. Incidentally, also note that \MPllx, \MPlly, \MPurx, and
\MPury store the bounding box information of the latest figure without the unit bp.

1.1.17 luamplib.cfg

At the end of package loading, luamplib searches luamplib.cfg and, if found, reads the
file in automatically. Frequently used settings such as \everymplib, \mplibforcehmode or
\mplibcodeinherit are suitable for going into this file.

1.1.18 Tagged PDF

When tagpdf package is loaded and activated, mplibcode environment accepts additional options
for tagged PDF. The code related to this functionality is currently in experimental stage, not
guaranteeing backward compatibility. Available optional keys are similar to those of the LATEX’s
picture environment (texdoc latex-lab-graphic). The default tagging mode is the alt key with
Figure structure.

alt=〈text〉 starts a Figure tag by default and sets an alternate text of the figure from the 〈text〉.
BBox info will be added automatically to the PDF. This key is needed for ordinary meta-
post figures, for which, if no alt text is given, a default text will be used with a warning
issued. You can change the alternate text within metapost code as well: VerbatimTeX
"\mplibalttext{〈text〉}";

actualtext=〈text〉 starts a Span tag implicitly and sets a replacement text (a.k.a. actual text) from
the 〈text〉. If in vertical mode, horizontal mode will be forced by \noindent command.5
BBox info will not be added. This key is intended for figures which can be represented
by a character or a small sequence of characters. You can change the actual text within
metapost code as well: VerbatimTeX "\mplibactualtext{〈text〉}";

artifact starts an Artifact MC (marked content). BBox info will not be added. This key is
intended for decorative figures which have no semantic meaning.

text starts an Artifact MC but enables tagging on TEX-text boxes (such as btex ... etex, ex-
cluding pictures made by infont operator). If in vertical mode, horizontal mode will be

5It is not recommended to personally redefine \prependtomplibbox. Apart from using \mplibforcehmode or
\mplibnoforcehmode, the redefinition might be incompatible with actualtext key. See § 1.1.1 on these commands.

9

forced by \noindent command.6 BBox info will not be added. This key is intended for
figures the meaning of which is the sequence of texts in the TEX-text boxes in the order
they are drawn in the figure. Inside text-mode figures, reusing TEX-text boxes is strongly
discouraged.

Note that the text in a TEX-text box which starts with [taggingoff] will not be tagged at
all, and of course [taggingoff] and its trailing spaces will be gobbled by luamplib. For
example, the first and the third boxes in the following figure will not be tagged, and still
remain in the Artifact MC-chunks.

\begin{mplibcode}[text]
beginfig(1)

draw btex [taggingoff] $\sqrt 2$ etex ;
draw textext "$\sqrt 3$" shifted 12down ;
draw TEX "[taggingoff] $\sqrt 5$" shifted 24down ;

√
2√
3√
5√
7√
x

draw maketext "$\sqrt 7$" shifted 36down ;
draw mplibgraphictext "$\sqrt x$" shifted 48down ;

endfig;
\end{mplibcode}

off Given this key, nothing will be tagged by luamplib.

tag=〈name〉 You can choose a tag name, default value being Figure.7 For instance, you can set
‘tag=Formula, alt=〈text〉’ to get a Formula element with its alternate text.8

adjust-BBox=〈dimens〉 You can correct the BBox attribute of the figure by space-separated four
dimensional values, which will be added to the automatically calculated BBox values. To
draw the bounding box for checking with half-transparent red color, you can add debug=
BBox to the argument of \DocumentMetadata command.

tagging-setup=〈key-val list〉 This key accepts as its value the list of key-value options men-
tioned so far.

You can set these options anywhere in the document by declaring \SetKeys[luamplib/tagging]
{〈key-val list〉}, which will affect mplib figures thereafter in the scope. And the options listed
above are provided for \mpfig and \usemplibgroup (see below § 1.2.12) commands as well.

\begin{mplibcode}[myInstanceName, alt=drawing of a circle]
...

\end{mplibcode}

\mpfig[alt=drawing of a square box]
...

\endmpfig

6The key text also shares the limitation mentioned in the previous footnote.
7The option tag=false, however, is a synonym of the off key.
8Beware that this bypasses LATEX’s regular math formula tagging, for which the text key is needed.

10

\usemplibgroup[alt=drawing of a triangle]{...}

\mppattern{...} % see below
\mpfig[off] % do not tag this figure

...
\endmpfig

\endmppattern

As for the instance name of mplibcode environment, instance=〈name〉 or instancename=〈name〉
is also allowed in addition to the raw instance name as shown above.

1.2 MetaPost

1.2.1 mplibdimen ..., mplibcolor ...

These are metapost interfaces for the TEX commands \mpdim and \mpcolor (see above § 1.1.12
and § 1.1.13). For example, mplibdimen "\linewidth" is basically the same as \mpdim{\linewidth},
and mplibcolor "red!50" is basically the same as \mpcolor{red!50}. The difference is that these
metapost operators can also be used in external .mp files, which cannot have TEX commands
outside of the btex or verbatimtex ... etex.

1.2.2 mplibtexcolor ..., mplibrgbtexcolor ...

mplibtexcolor, which accepts a string argument, is a metapost operator that converts a TEX
color expression to a metapost color expression, that can be used anywhere color expression
is expected as well as after the withcolor command.9 For instance:

color col;
col := mplibtexcolor "olive!50";

But the result may vary in its color model (gray/rgb/cmyk) according to the given TEX color.
Therefore the example shown above would raise a metapost error: cmykcolor col; should have
been declared. By contrast, mplibrgbtexcolor 〈string〉 always returns rgb-model expressions.

n.b. Spot colors are forced to cmyk or rgbmodel, so these operators are not recommended
for spot colors.

1.2.3 withmplibcolors (..., ...)

Unlike the withcolor command, users can specify one color for filling and another color for
stroking using themacro withmplibcolors at the end of a sentence. The syntax is withmplibcolors
(〈fill color expr〉, 〈stroke color expr〉). When the argument is in string type, it is regarded as
the color expression of TEX side. A simple example (see also the example at § 1.2.9):

filldraw fullcircle scaled 40
withpen pencircle scaled 2
withmplibcolors ("orange!60", 2/3red)
;

9Since v2.38.1, the operation of mplibtexcolor is the same as that of mplibcolor if the color specified is not a spot
color or a named color in DVI mode.

11

The PDF file size is much smaller than issueing two sentences with different colors, though the
apparent effect is the same.

1.2.4 withtransparency (..., ...)

withtransparency(〈number〉 | 〈string〉, 〈numeric〉) is provided for plain format as well as meta-
fun. The first argument accepts a number or a name of alternative transparency methods (see
texdoc metafun § 8.2 Figure 8.1). The second argument accepts a numeric expression denoting
opacity.

\mpfig
fill unitsquare scaled 40

withcolor 1/3[blue,white]
withtransparency (1, 0.5) % or ("normal", 0.5)
;

fill fullcircle scaled 40
withcolor red
withtransparency (1, 0.5)
;

\mpfig

1.2.5 ... withshadingmethod ...

The syntax is exactly the same asmetafun’s new shadingmethod (texdoc metafun § 8.3.3), except
that the ‘shade’ contained in each and every macro name has changed to ‘shading’ in luamplib:
for instance, while withshademethod is a macro namewhich onlyworks withmetafun format, the
equivalent provided by luamplib, withshadingmethod, works with plain as well. Other differences
to the metafun’s and some cautions are:

• Textual pictures as well as paths can have shading effect. The term textual picture means
a picture generated by btex ... etex, textext, TEX, maketext, mplibgraphictext (see below
§ 1.2.7), or infont operator, though technically only the last one is a true textual picture.
Note that the transparency group in which path or text objects are filled without color
(see below § 1.2.12 and § 1.2.13) can also be regarded as a textual picture.

draw btex \bfseries\TeX etex rotated 20 scaled 6
withshadingmethod "linear"
withshadingvector (0,3)
withshadingstep (

withshadingfraction 1/2
withshadingcolors (red,green) TEX)

withshadingstep (
withshadingfraction 1
withshadingcolors (green,blue)

)
;

12

• When you give shading effect to a picture generated by ‘infont’ operator, the result of
withshadingvector will be the same as that of withshadingdirection, as luamplib considers
only the bounding box of the picture in this case.

As shown, the syntax is 〈path〉 | 〈textual picture〉 withshadingmethod 〈string〉, where the latter
shall be either "linear" or "circular". Other macros for optional values are:

withshadingvector 〈pair〉 Starting and ending points (as time value) on the path.

withshadingdirection 〈pair〉 Starting and ending points (as time value) on the bounding box.
Default value: (0,2)

withshadingorigin 〈pair〉 The center of starting and ending circles. Default value: center p,
where p is the operand of withshadingmethod.

withshadingradius 〈pair〉 Radii of starting and ending circles. This is no-op in linear mode.
Default value: (0, abs(center p - urcorner p))

withshadingfactor 〈numeric〉 Multiplier of the radii. This is no-op in linear mode. Default
value: 1.2

withshadingcenter 〈pair〉 Values for shifting starting center. For instance, (0,0) means that the
center of starting circle is center p; (1,1) means urcorner p; (-1,-1) means llcorner p.

withshadingtransform 〈string〉 where 〈string〉 shall be "yes" (respect transform) or "no" (ignore
transform). Default value: "no" for pictures made by infont operator; "yes" for all other
cases.

withshadingdomain 〈pair〉 Limiting values of parametric variable that varies on the axis of color
gradient. Default value: (0,1)

withshadingstep (...) for combined shading of more than two colors.

withshadingfraction 〈numeric〉 Fractional number of each shading step. Only meaningful with
withshadingstep.

withshadingcolors (〈color expr〉, 〈color expr〉) Starting and ending colors, default value being
(white, black). String-type argument is regarded as the color expression of TEX side.

withshadingstroke 〈string〉 where 〈string〉 shall be "yes" or "no". Only meaningful when the
shading object is a 〈path〉; if "yes", we get the path stroked and then shaded. More
efficient than issueing two sentences.

1.2.6 ... withfademethod ...

This is a metapost operator which makes the color of an object gradiently transparent. The
syntax is 〈path〉 | 〈picture〉 withfademethod 〈string〉, the latter being either "linear" or "circular".
Though it is similar to the withshademethod from metafun, the differences are: (1) the operand

13

of withfademethod can be a picture as well as a path; (2) you cannot make gradient colors, but
can only make gradient opacity.

Related macros to control optional values are:

withfadeopacity (〈numeric〉, 〈numeric〉) sets the starting opacity and the ending opacity, de-
fault value being (1,0). ‘1’ denotes full color; ‘0’ full transparency.

withfadevector (〈pair〉, 〈pair〉) sets the starting and ending points. Default value in the linear
mode is (llcorner p, lrcorner p), where p is the operand, meaning that fading starts
from the left edge and ends at the right edge. Default value in the circular mode is
(center p, center p), which means centers of both starting and ending circles are the
center of the bounding box.

withfadecenter is a synonym of withfadevector.

withfaderadius (〈numeric〉, 〈numeric〉) sets the radii of starting and ending circles. This is
no-op in the linear mode. Default value is (0, abs(center p - urcorner p)), meaning
that fading starts from the center and ends at the four corners of the bounding box.

withfadebbox (〈pair〉, 〈pair〉) sets the bounding box of the fading area, default value being
(llcorner p, urcorner p). Though this option is not needed in most cases, there could
be cases when users want to explicitly control the bounding box. Particularly, see the
description below at § 1.2.12 on the analogous macro withgroupbbox.

An example:

\mpfig
picture mill;
mill = btex \includegraphics[width=100bp]{mill} etex;
draw mill

withfademethod "circular"
withfadecenter (center mill, center mill)
withfaderadius (20, 50)
withfadeopacity (1, 0)
;

\endmpfig

1.2.7 mplibgraphictext ...

mplibgraphictext 〈string〉 is a metapost operator, the effect of which is similar to that of Con-
TEXt’s graphictext or our own mpliboutlinetext (see below § 1.2.10). However the syntax is
somewhat different.

draw mplibgraphictext "\bfseries Funny"
rotated 20 scaled 3
fakebold 2.3 % fontspec option Funn

y
fillcolor "red!50" % color expression
drawcolor 2/3 blue % or strokecolor 2/3 blue
;

14

fakebold, fillcolor and drawcolor (or strokecolor) are optional; default values are 2, "white" and
"black" respectively.10 When the color expression is given in string type, it is regarded as color,
xcolor or l3color’s expression. All from mplibgraphictext to the end of sentence will compose an
anonymous picture, which can be drawn or assigned to a variable. Incidentally, withfillcolor
and withdrawcolor are synonyms of fillcolor and drawcolor, hopefully to be compatible with
graphictext.

n.b. In some cases, especially when processing complicated TEX code, mplibgraphictext
will produce better results than ConTEXt or even than our own mpliboutlinetext, not tomention
the much smaller PDF file size. There are, however, some limitations such that you can’t apply
shading (gradient colors) to the text with metafun’s withshademethod.11 Again, in DVI mode,
unicode-math package is needed for math formulae, as we cannot embolden type1 fonts in DVI
mode. But the most critical limitation is that, unlike mpliboutlinetext, you cannot manipulate
the shape of outline paths, because the returned picture is basically a btex ... etex picture.

1.2.8 mplibglyph ... of ...

From v2.30, we provide a newmetapost operator mplibglyph, which returns a metapost picture
containing outline paths of a glyph in opentype, truetype or type1 fonts. When a type1 font is
specified, metapost primitive glyph will be called.

mplibglyph 50 of \fontid\font % slot 50 of current font
mplibglyph "Q" of "TU/TeXGyrePagella(0)/m/n/10" % font csname
mplibglyph "Q" of "texgyrepagella-regular.otf" % raw filename
mplibglyph "Q" of "Times.ttc(2)" % subfont number
mplibglyph "Q" of "SourceHanSansK-VF.otf[Regular]" % instance name

Both arguments before and after “of” can be either a number or a string. Number arguments
are regarded as a glyph slot (GID) and a font id number, repectively. String argument at the
left side is regarded as a glyph name in the font or a unicode character. String argument at the
right side is regarded as a TEX font csname (without backslash) or the raw filename of a font.
When it is a font filename, a number within parentheses after the filename denotes a subfont
number (starting from zero) of a TTC font; a string within brackets denotes an instance name
of a variable font.

1.2.9 mplibdrawglyph ..., mplibstrokeglyph ..., mplibfillandstrokeglyph ...

As the structure of the picture returned by mplibglyph is quite similar to the result of glyph
primitive, metapost’s draw command will fill the inner path of the picture with the background
color. In contrast, mplibdrawglyph 〈picture〉 command fills the paths according to the nonzero
winding number rule. As a result, for instance, the area surrounded by inner path of “O” will
remain transparent.

n.b. To apply the nonzero winding number rule to a picture containing paths, luamplib
appends withpostscript "collect" to the paths except the last one in the picture. If you want the
even-odd rule instead, you can additionally declare withpostscript "evenodd" to the last path.

10Users can use the withmplibcolors macro instead of fillcolor and drawcolor options. See § 1.2.3 on this macro.
11But this limitation is now lifted by the introduction of withshadingmethod. See above § 1.2.5.

15

n.b. By the way, when you want fill-and-stroke effect, issueing filldraw command to the
last path will not always produce what youwant: in such cases, you have to issue the command
draw 〈the last path〉 withpostscript "both" (or "eoboth" to apply even-odd rule).12

As this could be somewhat annoying to users, luamplib v2.38.0 or later provides the fol-
lowing commands as well: mplibfillandstrokeglyph 〈picture〉, mplibstrokeglyph 〈picture〉, and
mplibfillglyph 〈picture〉, the last one being a synonym of mplibdrawglyph command.

An example:

mplibfillandstrokeglyph
mplibglyph "R" of \fontid\font scaled 1/12
withpen pencircle scaled 1
withmplibcolors ("orange", 2/3red)
;

1.2.10 mpliboutlinetext (...)

From v2.31, a new metapost operator mpliboutlinetext is available, which mimicks metafun’s
outlinetext. So the syntax is the same: see themetafun manual § 8.7 (texdoc metafun). A simple
example:

draw mpliboutlinetext.b ("$\sqrt{2+\alpha}$")
(withcolor \mpcolor{red!33})
(withpen pencircle scaled .2 withcolor 2/3red)
scaled 3
;

After the process, mpliboutlinepic[] and mpliboutlinenum will be preserved as global variables;
mpliboutlinepic[1] ... mpliboutlinepic[mpliboutlinenum] will be an array of images, each of
which containing outline paths of a glyph or a rule.

n.b. As Unicode grapheme cluster is not considered in the array, a unit that must be a
single cluster might be separated apart.

1.2.11 \mppattern{...} ... \endmppattern, ... withmppattern ...

TEX macros \mppattern{〈name〉} ... \endmppattern define a tiling pattern cell associated with
the 〈name〉. metapost command withmppattern, the syntax being 〈cyclic path〉 | 〈textual picture〉
withmppattern 〈string〉, will fill the given path or text with the tiling pattern cell of the 〈name〉
by replicating it horizontally and vertically.13 As said before at § 1.2.5, the textual picture here
means any text typeset by TEX, mostly the result of the btex command (and its derivatives) or
the infont operator.

12metafun provides macros nofill, eofill, fillup, eofillup etc. (seemetafun manual § 2.11), which luamplib with
plain format does not provide currently.

13withpattern is an operator virtually the same as withmppattern, but the former forces a metapost picture. There-
fore you cannot but use draw command with withpattern operator. On the other hand, if some special command is
not appended (see the example just below), 〈cyclic path〉 withmppattern 〈string〉 works as intended only with fill
or filldraw command.

16

Table 1: options for \mppattern
Key Value Type Explanation
xstep number horizontal spacing between pattern cells
ystep number vertical spacing between pattern cells
xshift number horizontal shifting of pattern cells
yshift number vertical shifting of pattern cells
bbox table or string llx, lly, urx, ury values*
matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed
colored or coloured boolean false for uncolored pattern. default: true

* in string type, numbers are separated by spaces

An example:

\mppattern{mypatt} % or \begin{mppattern}{mypatt}
[% options: see below

xstep = 10,
ystep = 7,
matrix = "rotated 45", % or "0.7 0.7 -0.7 0.7" or {0.7, 0.7, -0.7, 0.7}

]
\mpfig % or any other TeX code

draw (up--down) scaled 5
withcolor 2/3[blue,white]
;

draw (left--right) scaled 5
withcolor 2/3[red,white]
;

\endmpfig
\endmppattern % or \end{mppattern}

\mpfig
draw fullcircle scaled 50

withpostscript "collect"
;

draw fullcircle scaled 120
withmppattern "mypatt"
withpen pencircle scaled 1
withcolor \mpcolor{red!50!blue!50}
withpostscript "eoboth"
;

\endmpfig

The available options, actually elements of a Lua table, are listed in Table 1. For the sake
of convenience, the width and height values of the tiling pattern cell will be written down into
the log file (depth is always zero). Users can refer to them for option setting.

As for matrix option, metapost code such as "rotated 30 slanted .2" is allowed as well as
the string or table of four numbers. You can also set xshift and yshift values by using ‘shifted’

17

operator. But when xshift or yshift option is explicitly given, they have precedence over the
effect of ‘shifted’ operator.

When you use special effect such as transparency in a pattern cell, resources option is
needed: for instance, resources="/ExtGState 1 0 R". However, as luamplib automatically in-
cludes the resources of the current page, this option is not needed in most cases.

Option colored=false (or coloured=false) will generate an uncolored pattern cell which shall
have no color at all (i.e. withoutcolor command is needed for the cells made from metapost
code). Uncolored pattern will be painted later by the color of a metapost object. An example:

\begin{mppattern}{pattnocolor}
[

colored = false,
matrix = "slanted .3 rotated 30",

]
\tiny\TeX

\end{mppattern}

\begin{mplibcode}
beginfig(1)

picture tex;
tex = mpliboutlinetext.p ("\bfseries \TeX");
for i=1 upto mpliboutlinenum:

mplibfillandstrokeglyph mpliboutlinepic[i]
scaled 8
withmppattern "pattnocolor"
withpen pencircle scaled 1/2
withcolor (i/4)[red,blue] % paints the pattern
;

endfor
endfig;

\end{mplibcode}

A much simpler and efficient way to obtain a similar result (but without colorful characters in
this example) is to give a textual picture as the operand of withmppattern:

\begin{mplibcode}
beginfig(2)

draw mplibgraphictext "\bfseries\TeX"
fakebold 1/2
rotated 15 scaled 8
withmppattern "pattnocolor" TEXwithmplibcolors (
2/3[red,white], % paints the pattern
2/3 red

)
;

endfig;
\end{mplibcode}

18

1.2.12 ... asgroup ...

As said before, transparency group is available with plain as well asmetafun format. The syntax
is exactly the same: 〈picture〉 | 〈path〉 asgroup "" | "isolated" | "knockout" | "isolated,knockout",
which will return a metapost picture. It is called Transparency Group because the objects
contained in the group are composited to produce a single object, so that outer transparency
effect, if any, will be applied to the group as a whole, not to the individual objects cumulatively.

The additional feature provided by luamplib is that you can reuse the group as many times
as you want in the TEX code or in other metapost code chunks, with infinitesimal increase in
the size of PDF file. For this functionality we provide TEX and metapost macros as follows:

withgroupname 〈string〉 associates a transparency group with the given name. When this is not
appended to the sentence with asgroup operator, the default group name ‘lastmplibgroup’
will be used.

\usemplibgroup{〈name〉} is a TEX command to reuse a transparency group of the name once
used. Note that the position of the group will be origin-based: in other words, lower-left
corner of the bounding box will be shifted to the origin.

usemplibgroup 〈string〉 is a metapost command which will add a transparency group of the
name to the currentpicture. Contrary to the TEX command just mentioned, the position
of the group is the same as the original transparency group.

withgroupbbox (〈pair〉, 〈pair〉) sets the bounding box of the transparency group, default value
being (llcorner p, urcorner p). This option might be needed especially when you draw
with a thick pen a path that touches the boundary; you would probably want to append
to the sentence ‘withgroupbbox (bot lft llcorner p, top rt urcorner p)’, supposing that the
pen was selected by the pickup command.

An example showing the difference between the TEX and metapost commands:

\mpfig
draw image(

fill fullcircle scaled 50 shifted 20right withcolor blue;
fill fullcircle scaled 50 withcolor red ;

)
asgroup ""
withgroupname "mygroup"
withtransparency (1, 1/2)
;

draw (left--right) scaled 5;
draw (up--down) scaled 5;

\endmpfig

\noindent
\clap{\vrule width 10bp height .25bp depth .25bp}%
\clap{\vrule width .5bp height 5bp depth 5bp}%
\usemplibgroup{mygroup}

19

\mpfig
usemplibgroup "mygroup"

withtransparency (1, 1/3)
;

draw (left--right) scaled 5;
draw (up--down) scaled 5;

\endmpfig

Also note that normally the transparency groups are not affected by outer color commands.
However, if you have made the original transparency group using withoutcolor command, col-
ors will have effects on the uncolored objects in the group.

1.2.13 \mplibgroup{...} ... \endmplibgroup

These TEXmacros are described here in this subsection, as they are deeply related to the asgroup
operator. Users can define a transparency group or a normal form XObject with these macros
from TEX side. The syntax is similar to the \mppattern command (see above § 1.2.11).

An example:

\mplibgroup{mygrx} % or \begin{mplibgroup}{mygrx}
[% options: see below

asgroup="",
]
\mpfig % or any other TeX code

pickup pencircle scaled 10;
draw (left--right) scaled 20 rotated 45 ;
draw (left--right) scaled 20 rotated -45 ;

\endmpfig
\endmplibgroup % or \end{mplibgroup}

\usemplibgroup{mygrx}

\mpfig
usemplibgroup "mygrx" scaled 1.5

withtransparency (1, 0.5)
;

\endmpfig

Availabe options, much fewer than those for \mppattern, are listed in Table 2. Again, the
width/height/depth values of the mplibgroup will be written down into the log file.

When asgroup option, including empty string, is not given, a normal form XObject will be
generated rather than a transparency group. Thus the individual objects, not the XObject as a
whole, will be affected by outer transparency command.

As shown, you can reuse the mplibgroup using the TEX command \usemplibgroup or the
metapost command usemplibgroup. The behavior of these commands is the same as that de-
scribed above at § 1.2.12, excepting that the mplibgroup made by TEX code (not by metapost
code) respects original height and depth.

20

Table 2: options for \mplibgroup
Key Value Type Explanation
asgroup string "", "isolated", "knockout", or "isolated,knockout"
bbox table or string llx, lly, urx, ury values*
matrix table or string xx, yx, xy, yy values* or MP transform code
resources string PDF resources if needed

* in string type, numbers are separated by spaces

1.2.14 mpliblength ..., mplibuclength ...

mpliblength 〈string〉 returns the number of unicode characters in the string. This is a unicode-
aware version equivalent to the metapost primitive length, but accepts only a string-type ar-
gument. For instance, mpliblength "abçdéf" returns 6, not 8.

On the other hand, mplibuclength 〈string〉 returns the number of unicode grapheme clusters
in the string. For instance, mplibuclength "Äpfel", where Ä is encoded using two codepoints
(U+0041 and U+0308), returns 5, not 6 or 7. This operator requires lua-uni-algos package.

1.2.15 mplibsubstring ... of ..., mplibucsubstring ... of ...

mplibsubstring 〈pair〉 of 〈string〉 is a unicode-aware version equivalent to the metapost’s
substring ... of ... primitive. The syntax is the same as the latter, but the string is in-
dexed by unicode characters. For instance, mplibsubstring (2,5) of "abçdéf" returns "çdé", and
mplibsubstring (5,2) of "abçdéf" returns "édç".

On the other hand, mplibucsubstring 〈pair〉 of 〈string〉 returns the part of the string indexed
by unicode grapheme clusters. For instance, mplibucsubstring (0,1) of "Äpfel", where Ä is en-
coded using two codepoints (U+0041 and U+0308), returns "Ä", not "A". This operator requires
lua-uni-algos package.

1.3 Lua

1.3.1 runscript ...

A goodmany metapostmacros described in this documentation have been implemented using
the primitive runscript. With runscript 〈string〉, you can run a Lua code chunk from metapost
side and get some metapost code returned by Lua if you want. As the functionality is provided
by the mplib library itself, luamplib does not have much to say about it.

One thing is worthmentioning, however: if you return a Lua table to the metapost process,
it is automatically converted to a relevant metapost data type such as pair, color, cmykcolor or
transform. So users can save some extra toil of converting a table to a string, though it’s not a
big deal. For instance, runscript "return {1,0,0}" will give you the metapost color expression
(1,0,0) automatically.

21

1.3.2 Lua table luamplib.instances

Users can access the Lua table containing mplib instances, luamplib.instances, through which
metapost variables are also easily accessible from Lua side, as documented in LuaTEX manual
§ 11.2.8.4 (texdoc luatex). The following example will print false, 3.0, MetaPost and the knots
and the cyclicity of the path unitsquare.

\begin{mplibcode}[myinstance]
boolean b; b = 1 > 2;
numeric n; n = 3;
string s; s = "MetaPost";
path p; p = unitsquare;

\end{mplibcode}

\directlua{
local myinstance = luamplib.instances.myinstance
print(myinstance:get_boolean "b")
print(myinstance:get_numeric "n")
print(myinstance:get_string "s")
local t = myinstance:get_path "p"
for k,v in pairs(t) do

print(k, type(v)=='table' and table.concat(v,' ') or v)
end

}

Of course, this sort of Lua code can also be run inside metapost code using runscript command.
Again, of course you can access a metapost variable using your own TEX macro. For example:

\def\mpnumeric#1#2{\directlua{
tex.sprint(tostring(luamplib.instances["#1"]:get_numeric"#2"))

}}
\mpnumeric{myinstance}{n}\relax 3.0

1.3.3 Lua function luamplib.process_mplibcode

Users can run a metapost code chunk from Lua side by using this function:

luamplib.process_mplibcode (<string> metapost code, <string> instance name)

The second argument cannot be absent, but can be an empty string ("") which means that
it has no instance name.

Some other elements in the luamplib namespace, listed in Table 3, can affect the process of
process_mplibcode.

1.3.4 Lua function luamplib.registerpattern

This is the Lua interface for \mppattern ... \endmppattern described above at § 1.2.11.

luamplib.registerpattern (<number> box register, <string> pattern name, <table> options)

22

Table 3: elements in luamplib table (partial)
Key Type Related TEX macro Cf.
codeinherit boolean \mplibcodeinherit § 1.1.8
everyendmplib table \everyendmplib § 1.1.2
everymplib table \everymplib § 1.1.2
getcachedir function (〈string〉) \mplibcachedir § 1.1.15
globaltextext boolean \mplibglobaltextext § 1.1.9
legacyverbatimtex boolean \mpliblegacybehavior § 1.1.6
noneedtoreplace table \mplibmakenocache § 1.1.15
numbersystem string \mplibnumbersystem § 1.1.4
setformat function (〈string〉) \mplibsetformat § 1.1.3
showlog boolean \mplibshowlog § 1.1.5
textextlabel boolean \mplibtextextlabel § 1.1.7
verbatiminput boolean \mplibverbatim § 1.1.11

The first argument is the register of a box containing a pattern cell, which should be pre-
pared in advance by the user. For instance, \setbox0=\hbox{\tiny\TeX}, or corresponding Lua
code using tex.setbox function; then the argument should be 0.

As for the third argument, see above Table 1. The argument cannot be absent, but can be
an empty table, i.e. { }.

1.3.5 Lua function luamplib.registergroup

This is the Lua interface for \mplibgroup ... \endmplibgroup described above at § 1.2.13.

luamplib.registergroup (<number> box register, <string> group name, <table> options)

The first argument is the register of a box prepared in advance by the user. When the
contents of the box have been generated from TEX (not metapost) code, please make sure that
both of the TEX macros ‘MPllx’ and ‘MPlly’ are defined as ‘0’ before invoking the Lua function.

As for the third argument, see above Table 2. The argument cannot be absent, but can be
an empty table, i.e. { }.

Reusing an mplibgroup, \usemplibgroup{〈name〉}, is basically the same as running the TEX
macro ‘luamplib.group.〈name〉’. If you need the boxresource index, inspect this macro using
token.get_macro function.

2 Implementation

2.1 Lua module
1
2 luatexbase.provides_module {
3 name = "luamplib",
4 version = "2.38.3",

23

5 date = "2026/01/27",
6 description = "Lua package to typeset Metapost with LuaTeX's MPLib.",
7 }
8

Use the luamplib namespace, since mplib is for the metapost library itself. ConTEXt uses
metapost.

9 luamplib = luamplib or { }
10 local luamplib = luamplib
11
12 local format, abs = string.format, math.abs
13

Use our own function for warn/info/err.
14 local function termorlog (target, text, kind)
15 if text then
16 local mod, write, append = "luamplib", texio.write_nl, texio.write
17 kind = kind
18 or target == "term" and "Warning (more info in the log)"
19 or target == "log" and "Info"
20 or target == "term and log" and "Warning"
21 or "Error"
22 target = kind == "Error" and "term and log" or target
23 local t = text:explode"\n+"
24 write(target, format("Module %s %s:", mod, kind))
25 if #t == 1 then
26 append(target, format(" %s", t[1]))
27 else
28 for _,line in ipairs(t) do
29 write(target, line)
30 end
31 write(target, format("(%s) ", mod))
32 end
33 append(target, format(" on input line %s", tex.inputlineno))
34 write(target, "")
35 if kind == "Error" then error() end
36 end
37 end
38 local function warn (...) -- beware '%' symbol
39 termorlog("term and log", select("#",...) > 1 and format(...) or ...)
40 end
41 local function info (...)
42 termorlog("log", select("#",...) > 1 and format(...) or ...)
43 end
44 local function err (...)
45 termorlog("error", select("#",...) > 1 and format(...) or ...)
46 end
47
48 luamplib.showlog = luamplib.showlog or false
49

24

Provide a few “shortcuts” expected by the code.
50 local tableconcat = table.concat
51 local tableinsert = table.insert
52 local tableunpack = table.unpack
53 local texsprint = tex.sprint
54 local texgettoks = tex.gettoks
55 local texgetbox = tex.getbox
56 local texruntoks = tex.runtoks
57 if not texruntoks then
58 err("Your LuaTeX version is too old. Please upgrade it to the latest")
59 end
60 local is_defined = token.is_defined
61 local get_macro = token.get_macro
62 local mplib = require ('mplib')
63 local kpse = require ('kpse')
64 local lfs = require ('lfs')
65 local lfsattributes = lfs.attributes
66 local lfsisdir = lfs.isdir
67 local lfsmkdir = lfs.mkdir
68 local lfstouch = lfs.touch
69 local ioopen = io.open
70

Some helper functions, prepared for the case when l-file etc is not loaded.
71 local file = file or { }
72 local replacesuffix = file.replacesuffix or function(filename, suffix)
73 return (filename:gsub("%.[%a%d]+$","")) .. "." .. suffix
74 end
75 local is_writable = file.is_writable or function(name)
76 if lfsisdir(name) then
77 name = name .. "/_luam_plib_temp_file_"
78 local fh = ioopen(name,"w")
79 if fh then
80 fh:close(); os.remove(name)
81 return true
82 end
83 end
84 end
85 local mk_full_path = lfs.mkdirp or lfs.mkdirs or function(path)
86 local full = ""
87 for sub in path:gmatch("(/*[^\\/]+)") do
88 full = full .. sub
89 lfsmkdir(full)
90 end
91 end
92

btex ... etex in input .mp files will be replaced in finder. Because of the limitation of mplib
regarding make_text, we might have to make cache files modified from input files.

First of all, determine the directory to store cache files.

25

93 local outputdir, cachedir
94 if lfstouch then
95 for i,v in ipairs{'TEXMFVAR','TEXMF_OUTPUT_DIRECTORY','.','TEXMFOUTPUT'} do
96 local var = i == 3 and v or kpse.var_value(v)
97 if var and var ~= "" then
98 for _,vv in next, var:explode(os.type == "unix" and ":" or ";") do
99 local dir = format("%s/%s",vv,"luamplib_cache")

100 if not lfsisdir(dir) then
101 mk_full_path(dir)
102 end
103 if is_writable(dir) then
104 outputdir = dir
105 break
106 end
107 end
108 if outputdir then break end
109 end
110 end
111 end
112 outputdir = outputdir or '.'
113 function luamplib.getcachedir(dir)
114 dir = dir:gsub("##","#")
115 dir = dir:gsub("^~",
116 os.type == "windows" and os.getenv("UserProfile") or os.getenv("HOME"))
117 if lfstouch and dir then
118 if lfsisdir(dir) then
119 if is_writable(dir) then
120 cachedir = dir
121 else
122 warn("Directory '%s' is not writable!", dir)
123 end
124 else
125 warn("Directory '%s' does not exist!", dir)
126 end
127 end
128 end

Some basic metapost files not necessary to make cache files.
129 local noneedtoreplace = {
130 ["boxes.mp"] = true, -- ["format.mp"] = true,
131 ["graph.mp"] = true, ["marith.mp"] = true, ["mfplain.mp"] = true,
132 ["mpost.mp"] = true, ["plain.mp"] = true, ["rboxes.mp"] = true,
133 ["sarith.mp"] = true, ["string.mp"] = true, -- ["TEX.mp"] = true,
134 ["metafun.mp"] = true, ["metafun.mpiv"] = true, ["mp-abck.mpiv"] = true,
135 ["mp-apos.mpiv"] = true, ["mp-asnc.mpiv"] = true, ["mp-bare.mpiv"] = true,
136 ["mp-base.mpiv"] = true, ["mp-blob.mpiv"] = true, ["mp-butt.mpiv"] = true,
137 ["mp-char.mpiv"] = true, ["mp-chem.mpiv"] = true, ["mp-core.mpiv"] = true,
138 ["mp-crop.mpiv"] = true, ["mp-figs.mpiv"] = true, ["mp-form.mpiv"] = true,
139 ["mp-func.mpiv"] = true, ["mp-grap.mpiv"] = true, ["mp-grid.mpiv"] = true,
140 ["mp-grph.mpiv"] = true, ["mp-idea.mpiv"] = true, ["mp-luas.mpiv"] = true,

26

141 ["mp-mlib.mpiv"] = true, ["mp-node.mpiv"] = true, ["mp-page.mpiv"] = true,
142 ["mp-shap.mpiv"] = true, ["mp-step.mpiv"] = true, ["mp-text.mpiv"] = true,
143 ["mp-tool.mpiv"] = true, ["mp-cont.mpiv"] = true,
144 }
145 luamplib.noneedtoreplace = noneedtoreplace
146

Pattern formats to replace btex and verbatimtex ... etex in input files, if needed.
147 local name_b = "%f[%a_]"
148 local name_e = "%f[^%a_]"
149 local btex_etex = name_b.."btex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e
150 local verbatimtex_etex = name_b.."verbatimtex"..name_e.."%s*(.-)%s*"..name_b.."etex"..name_e
151

Function luamplib.finder
152 local currenttime = os.time()
153 do
154 local luamplibtime = lfsattributes(kpse.find_file"luamplib.lua", "modification")

format.mp is much complicated, so specially treated.
155 local function replaceformatmp(file,newfile,ofmodify)
156 local fh = ioopen(file,"r")
157 if not fh then return file end
158 local data = fh:read("*all"); fh:close()
159 fh = ioopen(newfile,"w")
160 if not fh then return file end
161 fh:write(
162 "let normalinfont = infont;\n",
163 "primarydef str infont name = rawtextext(str) enddef;\n",
164 data,
165 "vardef Fmant_(expr x) = rawtextext(decimal abs x) enddef;\n",
166 "vardef Fexp_(expr x) = rawtextext(\"$^{\"&decimal x&\"}$\") enddef;\n",
167 "let infont = normalinfont;\n"
168); fh:close()
169 lfstouch(newfile,currenttime,ofmodify)
170 return newfile
171 end
172 local function replaceinputmpfile (name,file)
173 local ofmodify = lfsattributes(file,"modification")
174 if not ofmodify then return file end
175 local newfile = name:gsub("%W","_")
176 newfile = format("%s/luamplib_input_%s", cachedir or outputdir, newfile)
177 if newfile and luamplibtime then
178 local nf = lfsattributes(newfile)
179 if nf and nf.mode == "file" and
180 ofmodify == nf.modification and luamplibtime < nf.access then
181 return nf.size == 0 and file or newfile
182 end
183 end
184 if name == "format.mp" then return replaceformatmp(file,newfile,ofmodify) end
185 local fh = ioopen(file,"r")

27

186 if not fh then return file end
187 local data = fh:read("*all"); fh:close()

“etex” must be preceded by a space and followed by a space or semicolon as specified in LuaTEX
manual, which is not the case of standalone metapost though.
188 local count,cnt = 0,0
189 data, cnt = data:gsub(btex_etex, "btex %1 etex ") -- space
190 count = count + cnt
191 data, cnt = data:gsub(verbatimtex_etex, "verbatimtex %1 etex;") -- semicolon
192 count = count + cnt
193 if count == 0 then
194 noneedtoreplace[name] = true
195 fh = ioopen(newfile,"w");
196 if fh then
197 fh:close()
198 lfstouch(newfile,currenttime,ofmodify)
199 end
200 return file
201 end
202 fh = ioopen(newfile,"w")
203 if not fh then return file end
204 fh:write(data); fh:close()
205 lfstouch(newfile,currenttime,ofmodify)
206 return newfile
207 end

As the finder function for mplib, use the kpse library and make it behave like as if metapost
was used. And replace .mp files with cache files if needed. See also #74, #97.
208 local mpkpse
209 do
210 local exe = 0
211 while arg[exe-1] do
212 exe = exe-1
213 end
214 mpkpse = kpse.new(arg[exe], "mpost")
215 end
216 local special_ftype = {
217 pfb = "type1 fonts",
218 enc = "enc files",
219 }
220 function luamplib.finder (name, mode, ftype)
221 if mode == "w" then
222 if name and name ~= "mpout.log" then
223 kpse.record_output_file(name) -- recorder
224 end
225 return name
226 else
227 ftype = special_ftype[ftype] or ftype
228 local file = mpkpse:find_file(name,ftype)
229 if file then

28

230 if lfstouch and ftype == "mp" and not noneedtoreplace[name] then
231 file = replaceinputmpfile(name,file)
232 end
233 else
234 file = mpkpse:find_file(name, name:match("%a+$"))
235 end
236 if file then
237 kpse.record_input_file(file) -- recorder
238 end
239 return file
240 end
241 end
242 end
243

For the main function: process
plain or metafun, though we cannot support metafun format fully.

244 local currentformat = "plain"
245 function luamplib.setformat (name)
246 currentformat = name
247 end

v2.9 has introduced the concept of “code inherit”
248 luamplib.codeinherit = false
249 local mplibinstances = {}
250 luamplib.instances = mplibinstances
251 local has_instancename = false
252
253 local process
254 do
255 local function reporterror (result, prevlog)
256 if not result then
257 err("no result object returned")
258 else
259 local t, e, l = result.term, result.error, result.log

log has more information than term, so log first (2021/08/02)
260 local log = l or t or "no-term"
261 log = log:gsub("%(Please type a command or say `end'%)",""):gsub("\n+","\n")
262 if result.status > 0 then
263 local first = log:match"(.-\n! .-)\n! "
264 if first then
265 termorlog("term", first)
266 termorlog("log", log, "Warning")
267 else
268 warn(log)
269 end
270 if result.status > 1 then
271 err(e or "see above messages")
272 end
273 elseif prevlog then

29

274 log = prevlog..log

v2.6.1: now luamplib does not disregard show command, even when luamplib.showlog is false.
Incidentally, it does not raise error nor prints an info, even if output has no figure.
275 local show = log:match"\n>>? .+"
276 if show then
277 termorlog("term", show, "Info (more info in the log)")
278 info(log)
279 elseif luamplib.showlog and log:find"%g" then
280 info(log)
281 end
282 end
283 return log
284 end
285 end

lualibs-os.lua installs a randomseed. When this file is not loaded, we should explicitly seed a
unique integer to get random randomseed for each run.
286 if not math.initialseed then math.randomseed(currenttime) end
287 local function luamplibload (name)
288 local mpx = mplib.new {
289 ini_version = true,
290 find_file = luamplib.finder,

Make use of make_text and run_script. And we provide numbersystem option since v2.4. See
https://github.com/lualatex/luamplib/issues/21.
291 make_text = luamplib.maketext,
292 run_script = luamplib.runscript,
293 math_mode = luamplib.numbersystem,
294 job_name = tex.jobname,
295 random_seed = math.random(4095),
296 utf8_mode = true,
297 extensions = 1,
298 }

Append our own metapost preamble to the preamble loading plain/metafun format.
299 local preamble = tableconcat{
300 format(luamplib.preambles.preamble, replacesuffix(name,"mp")),
301 luamplib.preambles.mplibcode,
302 luamplib.legacyverbatimtex and luamplib.preambles.legacyverbatimtex or "",
303 luamplib.textextlabel and luamplib.preambles.textextlabel or "",
304 }
305 local result, log
306 if not mpx then
307 result = { status = 99, error = "out of memory"}
308 else
309 result = mpx:execute(preamble)
310 end
311 log = reporterror(result)
312 return mpx, result, log
313 end

30

https://github.com/lualatex/luamplib/issues/21

Here, excute each mplibcode data, ie \begin{mplibcode} ... \end{mplibcode}.
314 function process (data, instancename)
315 local currfmt
316 if instancename and instancename ~= "" then
317 currfmt = instancename
318 has_instancename = true
319 else
320 currfmt = tableconcat{
321 currentformat,
322 luamplib.numbersystem or "scaled",
323 tostring(luamplib.textextlabel),
324 tostring(luamplib.legacyverbatimtex),
325 }
326 has_instancename = false
327 end
328 local mpx = mplibinstances[currfmt]
329 local standalone = not (has_instancename or luamplib.codeinherit)
330 if mpx and standalone then
331 mpx:finish()
332 end
333 local log = ""
334 if standalone or not mpx then
335 mpx, _, log = luamplibload(currentformat)
336 mplibinstances[currfmt] = mpx
337 end
338 local converted, result = false, {}
339 if mpx and data then
340 result = mpx:execute(data)
341 local log = reporterror(result, log)
342 if log then
343 if result.fig then
344 converted = luamplib.convert(result)
345 end
346 end
347 else
348 err"Mem file unloadable. Maybe generated with a different version of mplib?"
349 end
350 return converted, result
351 end
352 end
353

dvipdfmx is supported, though nobody seems to use it.
354 local pdfmode = tex.outputmode > 0
355

make_text and some run_script uses LuaTEX’s tex.runtoks.
356 local catlatex = luatexbase.registernumber("catcodetable@latex")
357 local catat11 = luatexbase.registernumber("catcodetable@atletter")

tex.scantoks sometimes fail to read catcode properly, especially \#, \&, or \%. After some exper-

31

iment, we dropped using it. Instead, a function containing tex.sprint seems to work nicely.
358 local function run_tex_code (str, cat)
359 texruntoks(function() texsprint(cat or catlatex, str) end)
360 end

For conversion of sp to bp.
361 local factor = 65536*(7227/7200)
362

Prepare textext box number containers, locals and globals. localid can be any number.
They are local anyway. The number will be reset at the start of a new code chunk. Global
boxes will use \newbox command in tex.runtoks process. This is the same when codeinherit is
true. Boxes in instances with name will also be global, so that their tex boxes can be shared
among instances of the same name.
363 local texboxes = { globalid = 0, localid = 4096 }
364 local process_tex_text
365 do
366 local textext_fmt = 'image(addto currentpicture doublepath unitsquare \z
367 xscaled %f yscaled %f shifted (0,-%f) \z
368 withprescript "mplibtexboxid=%i:%f:%f")'
369 function process_tex_text (str, maketext)
370 if str then
371 if not maketext then str = str:gsub("\r.-$","") end
372 local global = (has_instancename or luamplib.globaltextext or luamplib.codeinherit)
373 and "\\global" or ""
374 local tex_box_id
375 if global == "" then
376 tex_box_id = texboxes.localid + 1
377 texboxes.localid = tex_box_id
378 else
379 local boxid = texboxes.globalid + 1
380 texboxes.globalid = boxid
381 run_tex_code(format([[\expandafter\newbox\csname luamplib.box.%s\endcsname]], boxid))
382 tex_box_id = tex.getcount'allocationnumber'
383 end
384 if str:find"^%[taggingoff%]" then
385 str = str:gsub("^%[taggingoff%]%s*","")
386 run_tex_code(format("\\luamplibnotagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
387 tex_box_id, global, tex_box_id, str))
388 else
389 run_tex_code(format("\\luamplibtagtextboxset{%i}{%s\\setbox%i\\hbox{%s}}",
390 tex_box_id, global, tex_box_id, str))
391 end
392 local box = texgetbox(tex_box_id)
393 local wd = box.width / factor
394 local ht = box.height / factor
395 local dp = box.depth / factor
396 return textext_fmt:format(wd, ht+dp, dp, tex_box_id, wd, ht+dp)
397 end
398 return ""

32

399 end
400 end
401

Make color or xcolor’s color expressions usable, with \mpcolor or mplibcolor. These com-
mands should be used with graphical objects. Attempt to support l3color as well.
402 if is_defined'color_select:n' then
403 run_tex_code{
404 "\\newcatcodetable\\luamplibcctabexplat",
405 "\\begingroup",
406 "\\catcode`@=11 ",
407 "\\catcode`_=11 ",
408 "\\catcode`:=11 ",
409 "\\savecatcodetable\\luamplibcctabexplat",
410 "\\endgroup",
411 }
412 end
413 local ccexplat = luatexbase.registernumber"luamplibcctabexplat"
414
415 local process_color, process_mplibcolor

A common function for color functions
416 local function colorsplit (res)
417 local t, tt = { }, res:gsub("[%[%]]","",2):explode()
418 local be = tt[1]:find"^%d" and 1 or 2
419 for i=be, #tt do
420 if not tonumber(tt[i]) then break end
421 t[#t+1] = tt[i]
422 end
423 if #t == 0 then -- named color in DVI mode with no DocumentMetadata
424 run_tex_code{"\\extractcolorspecs{", tt[3], "}\\mplibtmpa\\mplibtmpb"}
425 t = get_macro"mplibtmpb":explode","
426 end
427 return t
428 end
429 do
430 local colfmt = ccexplat and "l3color" or "xcolor"
431 local mplibcolorfmt = {
432 xcolor = tableconcat{
433 [[\begingroup\let\XC@mcolor\relax]],
434 [[\def\set@color{\global\mplibtmptoks\expandafter{\current@color}}]],
435 [[\color%s\endgroup]],
436 },
437 l3color = tableconcat{
438 [[\begingroup\def__color_select:N#1{\expandafter__color_select:nn#1}]],
439 [[\def__color_backend_select:nn#1#2{\global\mplibtmptoks{#1 #2}}]],
440 [[\def__kernel_backend_literal:e#1{\global\mplibtmptoks\expandafter{\expanded{#1}}}]],
441 [[\color_select:n%s\endgroup]],
442 },
443 }

33

444 function process_color (str)
445 if str then
446 if not str:find("%b{}") then
447 str = format("{%s}",str)
448 end
449 local myfmt = mplibcolorfmt[colfmt]
450 if colfmt == "l3color" and is_defined"color" then
451 if str:find("%b[]") then
452 myfmt = mplibcolorfmt.xcolor
453 else
454 for _,v in ipairs(str:match"{(.+)}":explode"!") do
455 if not v:find("^%s*%d+%s*$") then
456 local pp = get_macro(format("l__color_named_%s_prop",v))
457 if not pp or pp == "" then
458 myfmt = mplibcolorfmt.xcolor
459 break
460 end
461 end
462 end
463 end
464 end
465 run_tex_code(myfmt:format(str), ccexplat or catat11)
466 local t = texgettoks"mplibtmptoks"
467 if not pdfmode then
468 if t:find"^hsb" or not t:find"%d" then
469 t = "color push " .. t
470 elseif not t:find"^pdf" then
471 t = t:gsub("%a+ (.+)","pdf:bc [%1]")
472 end
473 end
474 return format('1 withprescript "mpliboverridecolor=%s"', t)
475 end
476 return ""
477 end
478 function process_mplibcolor(str)
479 local res = process_color(str)
480 if res:find" cs " or res:find"@pdf.obj" or res:find"color push" then return res end
481 res = colorsplit(res:match'"mpliboverridecolor=(.+)"')
482 return format("(%s)", tableconcat(res, ","))
483 end
484 end
485

for \mpdim or mplibdimen
486 local function process_dimen (str)
487 if str then
488 str = str:gsub("{(.+)}","%1")
489 run_tex_code(format([[\mplibtmptoks\expandafter{\the\dimexpr %s\relax}]], str))
490 return format("begingroup %s endgroup", texgettoks"mplibtmptoks")
491 end

34

492 return ""
493 end
494

Newly introduced method of processing verbatimtex ... etex. This function is used when
\mpliblegacybehavior{false} is declared.
495 local function process_verbatimtex_text (str)
496 if str then
497 run_tex_code(str)
498 end
499 return ""
500 end
501

For legacy verbatimtex process. verbatimtex ... etex before beginfig() is inserted just be-
fore the mplib box. And TEX code inside beginfig() ... endfig is inserted after the mplib box.
502 local tex_code_pre_mplib = {}
503 luamplib.figid = 1
504 luamplib.in_the_fig = false
505 local function process_verbatimtex_prefig (str)
506 if str then
507 tex_code_pre_mplib[luamplib.figid] = str
508 end
509 return ""
510 end
511 local function process_verbatimtex_infig (str)
512 if str then
513 return format('special "postmplibverbtex=%s";', str)
514 end
515 return ""
516 end
517

For metafun format. see issue #79.
518 mp = mp or {}
519 local mp = mp
520 mp.mf_path_reset = mp.mf_path_reset or function() end
521 mp.mf_finish_saving_data = mp.mf_finish_saving_data or function() end
522 mp.report = mp.report or info

metafun 2021-03-09 changes crashes luamplib.
523 catcodes = catcodes or {}
524 local catcodes = catcodes
525 catcodes.numbers = catcodes.numbers or {}
526 catcodes.numbers.ctxcatcodes = catcodes.numbers.ctxcatcodes or catlatex
527 catcodes.numbers.texcatcodes = catcodes.numbers.texcatcodes or catlatex
528 catcodes.numbers.luacatcodes = catcodes.numbers.luacatcodes or catlatex
529 catcodes.numbers.notcatcodes = catcodes.numbers.notcatcodes or catlatex
530 catcodes.numbers.vrbcatcodes = catcodes.numbers.vrbcatcodes or catlatex
531 catcodes.numbers.prtcatcodes = catcodes.numbers.prtcatcodes or catlatex
532 catcodes.numbers.txtcatcodes = catcodes.numbers.txtcatcodes or catlatex

35

533

Now luamplib.runscript
534 do
535 local runscript_funcs = {
536 luamplibtext = process_tex_text,
537 luamplibcolor = process_mplibcolor,
538 luamplibdimen = process_dimen,
539 luamplibprefig = process_verbatimtex_prefig,
540 luamplibinfig = process_verbatimtex_infig,
541 luamplibverbtex = process_verbatimtex_text,
542 }

A function from ConTEXt general.
543 local function mpprint(buffer,...)
544 for i=1,select("#",...) do
545 local value = select(i,...)
546 if value ~= nil then
547 local t = type(value)
548 if t == "number" then
549 buffer[#buffer+1] = format("%.16f",value)
550 elseif t == "string" then
551 buffer[#buffer+1] = value
552 elseif t == "table" then
553 buffer[#buffer+1] = "(" .. tableconcat(value,",") .. ")"
554 else -- boolean or whatever
555 buffer[#buffer+1] = tostring(value)
556 end
557 end
558 end
559 end
560 function luamplib.runscript (code)
561 local id, str = code:match("(.-){(.*)}")
562 if id and str then
563 local f = runscript_funcs[id]
564 if f then
565 local t = f(str)
566 if t then return t end
567 end
568 end
569 local f = loadstring(code)
570 if type(f) == "function" then
571 local buffer = {}
572 function mp.print(...)
573 mpprint(buffer,...)
574 end
575 local res = {f()}
576 buffer = tableconcat(buffer)
577 if buffer and buffer ~= "" then
578 return buffer

36

579 end
580 buffer = {}
581 mpprint(buffer, tableunpack(res))
582 return tableconcat(buffer)
583 end
584 return ""
585 end
586 end
587

luamplib.maketext
588 luamplib.legacyverbatimtex = true
589 do

make_text must be one liner, so comment sign is not allowed.
590 local function protecttexcontents (str)
591 return str:gsub("\\%%", "\0PerCent\0")
592 :gsub("%%.-\n", "")
593 :gsub("%%.-$", "")
594 :gsub("%zPerCent%z", "\\%%")
595 :gsub("\r.-$", "")
596 :gsub("%s+", " ")
597 end
598 function luamplib.maketext (str, what)
599 if str and str ~= "" then
600 str = protecttexcontents(str)
601 if what == 1 then
602 if not str:find("\\documentclass"..name_e) and
603 not str:find("\\begin%s*{document}") and
604 not str:find("\\documentstyle"..name_e) and
605 not str:find("\\usepackage"..name_e) then
606 if luamplib.legacyverbatimtex then
607 if luamplib.in_the_fig then
608 return process_verbatimtex_infig(str)
609 else
610 return process_verbatimtex_prefig(str)
611 end
612 else
613 return process_verbatimtex_text(str)
614 end
615 end
616 else
617 return process_tex_text(str, true) -- bool is for 'char13'
618 end
619 end
620 return ""
621 end
622 end
623

luamplib’s metapost color operators

37

624 luamplib.gettexcolor = function (str, rgb)
625 local res = process_color(str):match'"mpliboverridecolor=(.+)"'
626 if res:find" cs " or res:find"@pdf.obj" then
627 if not rgb then
628 warn("%s is a spot color. Forced to CMYK", str)
629 end
630 run_tex_code({
631 "\\color_export:nnN{",
632 str,
633 "}{",
634 rgb and "space-sep-rgb" or "space-sep-cmyk",
635 "}\\mplib_@tempa",
636 },ccexplat)
637 return get_macro"mplib_@tempa":explode()
638 end
639 local t = colorsplit(res)
640 if #t == 3 or not rgb then return t end
641 if #t == 4 then
642 return { 1 - math.min(1,t[1]+t[4]), 1 - math.min(1,t[2]+t[4]), 1 - math.min(1,t[3]+t[4]) }
643 end
644 return { t[1], t[1], t[1] }
645 end
646
647 luamplib.shadecolor = function (str)
648 local res = process_color(str):match'"mpliboverridecolor=(.+)"'
649 if res:find" cs " or res:find"@pdf.obj" then -- spot color shade: l3 only

An example of spot color shading:
\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntaxOn
\color_model_new:nnn { pantone3005 }
{ Separation }
{

name = PANTONE~3005~U ,
alternative-model = cmyk ,
alternative-values = {1, 0.56, 0, 0}

}
\color_set:nnn{spotA}{pantone3005}{1}
\color_set:nnn{spotB}{pantone3005}{0.6}

\color_model_new:nnn { pantone1215 }
{ Separation }
{

name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}

}
\color_set:nnn{spotC}{pantone1215}{1}

\color_model_new:nnn { pantone2040 }

38

{ Separation }
{

name = PANTONE~2040~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.28, 0.21, 0.04}

}
\color_set:nnn{spotD}{pantone2040}{1}

\ExplSyntaxOff
\begin{document}
\begin{mplibcode}
beginfig(1)
fill unitsquare xscaled \mpdim\textwidth yscaled 1cm

withshadingmethod "linear"
withshadingvector (0,1)
withshadingstep (

withshadingfraction .5
withshadingcolors ("spotB","spotC")

)
withshadingstep (

withshadingfraction 1
withshadingcolors ("spotC","spotD")

)
;

endfig;
\end{mplibcode}
\end{document}

another one: user-defined DeviceN colorspace

\DocumentMetadata{ }
\documentclass{article}
\usepackage{luamplib}
\ExplSyntaxOn
\color_model_new:nnn { pantone1215 }
{ Separation }
{

name = PANTONE~1215~U ,
alternative-model = cmyk ,
alternative-values = {0, 0.15, 0.51, 0}

}
\color_model_new:nnn { pantone+black }
{ DeviceN }
{ names = {pantone1215,black} }

\color_set:nnn{purepantone}{pantone+black}{1,0}
\color_set:nnn{pureblack} {pantone+black}{0,1}
\ExplSyntaxOff
\begin{document}
\mpfig
fill unitsquare xscaled \mpdim{\textwidth} yscaled 30

withshadingmethod "linear"

39

withshadingcolors ("purepantone","pureblack")
;

\endmpfig
\end{document}

650 run_tex_code({
651 [[\color_export:nnN{]], str, [[}{backend}\mplib_@tempa]],
652 },ccexplat)
653 local name, value = get_macro'mplib_@tempa':match'{(.-)}{(.-)}'
654 local t, obj = res:explode()
655 if pdfmode then
656 obj = format("%s 0 R", ltx.pdf.object_id(t[1]:sub(2,-1)))
657 else
658 obj = t[2]
659 end
660 return format('(1) withprescript"mplib_spotcolor=%s:%s:%s"', value,obj,name)
661 end
662 return colorsplit(res)
663 end
664

luamplib.fillandstrokecolor

665 do
666 local function graphictextcolor (col, filldraw)
667 if col:find"^[%d%.:]+$" then
668 col = col:explode":"
669 for i=1,#col do
670 col[i] = format("%.3f", col[i])
671 end
672 if pdfmode then
673 local op = #col == 4 and "k" or #col == 3 and "rg" or "g"
674 col[#col+1] = filldraw == "fill" and op or op:upper()
675 return tableconcat(col," ")
676 end
677 return format("[%s]", tableconcat(col," "))
678 end
679 col = process_color(col):match'"mpliboverridecolor=(.+)"'
680 if pdfmode then
681 local t = col:explode()
682 local b = filldraw == "fill" and 1 or #t/2+1
683 local e = b == 1 and #t/2 or #t
684 return tableconcat(t," ", b, e)
685 end
686 return format("[%s]", tableconcat(colorsplit(col)," "))
687 end
688 function luamplib.fillandstrokecolor (fill, stroke)
689 fill = graphictextcolor(fill, "fill")
690 stroke = graphictextcolor(stroke, "stroke")
691 local bc = pdfmode and "" or "pdf:bc "
692 return format('withprescript "mpliboverridecolor=%s%s %s"', bc, fill, stroke)

40

693 end
694 end
695

Remove trailing zeros for smaller PDF
696 local decimals = "%.%d+"
697 local function rmzeros(str) return str:gsub("%.?0+$","") end
698

common function for mplibgraphictext and mpliboutlinetext
699 local function getrulemetric (box, curr, bp)
700 local running = -1073741824
701 local wd,ht,dp = curr.width, curr.height, curr.depth
702 wd = wd == running and box.width or wd
703 ht = ht == running and box.height or ht
704 dp = dp == running and box.depth or dp
705 if bp then
706 return wd/factor, ht/factor, dp/factor
707 end
708 return wd, ht, dp
709 end
710

luamplib’s mplibgraphictext operator
711 do
712 local emboldenfonts = { }
713 local function getemboldenwidth (curr, fakebold)
714 local width = emboldenfonts.width
715 if not width then
716 local f
717 local function getglyph(n)
718 while n do
719 if n.head then
720 getglyph(n.head)
721 elseif n.font and n.font > 0 then
722 f = n.font; break
723 end
724 n = node.getnext(n)
725 end
726 end
727 getglyph(curr)
728 width = font.getcopy(f or font.current()).size * fakebold / factor * 10
729 emboldenfonts.width = width
730 end
731 return width
732 end
733 local function getrulewhatsit (line, wd, ht, dp)
734 line, wd, ht, dp = line/1000, wd/factor, ht/factor, dp/factor
735 local pl
736 local fmt = "%f w %f %f %f %f re %s"

41

737 if pdfmode then
738 pl = node.new("whatsit","pdf_literal")
739 pl.mode = 0
740 else
741 fmt = "pdf:content "..fmt
742 pl = node.new("whatsit","special")
743 end
744 pl.data = fmt:format(line, 0, -dp, wd, ht+dp, "B") :gsub(decimals,rmzeros)
745 local ss = node.new"glue"
746 node.setglue(ss, 0, 65536, 65536, 2, 2)
747 pl.next = ss
748 return pl
749 end

copying attributes of rule/glue node to improve tagging of mplibgraphictext

750 local tag_update_attrs
751 if is_defined"ver@tagpdf.sty" then
752 tag_update_attrs = function (n, curr)
753 while n do
754 n.attr = curr.attr
755 if n.head then
756 tag_update_attrs(n.head, curr)
757 end
758 n = node.getnext(n)
759 end
760 end
761 else
762 tag_update_attrs = function() end
763 end
764 local function embolden (box, curr, fakebold)
765 local head = curr
766 while curr do
767 if curr.head then
768 curr.head = embolden(curr, curr.head, fakebold)
769 elseif curr.replace then
770 curr.replace = embolden(box, curr.replace, fakebold)
771 elseif curr.leader then
772 if curr.leader.head then
773 curr.leader.head = embolden(curr.leader, curr.leader.head, fakebold)
774 elseif curr.leader.id == node.id"rule" then
775 local glue = node.effective_glue(curr, box)
776 local line = getemboldenwidth(curr, fakebold)
777 local wd,ht,dp = getrulemetric(box, curr.leader)
778 if box.id == node.id"hlist" then
779 wd = glue
780 else
781 ht, dp = 0, glue
782 end
783 local pl = getrulewhatsit(line, wd, ht, dp)

42

784 local pack = box.id == node.id"hlist" and node.hpack or node.vpack
785 local list = pack(pl, glue, "exactly")
786 tag_update_attrs(list,curr)
787 head = node.insert_after(head, curr, list)
788 head, curr = node.remove(head, curr)
789 end
790 elseif curr.id == node.id"rule" and curr.subtype == 0 then
791 local line = getemboldenwidth(curr, fakebold)
792 local wd,ht,dp = getrulemetric(box, curr)
793 if box.id == node.id"vlist" then
794 ht, dp = 0, ht+dp
795 end
796 local pl = getrulewhatsit(line, wd, ht, dp)
797 local list
798 if box.id == node.id"hlist" then
799 list = node.hpack(pl, wd, "exactly")
800 else
801 list = node.vpack(pl, ht+dp, "exactly")
802 end
803 tag_update_attrs(list,curr)
804 head = node.insert_after(head, curr, list)
805 head, curr = node.remove(head, curr)
806 elseif curr.id == node.id"glyph" and curr.font > 0 then
807 local f = curr.font
808 local key = format("%s:%s",f,fakebold)
809 local i = emboldenfonts[key]
810 if not i then
811 local ft = font.getfont(f) or font.getcopy(f)
812 if pdfmode then
813 width = ft.size * fakebold / factor * 10
814 emboldenfonts.width = width
815 ft.mode, ft.width = 2, width
816 i = font.define(ft)
817 else
818 if ft.format ~= "opentype" and ft.format ~= "truetype" then
819 goto skip_type1
820 end
821 local name = ft.name:gsub('"',''):gsub(';$','')
822 name = format('%s;embolden=%s;',name,fakebold)
823 _, i = fonts.constructors.readanddefine(name,ft.size)
824 end
825 emboldenfonts[key] = i
826 end
827 curr.font = i
828 end
829 ::skip_type1::
830 curr = node.getnext(curr)
831 end
832 return head

43

833 end
834 luamplib.graphictext = function (text, fakebold, fc, dc)
835 local fmt = process_tex_text(text):sub(1,-2)
836 local id = tonumber(fmt:match"mplibtexboxid=(%d+):")
837 emboldenfonts.width = nil
838 local box = texgetbox(id)
839 box.head = embolden(box, box.head, fakebold)
840 local colors = luamplib.fillandstrokecolor(fc, dc)
841 return format('%s %s)', fmt, colors)
842 end
843 end
844

luamplib’s mplibglyph operator

845 do
846 local function mperr (str)
847 return format("hide(errmessage %q)", str)
848 end
849 local function getangle (a,b,c)
850 local r = math.deg(math.atan(c.y-b.y, c.x-b.x) - math.atan(b.y-a.y, b.x-a.x))
851 if r > 180 then
852 r = r - 360
853 elseif r < -180 then
854 r = r + 360
855 end
856 return r
857 end
858 local function turning (t)
859 local r, n = 0, #t
860 for i=1,2 do
861 tableinsert(t, t[i])
862 end
863 for i=1,n do
864 r = r + getangle(t[i], t[i+1], t[i+2])
865 end
866 return r/360
867 end
868 local function glyphimage(t, fmt)
869 local q,p,r = {{},{}}
870 for i,v in ipairs(t) do
871 local cmd = v[#v]
872 if cmd == "m" then
873 p = {format('(%s,%s)',v[1],v[2])}
874 r = {{x=v[1],y=v[2]}}
875 else
876 local nt = t[i+1]
877 local last = not nt or nt[#nt] == "m"
878 if cmd == "l" then
879 local pt = t[i-1]

44

880 local seco = pt[#pt] == "m"
881 if (last or seco) and r[1].x == v[1] and r[1].y == v[2] then
882 else
883 tableinsert(p, format('--(%s,%s)',v[1],v[2]))
884 tableinsert(r, {x=v[1],y=v[2]})
885 end
886 if last then
887 tableinsert(p, '--cycle')
888 end
889 elseif cmd == "c" then
890 tableinsert(p, format('..controls(%s,%s)and(%s,%s)',v[1],v[2],v[3],v[4]))
891 if last and r[1].x == v[5] and r[1].y == v[6] then
892 tableinsert(p, '..cycle')
893 else
894 tableinsert(p, format('..(%s,%s)',v[5],v[6]))
895 if last then
896 tableinsert(p, '--cycle')
897 end
898 tableinsert(r, {x=v[5],y=v[6]})
899 end
900 else
901 return mperr"unknown operator"
902 end
903 if last then
904 tableinsert(q[turning(r) > 0 and 1 or 2], tableconcat(p))
905 end
906 end
907 end
908 r = { }
909 if fmt == "opentype" then
910 for _,v in ipairs(q[1]) do
911 tableinsert(r, format('addto currentpicture contour %s;',v))
912 end
913 for _,v in ipairs(q[2]) do
914 tableinsert(r, format('addto currentpicture contour %s withcolor background;',v))
915 end
916 else
917 for _,v in ipairs(q[2]) do
918 tableinsert(r, format('addto currentpicture contour %s;',v))
919 end
920 for _,v in ipairs(q[1]) do
921 tableinsert(r, format('addto currentpicture contour %s withcolor background;',v))
922 end
923 end
924 return format('image(%s)', tableconcat(r))
925 end
926 if not table.tofile then require"lualibs-lpeg"; require"lualibs-table"; end
927 function luamplib.glyph (f, c)
928 local filename, subfont, instance, kind, shapedata

45

929 local fid = tonumber(f) or font.id(f)
930 if fid > 0 then
931 local fontdata = font.getfont(fid) or font.getcopy(fid)
932 filename, subfont, kind = fontdata.filename, fontdata.subfont, fontdata.format
933 instance = fontdata.specification and fontdata.specification.instance
934 filename = filename and filename:gsub("^harfloaded:","")
935 else
936 local name
937 f = f:match"^%s*(.+)%s*$"
938 name, subfont, instance = f:match"(.+)%((%d+)%)%[(.-)%]$"
939 if not name then
940 name, instance = f:match"(.+)%[(.-)%]$" -- SourceHanSansK-VF.otf[Heavy]
941 end
942 if not name then
943 name, subfont = f:match"(.+)%((%d+)%)$" -- Times.ttc(2)
944 end
945 name = name or f
946 subfont = (subfont or 0)+1
947 instance = instance and instance:lower()
948 for _,ftype in ipairs{"opentype", "truetype"} do
949 filename = kpse.find_file(name, ftype.." fonts")
950 if filename then
951 kind = ftype; break
952 end
953 end
954 end
955 if kind ~= "opentype" and kind ~= "truetype" then
956 f = fid and fid > 0 and tex.fontname(fid) or f
957 if kpse.find_file(f, "tfm") then
958 return format("glyph %s of %q", tonumber(c) or format("%q",c), f)
959 else
960 return mperr"font not found"
961 end
962 end
963 local time = lfsattributes(filename,"modification")
964 local k = format("shapes_%s(%s)[%s]", filename, subfont or "", instance or "")
965 local h = format(string.rep('%02x', 256/8), string.byte(sha2.digest256(k), 1, -1))
966 local newname = format("%s/%s.lua", cachedir or outputdir, h)
967 local newtime = lfsattributes(newname,"modification") or 0
968 if time == newtime then
969 shapedata = require(newname)
970 end
971 if not shapedata then
972 shapedata = fonts and fonts.handlers.otf.readers.loadshapes(filename,subfont,instance)
973 if not shapedata then return mperr"loadshapes() failed. luaotfload not loaded?" end
974 table.tofile(newname, shapedata, "return")
975 lfstouch(newname, time, time)
976 end
977 local gid = tonumber(c)

46

978 if not gid then
979 local uni = utf8.codepoint(c)
980 for i,v in pairs(shapedata.glyphs) do
981 if c == v.name or uni == v.unicode then
982 gid = i; break
983 end
984 end
985 end
986 if not gid then return mperr"cannot get GID (glyph id)" end
987 local fac = 1000 / (shapedata.units or 1000)
988 local t = shapedata.glyphs[gid].segments
989 if not t then return "image()" end
990 for i,v in ipairs(t) do
991 if type(v) == "table" then
992 for ii,vv in ipairs(v) do
993 if type(vv) == "number" then
994 t[i][ii] = format("%.0f", vv * fac)
995 end
996 end
997 end
998 end
999 kind = shapedata.format or kind

1000 return glyphimage(t, kind)
1001 end
1002 end
1003

mpliboutlinetext : based on mkiv’s font-mps.lua

1004 do
1005 local rulefmt = "mpliboutlinepic[%i]:=image(addto currentpicture contour \z
1006 unitsquare shifted - center unitsquare;) xscaled %f yscaled %f shifted (%f,%f);"
1007 local outline_horz, outline_vert
1008 function outline_vert (res, box, curr, xshift, yshift)
1009 local b2u = box.dir == "LTL"
1010 local dy = (b2u and -box.depth or box.height)/factor
1011 local ody = dy
1012 while curr do
1013 if curr.id == node.id"rule" then
1014 local wd, ht, dp = getrulemetric(box, curr, true)
1015 local hd = ht + dp
1016 if hd ~= 0 then
1017 dy = dy + (b2u and dp or -ht)
1018 if wd ~= 0 and curr.subtype == 0 then
1019 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+(ht-dp)/2)
1020 end
1021 dy = dy + (b2u and ht or -dp)
1022 end
1023 elseif curr.id == node.id"glue" then
1024 local vwidth = node.effective_glue(curr,box)/factor

47

1025 if curr.leader then
1026 local curr, kind = curr.leader, curr.subtype
1027 if curr.id == node.id"rule" then
1028 local wd = getrulemetric(box, curr, true)
1029 if wd ~= 0 then
1030 local hd = vwidth
1031 local dy = dy + (b2u and 0 or -hd)
1032 if hd ~= 0 and curr.subtype == 0 then
1033 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+wd/2, yshift+dy+hd/2)
1034 end
1035 end
1036 elseif curr.head then
1037 local hd = (curr.height + curr.depth)/factor
1038 if hd <= vwidth then
1039 local dy, n, iy = dy, 0, 0
1040 if kind == 100 or kind == 103 then -- todo: gleaders
1041 local ady = abs(ody - dy)
1042 local ndy = math.ceil(ady / hd) * hd
1043 local diff = ndy - ady
1044 n = math.floor((vwidth-diff) / hd)
1045 dy = dy + (b2u and diff or -diff)
1046 else
1047 n = math.floor(vwidth / hd)
1048 if kind == 101 then
1049 local side = vwidth % hd / 2
1050 dy = dy + (b2u and side or -side)
1051 elseif kind == 102 then
1052 iy = vwidth % hd / (n+1)
1053 dy = dy + (b2u and iy or -iy)
1054 end
1055 end
1056 dy = dy + (b2u and curr.depth or -curr.height)/factor
1057 hd = b2u and hd or -hd
1058 iy = b2u and iy or -iy
1059 local func = curr.id == node.id"hlist" and outline_horz or outline_vert
1060 for i=1,n do
1061 res = func(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1062 dy = dy + hd + iy
1063 end
1064 end
1065 end
1066 end
1067 dy = dy + (b2u and vwidth or -vwidth)
1068 elseif curr.id == node.id"kern" then
1069 dy = dy + curr.kern/factor * (b2u and 1 or -1)
1070 elseif curr.id == node.id"vlist" then
1071 dy = dy + (b2u and curr.depth or -curr.height)/factor
1072 res = outline_vert(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1073 dy = dy + (b2u and curr.height or -curr.depth)/factor

48

1074 elseif curr.id == node.id"hlist" then
1075 dy = dy + (b2u and curr.depth or -curr.height)/factor
1076 res = outline_horz(res, curr, curr.head, xshift+curr.shift/factor, yshift+dy)
1077 dy = dy + (b2u and curr.height or -curr.depth)/factor
1078 end
1079 curr = node.getnext(curr)
1080 end
1081 return res
1082 end
1083 function outline_horz (res, box, curr, xshift, yshift, discwd)
1084 local r2l = box.dir == "TRT"
1085 local dx = r2l and (discwd or box.width/factor) or 0
1086 local dirs = { { dir = r2l, dx = dx } }
1087 while curr do
1088 if curr.id == node.id"dir" then
1089 local sign, dir = curr.dir:match"(.)(...)"
1090 local level, newdir = curr.level, r2l
1091 if sign == "+" then
1092 newdir = dir == "TRT"
1093 if r2l ~= newdir then
1094 local n = node.getnext(curr)
1095 while n do
1096 if n.id == node.id"dir" and n.level+1 == level then break end
1097 n = node.getnext(n)
1098 end
1099 n = n or node.tail(curr)
1100 dx = dx + node.rangedimensions(box, curr, n)/factor * (newdir and 1 or -1)
1101 end
1102 dirs[level] = { dir = r2l, dx = dx }
1103 else
1104 local level = level + 1
1105 newdir = dirs[level].dir
1106 if r2l ~= newdir then
1107 dx = dirs[level].dx
1108 end
1109 end
1110 r2l = newdir
1111 elseif curr.char and curr.font and curr.font > 0 then
1112 local ft = font.getfont(curr.font) or font.getcopy(curr.font)
1113 local gid = ft.characters[curr.char].index or curr.char
1114 local scale = ft.size / factor / 1000
1115 local slant = (ft.slant or 0)/1000
1116 local extend = (ft.extend or 1000)/1000
1117 local squeeze = (ft.squeeze or 1000)/1000
1118 local expand = 1 + (curr.expansion_factor or 0)/1000000
1119 local xscale, yscale = scale * extend * expand, scale * squeeze
1120 dx = dx - (r2l and curr.width/factor*expand or 0)
1121 local xoff, yoff = (curr.xoffset or 0)/factor, (curr.yoffset or 0)/factor
1122 local xpos, ypos = dx + xshift + xoff, yshift + yoff

49

1123 local vertical = ""
1124 if ft.shared and (ft.shared.features.vert or ft.shared.features.vrt2) then
1125 if ft.shared.features.vertical then -- luatexko
1126 vertical = "rotated 90"
1127 local data = ft.characters[curr.char] or { }
1128 if ft.hb then
1129 local hoff, voff = (data.luatexko_hoff or 0)/factor, (data.luatexko_voff or 0)/factor
1130 local charraise = (ft.luatexko_charraise or 0)/factor
1131 xpos, ypos = xpos - voff + hoff - charraise, ypos + hoff + voff + charraise
1132 else
1133 local cmds = data.commands or { {0,0}, {0,0} }
1134 local voff, hoff = -cmds[1][2]/factor, cmds[2][2]/factor
1135 xpos, ypos = xpos + hoff, ypos + voff
1136 end
1137 elseif curr ~= box.head then -- luatexja
1138 vertical = "rotated 90"
1139 local en = ft.parameters.quad/factor/2
1140 xpos, ypos = xpos - xoff - yoff + en, ypos - yoff + xoff - en
1141 end
1142 end
1143 local image
1144 if ft.format == "opentype" or ft.format == "truetype" then
1145 image = luamplib.glyph(curr.font, gid)
1146 else
1147 local name, scale = ft.name, 1
1148 local vf = font.read_vf(name, ft.size)
1149 if vf and vf.characters[gid] then
1150 local cmds = vf.characters[gid].commands or {}
1151 for _,v in ipairs(cmds) do
1152 if v[1] == "char" then
1153 gid = v[2]
1154 elseif v[1] == "font" and vf.fonts[v[2]] then
1155 name = vf.fonts[v[2]].name
1156 scale = vf.fonts[v[2]].size / ft.size
1157 end
1158 end
1159 end
1160 image = format("glyph %s of %q scaled %f", gid, name, scale)
1161 end
1162 res[#res+1] = format("mpliboutlinepic[%i]:=%s xscaled %f yscaled %f slanted %f %s shifted (%f,%f);",
1163 #res+1, image, xscale, yscale, slant, vertical, xpos, ypos)
1164 dx = dx + (r2l and 0 or curr.width/factor*expand)
1165 elseif curr.replace then
1166 local width = node.dimensions(curr.replace)/factor
1167 dx = dx - (r2l and width or 0)
1168 res = outline_horz(res, box, curr.replace, xshift+dx, yshift, width)
1169 dx = dx + (r2l and 0 or width)
1170 elseif curr.id == node.id"rule" then
1171 local wd, ht, dp = getrulemetric(box, curr, true)

50

1172 if wd ~= 0 then
1173 local hd = ht + dp
1174 dx = dx - (r2l and wd or 0)
1175 if hd ~= 0 and curr.subtype == 0 then
1176 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1177 end
1178 dx = dx + (r2l and 0 or wd)
1179 end
1180 elseif curr.id == node.id"glue" then
1181 local width = node.effective_glue(curr, box)/factor
1182 dx = dx - (r2l and width or 0)
1183 if curr.leader then
1184 local curr, kind = curr.leader, curr.subtype
1185 if curr.id == node.id"rule" then
1186 local wd, ht, dp = getrulemetric(box, curr, true)
1187 local hd = ht + dp
1188 if hd ~= 0 then
1189 wd = width
1190 if wd ~= 0 and curr.subtype == 0 then
1191 res[#res+1] = rulefmt:format(#res+1, wd, hd, xshift+dx+wd/2, yshift+(ht-dp)/2)
1192 end
1193 end
1194 elseif curr.head then
1195 local wd = curr.width/factor
1196 if wd <= width then
1197 local dx = r2l and dx+width or dx
1198 local n, ix = 0, 0
1199 if kind == 100 or kind == 103 then -- todo: gleaders
1200 local adx = abs(dx-dirs[1].dx)
1201 local ndx = math.ceil(adx / wd) * wd
1202 local diff = ndx - adx
1203 n = math.floor((width-diff) / wd)
1204 dx = dx + (r2l and -diff-wd or diff)
1205 else
1206 n = math.floor(width / wd)
1207 if kind == 101 then
1208 local side = width % wd /2
1209 dx = dx + (r2l and -side-wd or side)
1210 elseif kind == 102 then
1211 ix = width % wd / (n+1)
1212 dx = dx + (r2l and -ix-wd or ix)
1213 end
1214 end
1215 wd = r2l and -wd or wd
1216 ix = r2l and -ix or ix
1217 local func = curr.id == node.id"hlist" and outline_horz or outline_vert
1218 for i=1,n do
1219 res = func(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1220 dx = dx + wd + ix

51

1221 end
1222 end
1223 end
1224 end
1225 dx = dx + (r2l and 0 or width)
1226 elseif curr.id == node.id"kern" then
1227 dx = dx + curr.kern/factor * (r2l and -1 or 1)
1228 elseif curr.id == node.id"math" then
1229 dx = dx + curr.surround/factor * (r2l and -1 or 1)
1230 elseif curr.id == node.id"vlist" then
1231 dx = dx - (r2l and curr.width/factor or 0)
1232 res = outline_vert(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1233 dx = dx + (r2l and 0 or curr.width/factor)
1234 elseif curr.id == node.id"hlist" then
1235 dx = dx - (r2l and curr.width/factor or 0)
1236 res = outline_horz(res, curr, curr.head, xshift+dx, yshift-curr.shift/factor)
1237 dx = dx + (r2l and 0 or curr.width/factor)
1238 end
1239 curr = node.getnext(curr)
1240 end
1241 return res
1242 end
1243 function luamplib.outlinetext (text)
1244 local fmt = process_tex_text(text)
1245 local id = tonumber(fmt:match"mplibtexboxid=(%d+):")
1246 local box = texgetbox(id)
1247 local res = outline_horz({ }, box, box.head, 0, 0)
1248 if #res == 0 then res = { "mpliboutlinepic[1]:=image();" } end
1249 return tableconcat(res) .. format("mpliboutlinenum:=%i;", #res)
1250 end
1251 end
1252

lua functions for mplib(uc)substring ... of ...

1253 function luamplib.getunicodegraphemes (s)
1254 local t = { }
1255 local graphemes = require'lua-uni-graphemes'
1256 for _, _, c in graphemes.graphemes(s) do
1257 table.insert(t, c)
1258 end
1259 return t
1260 end
1261 function luamplib.unicodesubstring (s,b,e,grph)
1262 local tt, t, step = { }
1263 if grph then
1264 t = luamplib.getunicodegraphemes(s)
1265 else
1266 t = { }
1267 for _, c in utf8.codes(s) do

52

1268 table.insert(t, utf8.char(c))
1269 end
1270 end
1271 if b <= e then
1272 b, step = b+1, 1
1273 else
1274 e, step = e+1, -1
1275 end
1276 for i = b, e, step do
1277 table.insert(tt, t[i])
1278 end
1279 s = table.concat(tt):gsub('"','"&ditto&"')
1280 return string.format('"%s"', s)
1281 end
1282

metapost preambles

1283 luamplib.preambles = {
1284 preamble = [[
1285 boolean mplib ; mplib := true ;
1286 let dump = endinput ;
1287 let normalfontsize = fontsize;
1288 input %s ;
1289]],
1290 mplibcode = [[
1291 texscriptmode := 2;
1292 def rawtextext primary t = runscript("luamplibtext{"&t&"}") enddef;
1293 def mplibcolor primary t = runscript("luamplibcolor{"&t&"}") enddef;
1294 def mplibdimen primary t = runscript("luamplibdimen{"&t&"}") enddef;
1295 def VerbatimTeX primary t = runscript("luamplibverbtex{"&t&"}") enddef;
1296 if known context_mlib:
1297 defaultfont := "cmtt10";
1298 let infont = normalinfont;
1299 let fontsize = normalfontsize;
1300 vardef thelabel@#(expr p,z) =
1301 if string p :
1302 thelabel@#(p infont defaultfont scaled defaultscale,z)
1303 else :
1304 p shifted (z + labeloffset*mfun_laboff@# -
1305 (mfun_labxf@#*lrcorner p + mfun_labyf@#*ulcorner p +
1306 (1-mfun_labxf@#-mfun_labyf@#)*llcorner p))
1307 fi
1308 enddef;
1309 else:
1310 vardef textext@# primary t = rawtextext (t) enddef;
1311 def message expr t =
1312 if string t: runscript("mp.report[=["&t&"]=]") else: errmessage "Not a string" fi
1313 enddef;
1314 def withtransparency (expr a, t) =

53

1315 withprescript "tr_alternative=" & if numeric a: decimal fi a
1316 withprescript "tr_transparency=" & decimal t
1317 enddef;
1318 vardef ddecimal primary p =
1319 decimal xpart p & " " & decimal ypart p
1320 enddef;
1321 vardef boundingbox primary p =
1322 if (path p) or (picture p) :
1323 llcorner p -- lrcorner p -- urcorner p -- ulcorner p
1324 else :
1325 origin
1326 fi -- cycle
1327 enddef;
1328 fi
1329 def resolvedcolor(expr s) =
1330 runscript("return luamplib.shadecolor('"& s &"')")
1331 enddef;
1332 def colordecimals primary c =
1333 if cmykcolor c:
1334 decimal cyanpart c & ":" & decimal magentapart c & ":" &
1335 decimal yellowpart c & ":" & decimal blackpart c
1336 elseif rgbcolor c:
1337 decimal redpart c & ":" & decimal greenpart c & ":" & decimal bluepart c
1338 elseif string c:
1339 if known graphictextpic: c else: colordecimals resolvedcolor(c) fi
1340 else:
1341 decimal c
1342 fi
1343 enddef;
1344 def externalfigure primary filename =
1345 draw rawtextext("\includegraphics{"& filename &"}")
1346 enddef;
1347 def TEX = textext enddef;
1348 def mplibtexcolor primary c =
1349 runscript("return luamplib.gettexcolor('"& c &"')")
1350 enddef;
1351 def mplibrgbtexcolor primary c =
1352 runscript("return luamplib.gettexcolor('"& c &"','rgb')")
1353 enddef;
1354 def mplibgraphictext primary t =
1355 begingroup;
1356 mplibgraphictext_ (t)
1357 enddef;
1358 def mplibgraphictext_ (expr t) text rest =
1359 save fakebold, scale, fillcolor, drawcolor, withfillcolor, withdrawcolor, strokecolor,
1360 fb, fc, dc, graphictextpic, alsoordoublepath;
1361 picture graphictextpic; graphictextpic := nullpicture;
1362 numeric fb; string fc, dc; fb:=2; fc:="white"; dc:="black";
1363 let scale = scaled;

54

1364 def fakebold primary c = hide(fb:=c;) enddef;
1365 def fillcolor primary c = hide(fc:=colordecimals c;) enddef;
1366 def drawcolor primary c = hide(dc:=colordecimals c;) enddef;
1367 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1368 def alsoordoublepath expr p = if picture p: also else: doublepath fi p enddef;
1369 addto graphictextpic alsoordoublepath (origin--cycle) rest; graphictextpic:=nullpicture;
1370 def fakebold primary c = enddef;
1371 let fillcolor = fakebold; let drawcolor = fakebold;
1372 let withfillcolor = fillcolor; let withdrawcolor = drawcolor; let strokecolor = drawcolor;
1373 image(draw runscript("return luamplib.graphictext([===["&t&"]===],"
1374 & decimal fb &",'"& fc &"','"& dc &"')") rest;)
1375 endgroup;
1376 enddef;
1377 def mplibglyph expr c of f =
1378 runscript (
1379 "return luamplib.glyph('"
1380 & if numeric f: decimal fi f
1381 & "','"
1382 & if numeric c: decimal fi c
1383 & "')"
1384)
1385 enddef;
1386 numeric luamplib_tmp_num_; luamplib_tmp_num_ = 0;
1387 def mplibdrawglyph expr g =
1388 luamplib_tmp_num_ := 0;
1389 for item within g:
1390 fill pathpart item
1391 if incr luamplib_tmp_num_ < length g: withpostscript "collect"; fi
1392 endfor
1393 enddef;
1394 let mplibfillglyph = mplibdrawglyph;
1395 def mplibstrokeglyph expr g =
1396 luamplib_tmp_num_ := 0;
1397 for item within g:
1398 draw pathpart item
1399 if incr luamplib_tmp_num_ < length g: withpostscript "collect"; fi
1400 endfor
1401 enddef;
1402 def mplibfillandstrokeglyph expr g =
1403 luamplib_tmp_num_ := 0;
1404 for item within g:
1405 draw pathpart item withpostscript
1406 if incr luamplib_tmp_num_ < length g: "collect"; else: "both" fi
1407 endfor
1408 enddef;
1409 def withmplibcolors (expr f, s) =
1410 runscript("return luamplib.fillandstrokecolor('" &
1411 if not string f: colordecimals fi f & "','" &
1412 if not string s: colordecimals fi s & "')")

55

1413 enddef;
1414 def mplib_do_outline_text_set_b (text f) (text d) text r =
1415 def mplib_do_outline_options_f = f enddef;
1416 def mplib_do_outline_options_d = d enddef;
1417 def mplib_do_outline_options_r = r enddef;
1418 enddef;
1419 def mplib_do_outline_text_set_f (text f) text r =
1420 def mplib_do_outline_options_f = f enddef;
1421 def mplib_do_outline_options_r = r enddef;
1422 enddef;
1423 def mplib_do_outline_text_set_u (text f) text r =
1424 def mplib_do_outline_options_f = f enddef;
1425 enddef;
1426 def mplib_do_outline_text_set_d (text d) text r =
1427 def mplib_do_outline_options_d = d enddef;
1428 def mplib_do_outline_options_r = r enddef;
1429 enddef;
1430 def mplib_do_outline_text_set_r (text d) (text f) text r =
1431 def mplib_do_outline_options_d = d enddef;
1432 def mplib_do_outline_options_f = f enddef;
1433 def mplib_do_outline_options_r = r enddef;
1434 enddef;
1435 def mplib_do_outline_text_set_n text r =
1436 def mplib_do_outline_options_r = r enddef;
1437 enddef;
1438 def mplib_do_outline_text_set_p = enddef;
1439 def mplib_fill_outline_text =
1440 for n=1 upto mpliboutlinenum:
1441 i:=0;
1442 for item within mpliboutlinepic[n]:
1443 i:=i+1;
1444 fill pathpart item mplib_do_outline_options_f withpen pencircle scaled 0
1445 if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]): withpostscript "collect"; fi
1446 endfor
1447 endfor
1448 enddef;
1449 def mplib_draw_outline_text =
1450 for n=1 upto mpliboutlinenum:
1451 for item within mpliboutlinepic[n]:
1452 draw pathpart item mplib_do_outline_options_d;
1453 endfor
1454 endfor
1455 enddef;
1456 def mplib_filldraw_outline_text =
1457 for n=1 upto mpliboutlinenum:
1458 i:=0;
1459 for item within mpliboutlinepic[n]:
1460 i:=i+1;
1461 if (n<mpliboutlinenum) or (i<length mpliboutlinepic[n]):

56

1462 fill pathpart item mplib_do_outline_options_f withpostscript "collect";
1463 else:
1464 draw pathpart item mplib_do_outline_options_f withpostscript "both";
1465 fi
1466 endfor
1467 endfor
1468 enddef;
1469 vardef mpliboutlinetext@# (expr t) text rest =
1470 save kind; string kind; kind := str @#;
1471 save i; numeric i;
1472 picture mpliboutlinepic[]; numeric mpliboutlinenum;
1473 def mplib_do_outline_options_d = enddef;
1474 def mplib_do_outline_options_f = enddef;
1475 def mplib_do_outline_options_r = enddef;
1476 runscript("return luamplib.outlinetext[===["&t&"]===]");
1477 image (addto currentpicture also image (
1478 if kind = "f":
1479 mplib_do_outline_text_set_f rest;
1480 mplib_fill_outline_text;
1481 elseif kind = "d":
1482 mplib_do_outline_text_set_d rest;
1483 mplib_draw_outline_text;
1484 elseif kind = "b":
1485 mplib_do_outline_text_set_b rest;
1486 mplib_fill_outline_text;
1487 mplib_draw_outline_text;
1488 elseif kind = "u":
1489 mplib_do_outline_text_set_u rest;
1490 mplib_filldraw_outline_text;
1491 elseif kind = "r":
1492 mplib_do_outline_text_set_r rest;
1493 mplib_draw_outline_text;
1494 mplib_fill_outline_text;
1495 elseif kind = "p":
1496 mplib_do_outline_text_set_p;
1497 mplib_draw_outline_text;
1498 else:
1499 mplib_do_outline_text_set_n rest;
1500 mplib_fill_outline_text;
1501 fi;
1502) mplib_do_outline_options_r;)
1503 enddef ;
1504 def withmppattern primary p =
1505 withprescript "mplibpattern=" & if numeric p: decimal fi p
1506 enddef;
1507 primarydef t withpattern p =
1508 image(
1509 if cycle t:
1510 fill

57

1511 else:
1512 draw
1513 fi
1514 t withprescript "mplibpattern=" & if numeric p: decimal fi p;)
1515 enddef;
1516 vardef mplibtransformmatrix (text e) =
1517 save t; transform t;
1518 t = identity e;
1519 runscript("luamplib.transformmatrix = {"
1520 & decimal xxpart t & ","
1521 & decimal yxpart t & ","
1522 & decimal xypart t & ","
1523 & decimal yypart t & ","
1524 & decimal xpart t & ","
1525 & decimal ypart t & ","
1526 & "}");
1527 enddef;
1528 primarydef p withfademethod s =
1529 if picture p:
1530 image(
1531 draw p;
1532 draw center p withprescript "mplibfadestate=stop";
1533)
1534 else:
1535 p withprescript "mplibfadestate=stop"
1536 fi
1537 withprescript "mplibfadetype=" & s
1538 withprescript "mplibfadebbox=" &
1539 decimal (xpart llcorner p -1/4) & ":" &
1540 decimal (ypart llcorner p -1/4) & ":" &
1541 decimal (xpart urcorner p +1/4) & ":" &
1542 decimal (ypart urcorner p +1/4)
1543 enddef;
1544 def withfadeopacity (expr a,b) =
1545 withprescript "mplibfadeopacity=" &
1546 decimal a & ":" &
1547 decimal b
1548 enddef;
1549 def withfadevector (expr a,b) =
1550 withprescript "mplibfadevector=" &
1551 decimal xpart a & ":" &
1552 decimal ypart a & ":" &
1553 decimal xpart b & ":" &
1554 decimal ypart b
1555 enddef;
1556 let withfadecenter = withfadevector;
1557 def withfaderadius (expr a,b) =
1558 withprescript "mplibfaderadius=" &
1559 decimal a & ":" &

58

1560 decimal b
1561 enddef;
1562 def withfadebbox (expr a,b) =
1563 withprescript "mplibfadebbox=" &
1564 decimal xpart a & ":" &
1565 decimal ypart a & ":" &
1566 decimal xpart b & ":" &
1567 decimal ypart b
1568 enddef;
1569 primarydef p asgroup s =
1570 image(
1571 draw center p
1572 withprescript "mplibgroupbbox=" &
1573 decimal (xpart llcorner p -1/4) & ":" &
1574 decimal (ypart llcorner p -1/4) & ":" &
1575 decimal (xpart urcorner p +1/4) & ":" &
1576 decimal (ypart urcorner p +1/4)
1577 withprescript "gr_state=start"
1578 withprescript "gr_type=" & s;
1579 draw p;
1580 draw center p withprescript "gr_state=stop";
1581)
1582 enddef;
1583 def withgroupbbox (expr a,b) =
1584 withprescript "mplibgroupbbox=" &
1585 decimal xpart a & ":" &
1586 decimal ypart a & ":" &
1587 decimal xpart b & ":" &
1588 decimal ypart b
1589 enddef;
1590 def withgroupname expr s =
1591 withprescript "mplibgroupname=" & s
1592 enddef;
1593 def usemplibgroup primary s =
1594 draw maketext("\luamplibtagasgroupput{"& s &"}{\csname luamplib.group."& s &"\endcsname}")
1595 shifted runscript("return luamplib.trgroupshifts['" & s & "']")
1596 enddef;
1597 path mplib_shade_path ;
1598 numeric mplib_shade_step ; mplib_shade_step := 0 ;
1599 numeric mplib_shade_fx, mplib_shade_fy ;
1600 numeric mplib_shade_lx, mplib_shade_ly ;
1601 numeric mplib_shade_nx, mplib_shade_ny ;
1602 numeric mplib_shade_dx, mplib_shade_dy ;
1603 numeric mplib_shade_tx, mplib_shade_ty ;
1604 primarydef p withshadingmethod m =
1605 p
1606 if picture p :
1607 withprescript "sh_operand_type=picture"
1608 if textual p:

59

1609 withprescript "sh_transform=no"
1610 mplib_with_shade_method (boundingbox p, m)
1611 else:
1612 withprescript "sh_transform=yes"
1613 withprescript "sh_length_p=" & decimal length pathpart p
1614 mplib_with_shade_method (pathpart p, m)
1615 fi
1616 else :
1617 withprescript "sh_transform=yes"
1618 mplib_with_shade_method (p, m)
1619 fi
1620 enddef;
1621 def mplib_with_shade_method (expr p, m) =
1622 hide(mplib_with_shade_method_analyze(p))
1623 withprescript "sh_domain=0 1"
1624 withprescript "sh_color=into"
1625 withprescript "sh_color_a=" & colordecimals white
1626 withprescript "sh_color_b=" & colordecimals black
1627 withprescript "sh_first=" & ddecimal point 0 of p
1628 withprescript "sh_set_x=" & ddecimal (mplib_shade_nx,mplib_shade_lx)
1629 withprescript "sh_set_y=" & ddecimal (mplib_shade_ny,mplib_shade_ly)
1630 if m = "linear" :
1631 withprescript "sh_type=linear"
1632 withprescript "sh_factor=1"
1633 withprescript "sh_center_a=" & ddecimal llcorner p
1634 withprescript "sh_center_b=" & ddecimal urcorner p
1635 else :
1636 withprescript "sh_type=circular"
1637 withprescript "sh_factor=1.2"
1638 withprescript "sh_center_a=" & ddecimal center p
1639 withprescript "sh_center_b=" & ddecimal center p
1640 withprescript "sh_radius_a=" & decimal 0
1641 withprescript "sh_radius_b=" & decimal mplib_max_radius(p)
1642 fi
1643 enddef;
1644 def mplib_with_shade_method_analyze(expr p) =
1645 mplib_shade_path := p ;
1646 mplib_shade_step := 1 ;
1647 mplib_shade_fx := xpart point 0 of p ;
1648 mplib_shade_fy := ypart point 0 of p ;
1649 mplib_shade_lx := mplib_shade_fx ;
1650 mplib_shade_ly := mplib_shade_fy ;
1651 mplib_shade_nx := 0 ;
1652 mplib_shade_ny := 0 ;
1653 mplib_shade_dx := abs(mplib_shade_fx - mplib_shade_lx) ;
1654 mplib_shade_dy := abs(mplib_shade_fy - mplib_shade_ly) ;
1655 for i=1 upto length(p) :
1656 mplib_shade_tx := abs(mplib_shade_fx - xpart point i of p) ;
1657 mplib_shade_ty := abs(mplib_shade_fy - ypart point i of p) ;

60

1658 if mplib_shade_tx > mplib_shade_dx :
1659 mplib_shade_nx := i + 1 ;
1660 mplib_shade_lx := xpart point i of p ;
1661 mplib_shade_dx := mplib_shade_tx ;
1662 fi ;
1663 if mplib_shade_ty > mplib_shade_dy :
1664 mplib_shade_ny := i + 1 ;
1665 mplib_shade_ly := ypart point i of p ;
1666 mplib_shade_dy := mplib_shade_ty ;
1667 fi ;
1668 endfor ;
1669 enddef;
1670 vardef mplib_max_radius(expr p) =
1671 max (
1672 (xpart center p - xpart llcorner p) ++ (ypart center p - ypart llcorner p),
1673 (xpart center p - xpart ulcorner p) ++ (ypart ulcorner p - ypart center p),
1674 (xpart lrcorner p - xpart center p) ++ (ypart center p - ypart lrcorner p),
1675 (xpart urcorner p - xpart center p) ++ (ypart urcorner p - ypart center p)
1676)
1677 enddef;
1678 def withshadingstep (text t) =
1679 hide(mplib_shade_step := mplib_shade_step + 1 ;)
1680 withprescript "sh_step=" & decimal mplib_shade_step
1681 t
1682 enddef;
1683 def withshadingradius expr a =
1684 withprescript "sh_radius_a=" & decimal (xpart a)
1685 withprescript "sh_radius_b=" & decimal (ypart a)
1686 enddef;
1687 def withshadingorigin expr a =
1688 withprescript "sh_center_a=" & ddecimal a
1689 withprescript "sh_center_b=" & ddecimal a
1690 enddef;
1691 def withshadingvector expr a =
1692 withprescript "sh_center_a=" & ddecimal (point xpart a of mplib_shade_path)
1693 withprescript "sh_center_b=" & ddecimal (point ypart a of mplib_shade_path)
1694 enddef;
1695 def withshadingdirection expr a =
1696 withprescript "sh_center_a=" & ddecimal (point xpart a of boundingbox(mplib_shade_path))
1697 withprescript "sh_center_b=" & ddecimal (point ypart a of boundingbox(mplib_shade_path))
1698 enddef;
1699 def withshadingtransform expr a =
1700 withprescript "sh_transform=" & a
1701 enddef;
1702 def withshadingcenter expr a =
1703 withprescript "sh_center_a=" & ddecimal (
1704 center mplib_shade_path shifted (
1705 xpart a * xpart (lrcorner mplib_shade_path - llcorner mplib_shade_path)/2,
1706 ypart a * ypart (urcorner mplib_shade_path - lrcorner mplib_shade_path)/2

61

1707)
1708)
1709 enddef;
1710 def withshadingdomain expr d =
1711 withprescript "sh_domain=" & ddecimal d
1712 enddef;
1713 def withshadingfactor expr f =
1714 withprescript "sh_factor=" & decimal f
1715 enddef;
1716 def withshadingfraction expr a =
1717 if mplib_shade_step > 0 :
1718 withprescript "sh_fraction_" & decimal mplib_shade_step & "=" & decimal a
1719 fi
1720 enddef;
1721 def withshadingcolors (expr a, b) =
1722 if mplib_shade_step > 0 :
1723 withprescript "sh_color=into"
1724 withprescript "sh_color_a_" & decimal mplib_shade_step & "=" & colordecimals a
1725 withprescript "sh_color_b_" & decimal mplib_shade_step & "=" & colordecimals b
1726 else :
1727 withprescript "sh_color=into"
1728 withprescript "sh_color_a=" & colordecimals a
1729 withprescript "sh_color_b=" & colordecimals b
1730 fi
1731 enddef;
1732 def withshadingstroke expr a =
1733 withprescript "sh_stroking=" & a
1734 enddef;
1735 def mpliblength primary t =
1736 runscript("return utf8.len[===[" & t & "]===]")
1737 enddef;
1738 def mplibsubstring expr p of t =
1739 runscript("return luamplib.unicodesubstring([===[" & t & "]===],"
1740 & decimal xpart p & ","
1741 & decimal ypart p & ")")
1742 enddef;
1743 def mplibuclength primary t =
1744 runscript("return #luamplib.getunicodegraphemes[===[" & t & "]===]")
1745 enddef;
1746 def mplibucsubstring expr p of t =
1747 runscript("return luamplib.unicodesubstring([===[" & t & "]===],"
1748 & decimal xpart p & ","
1749 & decimal ypart p & ",true)")
1750 enddef;
1751]],
1752 legacyverbatimtex = [[
1753 def specialVerbatimTeX (text t) = runscript("luamplibprefig{"&t&"}") enddef;
1754 def normalVerbatimTeX (text t) = runscript("luamplibinfig{"&t&"}") enddef;
1755 let VerbatimTeX = specialVerbatimTeX;

62

1756 extra_beginfig := extra_beginfig & " let VerbatimTeX = normalVerbatimTeX;"&
1757 "runscript(" &ditto& "luamplib.in_the_fig=true" &ditto& ");";
1758 extra_endfig := extra_endfig & " let VerbatimTeX = specialVerbatimTeX;"&
1759 "runscript(" &ditto&
1760 "if luamplib.in_the_fig then luamplib.figid=luamplib.figid+1 end "&
1761 "luamplib.in_the_fig=false" &ditto& ");";
1762]],
1763 textextlabel = [[
1764 let luampliboriginalinfont = infont;
1765 primarydef s infont f =
1766 if (s < char 32)
1767 or (s = char 35) % #
1768 or (s = char 36) % $
1769 or (s = char 37) % %
1770 or (s = char 38) % &
1771 or (s = char 92) % \
1772 or (s = char 94) % ^
1773 or (s = char 95) % _
1774 or (s = char 123) % {
1775 or (s = char 125) % }
1776 or (s = char 126) % ~
1777 or (s = char 127) :
1778 s luampliboriginalinfont f
1779 else :
1780 rawtextext(s)
1781 fi
1782 enddef;
1783 def fontsize expr f =
1784 begingroup
1785 save size; numeric size;
1786 size := mplibdimen("1em");
1787 if size = 0: 10pt else: size fi
1788 endgroup
1789 enddef;
1790]],
1791 }
1792

process_mplibcode
When \mplibverbatim is enabled, do not expand mplibcode data.

1793 luamplib.verbatiminput = false
1794 luamplib.everymplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1795 luamplib.everyendmplib = setmetatable({ [""] = "" },{ __index = function(t) return t[""] end })
1796 function luamplib.process_mplibcode (data, instancename)
1797 texboxes.localid = 4096

This is needed for legacy behavior
1798 if luamplib.legacyverbatimtex then
1799 luamplib.figid, tex_code_pre_mplib = 1, {}
1800 end

63

1801 local everymplib = luamplib.everymplib[instancename]
1802 local everyendmplib = luamplib.everyendmplib[instancename]
1803 data = format("\n%s\n%s\n%s\n",everymplib, data, everyendmplib)
1804 :gsub("\r","\n")

These five lines are needed for mplibverbatim mode.
1805 if luamplib.verbatiminput then
1806 data = data:gsub("\\mpcolor%s+(.-%b{})","mplibcolor(\"%1\")")
1807 :gsub("\\mpdim%s+(%b{})", "mplibdimen(\"%1\")")
1808 :gsub("\\mpdim%s+(\\%a+)","mplibdimen(\"%1\")")
1809 :gsub(btex_etex, "btex %1 etex ")
1810 :gsub(verbatimtex_etex, "verbatimtex %1 etex;")
1811 else

If not mplibverbatim, expand mplibcode data, so that users can use TEX codes in it. It has turned
out that no comment sign is allowed. However, we do not expand btex ... etex, verbatimtex
... etex, and string expressions.
1812 local t = { } -- to store btex, verbatimtex, string
1813 data = data:gsub(btex_etex, function(str)
1814 t[#t+1] = str
1815 return format("btex \\unexpanded{!l!u!a!%s!m!p!l!} etex ", #t) -- space
1816 end)
1817 :gsub(verbatimtex_etex, function(str)
1818 t[#t+1] = str
1819 return format("verbatimtex \\unexpanded{!l!u!a!%s!m!p!l!} etex;", #t) -- semicolon
1820 end)
1821 :gsub('"(.-)"', function(str)
1822 t[#t+1] = str
1823 return format('"\\unexpanded{!l!u!a!%s!m!p!l!}"', #t)
1824 end)
1825 :gsub("\\%%", "\0PerCent\0")
1826 :gsub("%%.-\n","\n")
1827 :gsub("%zPerCent%z", "\\%%")
1828 run_tex_code(format("\\mplibtmptoks\\expandafter{\\expanded{%s}}",data))
1829 data = texgettoks"mplibtmptoks"

Next line to address issue #55
1830 :gsub("##", "#")
1831 :gsub("!l!u!a!(%d+)!m!p!l!", function(str) return t[tonumber(str)] or str end)
1832 end
1833 process(data, instancename)
1834 end
1835

pdfliterals will be stored in figcontents table, and written to pdf in one go at the end of the
flushing figure. Subtable post is for the legacy behavior.
1836 local figcontents = { post = { } }
1837 local function put2output(a,...)
1838 figcontents[#figcontents+1] = type(a) == "string" and format(a,...) or a
1839 end

64

1840 local function pdf_startfigure(n,llx,lly,urx,ury)
1841 put2output("\\mplibstarttoPDF{%f}{%f}{%f}{%f}",llx,lly,urx,ury)
1842 end
1843 local function pdf_stopfigure()
1844 put2output("\\mplibstoptoPDF")
1845 end

tex.sprint with catcode regime -2, as sometimes # gets doubled in the argument of pdfliteral.
1846 local function pdf_literalcode (...)
1847 put2output{ -2, (format(...) :gsub(decimals,rmzeros)) }
1848 end
1849 local start_pdf_code = pdfmode
1850 and function() pdf_literalcode"q" end
1851 or function() put2output"\\special{pdf:bcontent}" end
1852 local stop_pdf_code = pdfmode
1853 and function() pdf_literalcode"Q" end
1854 or function() put2output"\\special{pdf:econtent}" end
1855

Now we process hboxes created from btex ... etex or textext(...) or TEX(...) etc.
1856 local function put_tex_boxes (object,prescript)
1857 local box = prescript.mplibtexboxid:explode":"
1858 local n,tw,th = box[1],tonumber(box[2]),tonumber(box[3])
1859 if n and tw and th then
1860 local op = object.path
1861 local first, second, fourth = op[1], op[2], op[4]
1862 local tx, ty = first.x_coord, first.y_coord
1863 local sx, rx, ry, sy = 1, 0, 0, 1
1864 if tw ~= 0 then
1865 sx = (second.x_coord - tx)/tw
1866 rx = (second.y_coord - ty)/tw
1867 if sx == 0 then sx = 0.00001 end
1868 end
1869 if th ~= 0 then
1870 sy = (fourth.y_coord - ty)/th
1871 ry = (fourth.x_coord - tx)/th
1872 if sy == 0 then sy = 0.00001 end
1873 end
1874 start_pdf_code()
1875 pdf_literalcode("%f %f %f %f %f %f cm",sx,rx,ry,sy,tx,ty)
1876 put2output("\\mplibputtextbox{%i}",n)
1877 stop_pdf_code()
1878 end
1879 end
1880

Colors
1881 local do_preobj_CR
1882 do
1883 local prev_override_color

65

1884 function do_preobj_CR(object,prescript)
1885 if object.postscript == "collect" then return end
1886 local override = prescript and prescript.mpliboverridecolor
1887 if override then
1888 if pdfmode then
1889 pdf_literalcode(override)
1890 override = nil
1891 else
1892 put2output("\\special{%s}",override)
1893 prev_override_color = override
1894 end
1895 else
1896 local cs = object.color
1897 if cs and #cs > 0 then
1898 pdf_literalcode(luamplib.colorconverter(cs))
1899 prev_override_color = nil
1900 elseif not pdfmode then
1901 override = prev_override_color
1902 if override then
1903 put2output("\\special{%s}",override)
1904 end
1905 end
1906 end
1907 return override
1908 end
1909 end
1910

For transparency, shading, fading, and pattern

1911 local pdfmanagement = is_defined'pdfmanagement_add:nnn'
1912 local pdfobjs, pdfetcs = {}, {}
1913 pdfetcs.pgfextgs = "pgf@sys@addpdfresource@extgs@plain"
1914 pdfetcs.pgfpattern = "pgf@sys@addpdfresource@patterns@plain"
1915 pdfetcs.pgfcolorspace = "pgf@sys@addpdfresource@colorspaces@plain"
1916 local function update_pdfobjs (os, stream)
1917 local key = os
1918 if stream then key = key..stream end
1919 local on = key and pdfobjs[key]
1920 if on then
1921 return on,false
1922 end
1923 if pdfmode then
1924 if stream then
1925 on = pdf.immediateobj("stream",stream,os)
1926 elseif os then
1927 on = pdf.immediateobj(os)
1928 else
1929 on = pdf.reserveobj()
1930 end

66

1931 else
1932 on = pdfetcs.cnt or 1
1933 if stream then
1934 texsprint(format("\\special{pdf:stream @mplibpdfobj%s (%s) <<%s>>}",on,stream,os))
1935 elseif os then
1936 texsprint(format("\\special{pdf:obj @mplibpdfobj%s %s}",on,os))
1937 else
1938 texsprint(format("\\special{pdf:obj @mplibpdfobj%s <<>>}",on))
1939 end
1940 pdfetcs.cnt = on + 1
1941 end
1942 if key then
1943 pdfobjs[key] = on
1944 end
1945 return on,true
1946 end
1947 pdfetcs.resfmt = pdfmode and "%s 0 R" or "@mplibpdfobj%s"
1948 if pdfmode then
1949 pdfetcs.getpageres = pdf.getpageresources or function() return pdf.pageresources end
1950 local getpageres = pdfetcs.getpageres
1951 local setpageres = pdf.setpageresources or function(s) pdf.pageresources = s end
1952 local initialize_resources = function (name)
1953 local tabname = format("%s_res",name)
1954 pdfetcs[tabname] = { }
1955 if luatexbase.callbacktypes.finish_pdffile then -- ltluatex
1956 local obj = pdf.reserveobj()
1957 setpageres(format("%s/%s %i 0 R", getpageres() or "", name, obj))
1958 luatexbase.add_to_callback("finish_pdffile", function()
1959 pdf.immediateobj(obj, format("<<%s>>", tableconcat(pdfetcs[tabname])))
1960 end,
1961 format("luamplib.%s.finish_pdffile",name))
1962 end
1963 end
1964 pdfetcs.fallback_update_resources = function (name, res)
1965 local tabname = format("%s_res",name)
1966 if not pdfetcs[tabname] then
1967 initialize_resources(name)
1968 end
1969 if luatexbase.callbacktypes.finish_pdffile then
1970 local t = pdfetcs[tabname]
1971 t[#t+1] = res
1972 else
1973 local tpr, n = getpageres() or "", 0
1974 tpr, n = tpr:gsub(format("/%s<<",name), "%1"..res)
1975 if n == 0 then
1976 tpr = format("%s/%s<<%s>>", tpr, name, res)
1977 end
1978 setpageres(tpr)
1979 end

67

1980 end
1981 else
1982 texsprint {
1983 "\\luamplibatfirstshipout{",
1984 "\\special{pdf:obj @MPlibTr<<>>}",
1985 "\\special{pdf:obj @MPlibSh<<>>}",
1986 "\\special{pdf:obj @MPlibCS<<>>}",
1987 "\\special{pdf:obj @MPlibPt<<>>}}",
1988 }
1989 pdfetcs.resadded = { }
1990 pdfetcs.fallback_update_resources = function (name,res,obj)
1991 texsprint{"\\special{pdf:put ", obj, " <<", res, ">>}"}
1992 if not pdfetcs.resadded[name] then
1993 texsprint{"\\luamplibateveryshipout{\\special{pdf:put @resources <</", name, " ", obj, ">>}}"}
1994 pdfetcs.resadded[name] = obj
1995 end
1996 end
1997 end
1998

Transparency

1999 local function add_extgs_resources (on, new)
2000 local key = format("MPlibTr%s", on)
2001 if new then
2002 local val = format(pdfetcs.resfmt, on)
2003 if pdfmanagement then
2004 texsprint {
2005 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ExtGState}{", key, "}{", val, "}"
2006 }
2007 else
2008 local tr = format("/%s %s", key, val)
2009 if is_defined(pdfetcs.pgfextgs) then
2010 texsprint { "\\csname ", pdfetcs.pgfextgs, "\\endcsname{", tr, "}" }
2011 elseif is_defined"TRP@list" then
2012 texsprint(catat11,{
2013 [[\if@filesw\immediate\write\@auxout{]],
2014 [[\string\g@addto@macro\string\TRP@list{]],
2015 tr,
2016 [[}}\fi]],
2017 })
2018 if not get_macro"TRP@list":find(tr) then
2019 texsprint(catat11,[[\global\TRP@reruntrue]])
2020 end
2021 else
2022 pdfetcs.fallback_update_resources("ExtGState",tr,"@MPlibTr")
2023 end
2024 end
2025 end
2026 return key

68

2027 end
2028
2029 local do_preobj_TR
2030 do
2031 local transparancy_modes = {
2032 [0] = "Normal",
2033 "Normal", "Multiply", "Screen", "Overlay",
2034 "SoftLight", "HardLight", "ColorDodge", "ColorBurn",
2035 "Darken", "Lighten", "Difference", "Exclusion",
2036 "Hue", "Saturation", "Color", "Luminosity",
2037 "Compatible",
2038 normal = "Normal", multiply = "Multiply", screen = "Screen",
2039 overlay = "Overlay", softlight = "SoftLight", hardlight = "HardLight",
2040 colordodge = "ColorDodge", colorburn = "ColorBurn", darken = "Darken",
2041 lighten = "Lighten", difference = "Difference", exclusion = "Exclusion",
2042 hue = "Hue", saturation = "Saturation", color = "Color",
2043 luminosity = "Luminosity", compatible = "Compatible",
2044 }
2045 function do_preobj_TR(object,prescript)
2046 if object.postscript == "collect" then return end
2047 local opaq = prescript and prescript.tr_transparency
2048 if opaq then
2049 local key, on, os, new
2050 local mode = prescript.tr_alternative or 1
2051 mode = transparancy_modes[tonumber(mode) or mode:lower()]
2052 if not mode then
2053 mode = prescript.tr_alternative
2054 warn("unsupported blend mode: '%s'", mode)
2055 end
2056 opaq = format("%.3f", opaq) :gsub(decimals,rmzeros)
2057 for i,v in ipairs{ {mode,opaq},{"Normal",1} } do
2058 os = format("<</BM/%s/ca %s/CA %s/AIS false>>",v[1],v[2],v[2])
2059 on, new = update_pdfobjs(os)
2060 key = add_extgs_resources(on,new)
2061 if i == 1 then
2062 pdf_literalcode("/%s gs",key)
2063 else
2064 return format("/%s gs",key)
2065 end
2066 end
2067 end
2068 end
2069 end
2070

Shading with metafun format.

2071 local function sh_pdfpageresources(shtype,domain,colorspace,ca,cb,coordinates,steps,fractions)
2072 for _,v in ipairs{ca,cb} do
2073 for i,vv in ipairs(v) do

69

2074 for ii,vvv in ipairs(vv) do
2075 v[i][ii] = tonumber(vvv) and format("%.3f",vvv) or vvv
2076 end
2077 end
2078 end
2079 local fun2fmt,os = "<</FunctionType 2/Domain[%s]/C0[%s]/C1[%s]/N 1>>"
2080 if steps > 1 then
2081 local list,bounds,encode = { },{ },{ }
2082 for i=1,steps do
2083 if i < steps then
2084 bounds[i] = format("%.3f", fractions[i] or 1)
2085 end
2086 encode[2*i-1] = 0
2087 encode[2*i] = 1
2088 os = fun2fmt:format(domain,tableconcat(ca[i],' '),tableconcat(cb[i],' '))
2089 :gsub(decimals,rmzeros)
2090 list[i] = format(pdfetcs.resfmt, update_pdfobjs(os))
2091 end
2092 os = tableconcat {
2093 "<</FunctionType 3",
2094 format("/Bounds[%s]", tableconcat(bounds,' ')),
2095 format("/Encode[%s]", tableconcat(encode,' ')),
2096 format("/Functions[%s]", tableconcat(list, ' ')),
2097 format("/Domain[%s]>>", domain),
2098 } :gsub(decimals,rmzeros)
2099 else
2100 os = fun2fmt:format(domain,tableconcat(ca[1],' '),tableconcat(cb[1],' '))
2101 :gsub(decimals,rmzeros)
2102 end
2103 local objref = format(pdfetcs.resfmt, update_pdfobjs(os))
2104 os = tableconcat {
2105 format("<</ShadingType %i", shtype),
2106 format("/ColorSpace %s", colorspace),
2107 format("/Function %s", objref),
2108 format("/Coords[%s]", coordinates),
2109 "/Extend[true true]/AntiAlias true>>",
2110 } :gsub(decimals,rmzeros)
2111 local on, new = update_pdfobjs(os)
2112 if new then
2113 local key, val = format("MPlibSh%s", on), format(pdfetcs.resfmt, on)
2114 if pdfmanagement then
2115 texsprint {
2116 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Shading}{", key, "}{", val, "}"
2117 }
2118 else
2119 local res = format("/%s %s", key, val)
2120 pdfetcs.fallback_update_resources("Shading",res,"@MPlibSh")
2121 end
2122 end

70

2123 return on
2124 end
2125
2126 local do_preobj_SH
2127 do
2128 pdfetcs.clrspcs = setmetatable({ }, { __index = function(t,names)
2129 run_tex_code({
2130 [[\color_model_new:nnn]],
2131 format("{mplibcolorspace_%s}", names:gsub(",","_")),
2132 format("{DeviceN}{names={%s}}", names),
2133 [[\edef\mplib_@tempa{\pdf_object_ref_last:}]],
2134 }, ccexplat)
2135 local colorspace = get_macro'mplib_@tempa'
2136 t[names] = colorspace
2137 return colorspace
2138 end })
2139 local function color_normalize(ca,cb)
2140 if #cb == 1 then
2141 if #ca == 4 then
2142 cb[1], cb[2], cb[3], cb[4] = 0, 0, 0, 1-cb[1]
2143 else -- #ca = 3
2144 cb[1], cb[2], cb[3] = cb[1], cb[1], cb[1]
2145 end
2146 elseif #cb == 3 then -- #ca == 4
2147 cb[1], cb[2], cb[3], cb[4] = 1-cb[1], 1-cb[2], 1-cb[3], 0
2148 end
2149 end
2150 function do_preobj_SH(object, prescript, savedpath)
2151 local shade_no
2152 local sh_type = prescript and prescript.sh_type
2153 if not sh_type then
2154 return
2155 else
2156 local domain = prescript.sh_domain or "0 1"
2157 local centera = (prescript.sh_center_a or "0 0"):explode()
2158 local centerb = (prescript.sh_center_b or "0 0"):explode()
2159 local transform = prescript.sh_transform == "yes"
2160 local sx,sy,sr,dx,dy = 1,1,1,0,0
2161 if transform then
2162 local first = (prescript.sh_first or "0 0"):explode()
2163 local setx = (prescript.sh_set_x or "0 0"):explode()
2164 local sety = (prescript.sh_set_y or "0 0"):explode()
2165 local x,y = tonumber(setx[1]) or 0, tonumber(sety[1]) or 0
2166 if x ~= 0 and y ~= 0 then
2167 local path = object.path
2168 -- avoid error upon pictures composed of multiple paths
2169 if savedpath and savedpath[1] and prescript.sh_length_p then
2170 local length_p = tonumber(prescript.sh_length_p)
2171 if length_p ~= #path then

71

2172 for _,v in ipairs(savedpath) do
2173 if length_p == #v then path = v; break end
2174 end
2175 end
2176 end
2177 local path1x = path[1].x_coord
2178 local path1y = path[1].y_coord
2179 local path2x = path[x].x_coord
2180 local path2y = path[y].y_coord
2181 local dxa = path2x - path1x
2182 local dya = path2y - path1y
2183 local dxb = setx[2] - first[1]
2184 local dyb = sety[2] - first[2]
2185 if dxa ~= 0 and dya ~= 0 and dxb ~= 0 and dyb ~= 0 then
2186 sx = dxa / dxb ; if sx < 0 then sx = - sx end
2187 sy = dya / dyb ; if sy < 0 then sy = - sy end
2188 sr = math.sqrt(sx^2 + sy^2)
2189 dx = path1x - sx*first[1]
2190 dy = path1y - sy*first[2]
2191 end
2192 end
2193 end
2194 local ca, cb, colorspace, steps, fractions
2195 ca = { (prescript.sh_color_a_1 or prescript.sh_color_a or "0"):explode":" }
2196 cb = { (prescript.sh_color_b_1 or prescript.sh_color_b or "1"):explode":" }
2197 steps = tonumber(prescript.sh_step) or 1
2198 if steps > 1 then
2199 fractions = { prescript.sh_fraction_1 or 0 }
2200 for i=2,steps do
2201 fractions[i] = prescript[format("sh_fraction_%i",i)] or (i/steps)
2202 ca[i] = (prescript[format("sh_color_a_%i",i)] or "0"):explode":"
2203 cb[i] = (prescript[format("sh_color_b_%i",i)] or "1"):explode":"
2204 end
2205 end
2206 if prescript.mplib_spotcolor then
2207 ca, cb = { }, { }
2208 local names, pos, objref = { }, -1, ""
2209 local script = object.prescript:explode"\13+"
2210 for i=#script,1,-1 do
2211 if script[i]:find"mplib_spotcolor" then
2212 local t, name, value = script[i]:explode"="[2]:explode":"
2213 value, objref, name = t[1], t[2], t[3]
2214 if not names[name] then
2215 pos = pos+1
2216 names[name] = pos
2217 names[#names+1] = name
2218 end
2219 t = { }
2220 for j=1,names[name] do t[#t+1] = 0 end

72

2221 t[#t+1] = value
2222 tableinsert(#ca == #cb and ca or cb, t)
2223 end
2224 end
2225 for _,t in ipairs{ca,cb} do
2226 for _,tt in ipairs(t) do
2227 for i=1,#names-#tt do tt[#tt+1] = 0 end
2228 end
2229 end
2230 if #names == 1 then
2231 colorspace = objref
2232 else
2233 colorspace = pdfetcs.clrspcs[tableconcat(names,",")]
2234 end
2235 else
2236 local model = 0
2237 for _,t in ipairs{ca,cb} do
2238 for _,tt in ipairs(t) do
2239 model = model > #tt and model or #tt
2240 end
2241 end
2242 for _,t in ipairs{ca,cb} do
2243 for _,tt in ipairs(t) do
2244 if #tt < model then
2245 color_normalize(model == 4 and {1,1,1,1} or {1,1,1},tt)
2246 end
2247 end
2248 end
2249 colorspace = model == 4 and "/DeviceCMYK"
2250 or model == 3 and "/DeviceRGB"
2251 or model == 1 and "/DeviceGray"
2252 or err"unknown color model"
2253 end
2254 if sh_type == "linear" then
2255 local coordinates = format("%f %f %f %f",
2256 dx + sx*centera[1], dy + sy*centera[2],
2257 dx + sx*centerb[1], dy + sy*centerb[2])
2258 shade_no = sh_pdfpageresources(2,domain,colorspace,ca,cb,coordinates,steps,fractions)
2259 elseif sh_type == "circular" then
2260 local factor = prescript.sh_factor or 1
2261 local radiusa = factor * prescript.sh_radius_a
2262 local radiusb = factor * prescript.sh_radius_b
2263 local coordinates = format("%f %f %f %f %f %f",
2264 dx + sx*centera[1], dy + sy*centera[2], sr*radiusa,
2265 dx + sx*centerb[1], dy + sy*centerb[2], sr*radiusb)
2266 shade_no = sh_pdfpageresources(3,domain,colorspace,ca,cb,coordinates,steps,fractions)
2267 else
2268 err"unknown shading type"
2269 end

73

2270 end
2271 return shade_no, prescript.sh_stroking
2272 end
2273 end
2274

Shading Patterns: we can apply shading to textual pictures as well as paths.

2275 if not pdfmode then
2276 pdfetcs.patternresources = {}
2277 end
2278 local function add_pattern_resources (key, val)
2279 if pdfmanagement then
2280 texsprint {
2281 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/Pattern}{", key, "}{", val, "}"
2282 }
2283 else
2284 local res = format("/%s %s", key, val)
2285 if is_defined(pdfetcs.pgfpattern) then
2286 texsprint { "\\csname ", pdfetcs.pgfpattern, "\\endcsname{", res, "}" }
2287 else
2288 pdfetcs.fallback_update_resources("Pattern",res,"@MPlibPt")
2289 if not pdfmode then
2290 tableinsert(pdfetcs.patternresources, res) -- for gather_resources()
2291 end
2292 end
2293 end
2294 end
2295 function luamplib.dolatelua (on, os)
2296 local h, v = pdf.getpos()
2297 h = format("%f", h/factor) :gsub(decimals,rmzeros)
2298 v = format("%f", v/factor) :gsub(decimals,rmzeros)
2299 if pdfmode then
2300 pdf.obj(on, format("<<%s/Matrix[1 0 0 1 %s %s]>>", os, h, v))
2301 pdf.refobj(on)
2302 else
2303 local shift = os:explode()
2304 if tonumber(h) ~= tonumber(shift[1]) or tonumber(v) ~= tonumber(shift[2]) then
2305 warn([[Add 'withprescript "sh_matrixshift=%s %s"' to the picture shading]], h, v)
2306 end
2307 end
2308 end
2309 local function do_preobj_shading (object, prescript, savedpath)
2310 if not prescript or not prescript.sh_operand_type then return end
2311 local on = do_preobj_SH(object, prescript, savedpath)
2312 local os = format("/PatternType 2/Shading %s", format(pdfetcs.resfmt, on))
2313 on = update_pdfobjs()
2314 if pdfmode then
2315 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(",on,",[[",os,"]]) }" })
2316 else

74

Why @xpos @ypos do not work properly⁇?
Anyway, this seems to be needed for proper functioning:

\pagewidth=\paperwidth
\pageheight=\paperheight
\special{papersize=\the\paperwidth,\the\paperheight}

2317 if is_defined"RecordProperties" then
2318 put2output(tableconcat{
2319 "\\csname tex_savepos:D\\endcsname\\RecordProperties{luamplib/getpos/",on,"}{xpos,ypos}\z
2320 \\special{pdf:put @mplibpdfobj",on," <<",os,"/Matrix[1 0 0 1 \z
2321 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{xpos}sp} \z
2322 \\csname dim_to_decimal_in_bp:n\\endcsname{\\RefProperty{luamplib/getpos/",on,"}{ypos}sp}\z
2323]>>}"
2324 })
2325 else
2326 local shift = prescript.sh_matrixshift or "0 0"
2327 texsprint{ "\\special{pdf:put @mplibpdfobj",on," <<",os,"/Matrix[1 0 0 1 ",shift,"]>>}" }
2328 put2output(tableconcat{ "\\latelua{ luamplib.dolatelua(",on,",[[",shift,"]]) }" })
2329 end
2330 end
2331 local key, val = format("MPlibPt%s", on), format(pdfetcs.resfmt, on)
2332 add_pattern_resources(key,val)
2333 pdf_literalcode("/Pattern cs/%s scn", key)

To avoid possible double execution, once by Pattern gs, once by Sh operator.
2334 prescript.sh_type = nil
2335 end
2336

Tiling Patterns
2337 pdfetcs.patterns = { }
2338 local function gather_resources (optres)
2339 local t, do_pattern = { }, not optres
2340 local names = {"ExtGState","ColorSpace","Shading"}
2341 if do_pattern then
2342 names[#names+1] = "Pattern"
2343 end
2344 if pdfmode then
2345 if pdfmanagement then
2346 for _,v in ipairs(names) do
2347 if ltx.__pdf.Page.Resources[v] then
2348 t[#t+1] = format("/%s %s 0 R", v, ltx.pdf.object_id("__pdf/Page/Resources/"..v))
2349 end
2350 end
2351 else
2352 local res = pdfetcs.getpageres() or ""
2353 run_tex_code[[\mplibtmptoks\expandafter{\the\pdfvariable pageresources}]]
2354 res = res .. texgettoks'mplibtmptoks'
2355 if do_pattern then return res end

75

2356 res = res:explode"/+"
2357 for _,v in ipairs(res) do
2358 v = v:match"^%s*(.-)%s*$"
2359 if not v:find"Pattern" and not optres:find(v) then
2360 t[#t+1] = "/" .. v
2361 end
2362 end
2363 end
2364 else
2365 if pdfmanagement then
2366 for _,v in ipairs(names) do
2367 run_tex_code ({
2368 "\\mplibtmptoks\\expanded{{",
2369 "\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/", v, "}",
2370 "{/", v, " \\pdf_object_ref:n{__pdf/Page/Resources/", v, "}}}}",
2371 },ccexplat)
2372 t[#t+1] = texgettoks'mplibtmptoks'
2373 end
2374 elseif is_defined(pdfetcs.pgfextgs) then
2375 run_tex_code ({
2376 "\\mplibtmptoks\\expanded{{",
2377 "\\ifpgf@sys@pdf@extgs@exists /ExtGState @pgfextgs\\fi",
2378 "\\ifpgf@sys@pdf@colorspaces@exists /ColorSpace @pgfcolorspaces\\fi",
2379 do_pattern and "\\ifpgf@sys@pdf@patterns@exists /Pattern @pgfpatterns \\fi" or "",
2380 "}}",
2381 }, catat11)
2382 t[#t+1] = texgettoks'mplibtmptoks'
2383 if pdfetcs.resadded.Shading then
2384 t[#t+1] = format("/Shading %s", pdfetcs.resadded.Shading)
2385 end
2386 else
2387 for _,v in ipairs(names) do
2388 local vv = pdfetcs.resadded[v]
2389 if vv then
2390 t[#t+1] = format("/%s %s", v, vv)
2391 end
2392 end
2393 end
2394 end
2395 if do_pattern then return tableconcat(t) end
2396 -- get pattern resources
2397 local mytoks
2398 if pdfmanagement then
2399 run_tex_code ({
2400 "\\mplibtmptoks\\expanded{{",
2401 "\\pdfdict_if_empty:nF{g__pdf_Core/Page/Resources/Pattern}",
2402 "{\\pdfdict_use:n{g__pdf_Core/Page/Resources/Pattern}}", "}}",
2403 },ccexplat)
2404 mytoks = texgettoks"mplibtmptoks"

76

2405 if not pdfmode then
2406 mytoks = mytoks:gsub("\\str_convert_pdfname:n%s*{(.-)}","%1") -- why not expanded?
2407 end
2408 elseif is_defined(pdfetcs.pgfextgs) then
2409 if pdfmode then
2410 mytoks = get_macro"pgf@sys@pgf@resource@list@patterns"
2411 else
2412 local tt, abc = {}, get_macro"pgfutil@abc" or ""
2413 for v in abc:gmatch"@pgfpatterns%s*<<(.-)>>" do
2414 tt[#tt+1] = v
2415 end
2416 mytoks = tableconcat(tt)
2417 end
2418 else
2419 local tt = pdfmode and pdfetcs.Pattern_res or pdfetcs.patternresources
2420 mytoks = tt and tableconcat(tt)
2421 end
2422 if mytoks and mytoks ~= "" then
2423 t[#t+1] = format("/Pattern<<%s>>",mytoks)
2424 end
2425 return tableconcat(t)
2426 end
2427 function luamplib.registerpattern (boxid, name, opts)
2428 local box = texgetbox(boxid)
2429 local wd = format("%.3f",box.width/factor)
2430 local hd = format("%.3f",(box.height+box.depth)/factor)
2431 info("w/h/d of pattern '%s': %s 0", name, format("%s %s",wd, hd):gsub(decimals,rmzeros))
2432 if opts.xstep == 0 then opts.xstep = nil end
2433 if opts.ystep == 0 then opts.ystep = nil end
2434 if opts.colored == nil then
2435 opts.colored = opts.coloured
2436 if opts.colored == nil then
2437 opts.colored = true
2438 end
2439 end
2440 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix," ") end
2441 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox," ") end
2442 if opts.matrix and opts.matrix:find"%a" then
2443 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2444 process(data,"@mplibtransformmatrix")
2445 local t = luamplib.transformmatrix
2446 opts.matrix = format("%f %f %f %f", t[1], t[2], t[3], t[4])
2447 opts.xshift = opts.xshift or format("%f",t[5])
2448 opts.yshift = opts.yshift or format("%f",t[6])
2449 end
2450 local attr = {
2451 "/Type/Pattern",
2452 "/PatternType 1",
2453 format("/PaintType %i", opts.colored and 1 or 2),

77

2454 "/TilingType 2",
2455 format("/XStep %s", opts.xstep or wd),
2456 format("/YStep %s", opts.ystep or hd),
2457 format("/Matrix[%s %s %s]", opts.matrix or "1 0 0 1", opts.xshift or 0, opts.yshift or 0),
2458 }
2459 local optres = opts.resources or ""
2460 optres = optres .. gather_resources(optres)
2461 local patterns = pdfetcs.patterns
2462 if pdfmode then
2463 if opts.bbox then
2464 attr[#attr+1] = format("/BBox[%s]", opts.bbox)
2465 end
2466 attr = tableconcat(attr) :gsub(decimals,rmzeros)
2467 local index = tex.saveboxresource(boxid, attr, optres, true, opts.bbox and 4 or 1)
2468 patterns[name] = { id = index, colored = opts.colored }
2469 else
2470 local cnt = #patterns + 1
2471 local objname = "@mplibpattern" .. cnt
2472 local metric = format("bbox %s", opts.bbox or format("0 0 %s %s",wd,hd))
2473 texsprint {
2474 "\\expandafter\\newbox\\csname luamplib.patternbox.", cnt, "\\endcsname",
2475 "\\global\\setbox\\csname luamplib.patternbox.", cnt, "\\endcsname",
2476 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",
2477 "\\special{pdf:bcontent}",
2478 "\\special{pdf:bxobj ", objname, " ", metric, "}",
2479 "\\raise\\dp\\csname luamplib.patternbox.", cnt, "\\endcsname",
2480 "\\box\\csname luamplib.patternbox.", cnt, "\\endcsname",
2481 "\\special{pdf:put @resources <<", optres, ">>}",
2482 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",
2483 "\\special{pdf:econtent}}",
2484 }
2485 patterns[cnt] = objname
2486 patterns[name] = { id = cnt, colored = opts.colored }
2487 end
2488 end
2489
2490 local do_preobj_PAT
2491 do
2492 local function pattern_colorspace (cs)
2493 local on, new = update_pdfobjs(format("[/Pattern %s]", cs))
2494 if new then
2495 local key, val = format("MPlibCS%i",on), format(pdfetcs.resfmt,on)
2496 if pdfmanagement then
2497 texsprint {
2498 "\\csname pdfmanagement_add:nnn\\endcsname{Page/Resources/ColorSpace}{", key, "}{", val, "}"
2499 }
2500 else
2501 local res = format("/%s %s", key, val)
2502 if is_defined(pdfetcs.pgfcolorspace) then

78

2503 texsprint { "\\csname ", pdfetcs.pgfcolorspace, "\\endcsname{", res, "}" }
2504 else
2505 pdfetcs.fallback_update_resources("ColorSpace",res,"@MPlibCS")
2506 end
2507 end
2508 end
2509 return on
2510 end
2511 function do_preobj_PAT(object, prescript)
2512 local name = prescript and prescript.mplibpattern
2513 if not name then return end
2514 local patterns = pdfetcs.patterns
2515 local patt = patterns[name]
2516 local index = patt and patt.id or err("cannot get pattern object '%s'", name)
2517 local key = format("MPlibPt%s",index)
2518 if patt.colored then
2519 pdf_literalcode("/Pattern cs /%s scn", key)
2520 else
2521 local color = prescript.mpliboverridecolor
2522 if not color then
2523 local t = object.color
2524 color = t and #t>0 and luamplib.colorconverter(t)
2525 end
2526 if not color then return end
2527 local cs
2528 if color:find" cs " or color:find"@pdf.obj" then
2529 local t = color:explode()
2530 if pdfmode then
2531 cs = format("%s 0 R", ltx.pdf.object_id(t[1]:sub(2,-1)))
2532 color = t[3]
2533 else
2534 cs = t[2]
2535 color = t[3]:match"%[(.+)%]"
2536 end
2537 else
2538 local t = colorsplit(color)
2539 cs = #t == 4 and "/DeviceCMYK" or #t == 3 and "/DeviceRGB" or "/DeviceGray"
2540 color = tableconcat(t," ")
2541 end
2542 pdf_literalcode("/MPlibCS%i cs %s /%s scn", pattern_colorspace(cs), color, key)
2543 end
2544 if not patt.done then
2545 local val = pdfmode and format("%s 0 R",index) or patterns[index]
2546 add_pattern_resources(key,val)
2547 end
2548 patt.done = true
2549 end
2550 end
2551

79

Fading
2552 pdfetcs.fading = { }
2553 local function do_preobj_FADE (object, prescript)
2554 local fd_type = prescript and prescript.mplibfadetype
2555 local fd_stop = prescript and prescript.mplibfadestate
2556 if not fd_type then
2557 return fd_stop -- returns "stop" (if picture) or nil
2558 end
2559 local bbox = prescript.mplibfadebbox:explode":"
2560 local dx, dy = -bbox[1], -bbox[2]
2561 local vec = prescript.mplibfadevector; vec = vec and vec:explode":"
2562 if not vec then
2563 if fd_type == "linear" then
2564 vec = {bbox[1], bbox[2], bbox[3], bbox[2]} -- left to right
2565 else
2566 local centerx, centery = (bbox[1]+bbox[3])/2, (bbox[2]+bbox[4])/2
2567 vec = {centerx, centery, centerx, centery} -- center for both circles
2568 end
2569 end
2570 local coords = { vec[1]+dx, vec[2]+dy, vec[3]+dx, vec[4]+dy }
2571 if fd_type == "linear" then
2572 coords = format("%f %f %f %f", tableunpack(coords))
2573 elseif fd_type == "circular" then
2574 local width, height = bbox[3]-bbox[1], bbox[4]-bbox[2]
2575 local radius = (prescript.mplibfaderadius or "0:"..math.sqrt(width^2+height^2)/2):explode":"
2576 tableinsert(coords, 3, radius[1])
2577 tableinsert(coords, radius[2])
2578 coords = format("%f %f %f %f %f %f", tableunpack(coords))
2579 else
2580 err("unknown fading method '%s'", fd_type)
2581 end
2582 fd_type = fd_type == "linear" and 2 or 3
2583 local opaq = (prescript.mplibfadeopacity or "1:0"):explode":"
2584 local on, os, new
2585 on = sh_pdfpageresources(fd_type, "0 1", "/DeviceGray", {{opaq[1]}}, {{opaq[2]}}, coords, 1)
2586 os = format("<</PatternType 2/Shading %s>>", format(pdfetcs.resfmt, on))
2587 on = update_pdfobjs(os)
2588 bbox = format("0 0 %f %f", bbox[3]+dx, bbox[4]+dy)
2589 local streamtext = format("q /Pattern cs/MPlibFd%s scn %s re f Q", on, bbox)
2590 :gsub(decimals,rmzeros)
2591 os = format("<</Pattern<</MPlibFd%s %s>>>>", on, format(pdfetcs.resfmt, on))
2592 on = update_pdfobjs(os)
2593 local resources = format(pdfetcs.resfmt, on)
2594 on = update_pdfobjs"<</S/Transparency/CS/DeviceGray>>"
2595 local attr = tableconcat{
2596 "/Subtype/Form",
2597 "/BBox[", bbox, "]",
2598 "/Matrix[1 0 0 1 ", format("%f %f", -dx,-dy), "]",
2599 "/Resources ", resources,

80

2600 "/Group ", format(pdfetcs.resfmt, on),
2601 } :gsub(decimals,rmzeros)
2602 on = update_pdfobjs(attr, streamtext)
2603 os = "<</SMask<</S/Luminosity/G " .. format(pdfetcs.resfmt, on) .. ">>>>"
2604 on, new = update_pdfobjs(os)
2605 local key = add_extgs_resources(on,new)
2606 start_pdf_code()
2607 pdf_literalcode("/%s gs", key)
2608 if fd_stop then return "standalone" end
2609 return "start"
2610 end
2611

Transparency Group

2612 pdfetcs.tr_group = { shifts = { } }
2613 luamplib.trgroupshifts = pdfetcs.tr_group.shifts
2614 local function do_preobj_GRP (object, prescript)
2615 local grstate = prescript and prescript.gr_state
2616 if not grstate then return end
2617 local trgroup = pdfetcs.tr_group
2618 if grstate == "start" then
2619 trgroup.name = prescript.mplibgroupname or "lastmplibgroup"
2620 trgroup.isolated, trgroup.knockout = false, false
2621 for _,v in ipairs(prescript.gr_type:explode",+") do
2622 trgroup[v] = true
2623 end
2624 trgroup.bbox = prescript.mplibgroupbbox:explode":"
2625 put2output[[\begingroup\setbox\mplibscratchbox\hbox\bgroup\luamplibtagasgroupset]]
2626 elseif grstate == "stop" then
2627 local llx,lly,urx,ury = tableunpack(trgroup.bbox)
2628 put2output(tableconcat{
2629 "\\egroup",
2630 format("\\wd\\mplibscratchbox %fbp", urx-llx),
2631 format("\\ht\\mplibscratchbox %fbp", ury-lly),
2632 "\\dp\\mplibscratchbox 0pt",
2633 })
2634 local grattr = format("/Group<</S/Transparency/I %s/K %s>>",trgroup.isolated,trgroup.knockout)
2635 local res = gather_resources()
2636 local bbox = format("%f %f %f %f", llx,lly,urx,ury) :gsub(decimals,rmzeros)
2637 if pdfmode then
2638 put2output(tableconcat{
2639 "\\saveboxresource type 2 attr{/Type/XObject/Subtype/Form/FormType 1",
2640 "/BBox[", bbox, "]", grattr, "} resources{", res, "}\\mplibscratchbox",
2641 "\\luamplibtagasgroupput{",trgroup.name,"}{",
2642 [[\setbox\mplibscratchbox\hbox{\useboxresource\lastsavedboxresourceindex}]],
2643 [[\wd\mplibscratchbox 0pt\ht\mplibscratchbox 0pt\dp\mplibscratchbox 0pt]],
2644 [[\box\mplibscratchbox]],
2645 "}\\endgroup",
2646 "\\expandafter\\xdef\\csname luamplib.group.", trgroup.name, "\\endcsname{",

81

2647 "\\setbox\\mplibscratchbox\\hbox{\\hskip",-llx,"bp\\raise",-lly,"bp\\hbox{",
2648 "\\useboxresource \\the\\lastsavedboxresourceindex",
2649 "}}\\wd\\mplibscratchbox",urx-llx,"bp\\ht\\mplibscratchbox",ury-lly,"bp",
2650 "\\box\\mplibscratchbox}",
2651 })
2652 else
2653 trgroup.cnt = (trgroup.cnt or 0) + 1
2654 local objname = format("@mplibtrgr%s", trgroup.cnt)
2655 put2output(tableconcat{
2656 "\\special{pdf:bxobj ", objname, " bbox ", bbox, "}",
2657 "\\unhbox\\mplibscratchbox",
2658 "\\special{pdf:put @resources <<", res, ">>}",
2659 "\\special{pdf:exobj <<", grattr, ">>}",
2660 "\\luamplibtagasgroupput{",trgroup.name,"}{",
2661 "\\special{pdf:uxobj ", objname, "}",
2662 "}\\endgroup",
2663 })
2664 token.set_macro("luamplib.group."..trgroup.name, tableconcat{
2665 "\\setbox\\mplibscratchbox\\hbox{\\hskip",-llx,"bp\\raise",-lly,"bp\\hbox{",
2666 "\\special{pdf:uxobj ", objname, "}",
2667 "}}\\wd\\mplibscratchbox",urx-llx,"bp\\ht\\mplibscratchbox",ury-lly,"bp",
2668 "\\box\\mplibscratchbox",
2669 }, "global")
2670 end
2671 trgroup.shifts[trgroup.name] = { llx, lly }
2672 end
2673 return grstate
2674 end
2675 function luamplib.registergroup (boxid, name, opts)
2676 local box = texgetbox(boxid)
2677 local wd, ht, dp = node.getwhd(box)
2678 local res = (opts.resources or "") .. gather_resources()
2679 local attr = { "/Type/XObject/Subtype/Form/FormType 1" }
2680 if type(opts.matrix) == "table" then opts.matrix = tableconcat(opts.matrix," ") end
2681 if type(opts.bbox) == "table" then opts.bbox = tableconcat(opts.bbox," ") end
2682 if opts.matrix and opts.matrix:find"%a" then
2683 local data = format("mplibtransformmatrix(%s);",opts.matrix)
2684 process(data,"@mplibtransformmatrix")
2685 opts.matrix = format("%f %f %f %f %f %f",tableunpack(luamplib.transformmatrix))
2686 end
2687 local grtype = 3
2688 if opts.bbox then
2689 attr[#attr+1] = format("/BBox[%s]", opts.bbox)
2690 grtype = 2
2691 end
2692 if opts.matrix then
2693 attr[#attr+1] = format("/Matrix[%s]", opts.matrix)
2694 grtype = opts.bbox and 4 or 1
2695 end

82

2696 if opts.asgroup then
2697 local t = { isolated = false, knockout = false }
2698 for _,v in ipairs(opts.asgroup:explode",+") do t[v] = true end
2699 attr[#attr+1] = format("/Group<</S/Transparency/I %s/K %s>>", t.isolated, t.knockout)
2700 end
2701 local trgroup = pdfetcs.tr_group
2702 trgroup.shifts[name] = { get_macro'MPllx', get_macro'MPlly' }
2703 local whd
2704 if pdfmode then
2705 attr = tableconcat(attr) :gsub(decimals,rmzeros)
2706 local index = tex.saveboxresource(boxid, attr, res, true, grtype)
2707 token.set_macro("luamplib.group."..name, tableconcat{
2708 "\\useboxresource ", index,
2709 }, "global")
2710 whd = format("%.3f %.3f 0", wd/factor, (ht+dp)/factor) :gsub(decimals,rmzeros)
2711 else
2712 trgroup.cnt = (trgroup.cnt or 0) + 1
2713 local objname = format("@mplibtrgr%s", trgroup.cnt)
2714 texsprint {
2715 "\\expandafter\\newbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2716 "\\global\\setbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2717 "\\hbox{\\unhbox ", boxid, "}\\luamplibatnextshipout{",
2718 "\\special{pdf:bcontent}",
2719 "\\special{pdf:bxobj ", objname, " width ", wd, "sp height ", ht, "sp depth ", dp, "sp}",
2720 "\\unhbox\\csname luamplib.groupbox.", trgroup.cnt, "\\endcsname",
2721 "\\special{pdf:put @resources <<", res, ">>}",
2722 "\\special{pdf:exobj <<", tableconcat(attr), ">>}",
2723 "\\special{pdf:econtent}}",
2724 }
2725 token.set_macro("luamplib.group."..name, tableconcat{
2726 "\\setbox\\mplibscratchbox\\hbox{\\special{pdf:uxobj ", objname, "}}",
2727 "\\wd\\mplibscratchbox ", wd, "sp",
2728 "\\ht\\mplibscratchbox ", ht, "sp",
2729 "\\dp\\mplibscratchbox ", dp, "sp",
2730 "\\box\\mplibscratchbox",
2731 }, "global")
2732 whd = format("%.3f %.3f %.3f", wd/factor, ht/factor, dp/factor) :gsub(decimals,rmzeros)
2733 end
2734 info("w/h/d of group '%s': %s", name, whd)
2735 end
2736

luamplib.convert: flushing figures

2737 do
2738 local function stop_special_effects(fade,opaq,over)
2739 if fade then -- fading
2740 stop_pdf_code()
2741 end
2742 if opaq then -- opacity

83

2743 pdf_literalcode(opaq)
2744 end
2745 if over then -- color
2746 if over:find"pdf:bc" then
2747 put2output"\\special{pdf:ec}"
2748 else
2749 put2output"\\special{color pop}"
2750 end
2751 end
2752 end
2753

For parsing prescript materials.
2754 local function script2table(s)
2755 local t = {}
2756 for _,i in ipairs(s:explode("\13+")) do
2757 local k,v = i:match("(.-)=(.*)") -- v may contain = or empty.
2758 if k and v and k ~= "" and not t[k] then
2759 t[k] = v
2760 end
2761 end
2762 return t
2763 end
2764

Codes below to insert PDF lieterals are mostly from ConTEXt general, with small changes when
needed.
2765 local function pdf_textfigure(font,size,text,width,height,depth)
2766 text = text:gsub(".",function(c)
2767 return format("\\hbox{\\char%i}",string.byte(c)) -- kerning happens in metapost : false
2768 end)
2769 put2output("\\mplibtextext{%s}{%f}{%s}{%s}{%s}",font,size,text,0,0)
2770 end
2771
2772 local bend_tolerance = 131/65536
2773
2774 local rx, sx, sy, ry, tx, ty, divider = 1, 0, 0, 1, 0, 0, 1
2775
2776 local function pen_characteristics(object)
2777 local t = mplib.pen_info(object)
2778 rx, ry, sx, sy, tx, ty = t.rx, t.ry, t.sx, t.sy, t.tx, t.ty
2779 divider = sx*sy - rx*ry
2780 return not (sx==1 and rx==0 and ry==0 and sy==1 and tx==0 and ty==0), t.width
2781 end
2782
2783 local function concat(px, py) -- no tx, ty here
2784 return (sy*px-ry*py)/divider,(sx*py-rx*px)/divider
2785 end
2786
2787 local function curved(ith,pth)

84

2788 local d = pth.left_x - ith.right_x
2789 if abs(ith.right_x - ith.x_coord - d) <= bend_tolerance and
2790 abs(pth.x_coord - pth.left_x - d) <= bend_tolerance then
2791 d = pth.left_y - ith.right_y
2792 if abs(ith.right_y - ith.y_coord - d) <= bend_tolerance and
2793 abs(pth.y_coord - pth.left_y - d) <= bend_tolerance then
2794 return false
2795 end
2796 end
2797 return true
2798 end
2799
2800 local function flushnormalpath(path,open)
2801 local pth, ith
2802 for i=1,#path do
2803 pth = path[i]
2804 if not ith then
2805 pdf_literalcode("%f %f m",pth.x_coord,pth.y_coord)
2806 elseif curved(ith,pth) then
2807 pdf_literalcode("%f %f %f %f %f %f c",
2808 ith.right_x,ith.right_y,pth.left_x,pth.left_y,pth.x_coord,pth.y_coord)
2809 else
2810 pdf_literalcode("%f %f l",pth.x_coord,pth.y_coord)
2811 end
2812 ith = pth
2813 end
2814 if not open then
2815 local one = path[1]
2816 if curved(pth,one) then
2817 pdf_literalcode("%f %f %f %f %f %f c",
2818 pth.right_x,pth.right_y,one.left_x,one.left_y,one.x_coord,one.y_coord)
2819 else
2820 pdf_literalcode("%f %f l",one.x_coord,one.y_coord)
2821 end
2822 elseif #path == 1 then -- special case .. draw point
2823 local one = path[1]
2824 pdf_literalcode("%f %f l",one.x_coord,one.y_coord)
2825 end
2826 end
2827
2828 local function flushconcatpath(path,open)
2829 pdf_literalcode("%f %f %f %f %f %f cm", sx, rx, ry, sy, tx ,ty)
2830 local pth, ith
2831 for i=1,#path do
2832 pth = path[i]
2833 if not ith then
2834 pdf_literalcode("%f %f m",concat(pth.x_coord,pth.y_coord))
2835 elseif curved(ith,pth) then
2836 local a, b = concat(ith.right_x,ith.right_y)

85

2837 local c, d = concat(pth.left_x,pth.left_y)
2838 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(pth.x_coord, pth.y_coord))
2839 else
2840 pdf_literalcode("%f %f l",concat(pth.x_coord, pth.y_coord))
2841 end
2842 ith = pth
2843 end
2844 if not open then
2845 local one = path[1]
2846 if curved(pth,one) then
2847 local a, b = concat(pth.right_x,pth.right_y)
2848 local c, d = concat(one.left_x,one.left_y)
2849 pdf_literalcode("%f %f %f %f %f %f c",a,b,c,d,concat(one.x_coord, one.y_coord))
2850 else
2851 pdf_literalcode("%f %f l",concat(one.x_coord,one.y_coord))
2852 end
2853 elseif #path == 1 then -- special case .. draw point
2854 local one = path[1]
2855 pdf_literalcode("%f %f l",concat(one.x_coord,one.y_coord))
2856 end
2857 end
2858

Finally, flush figures by inserting PDF literals.
2859 local function flush (result,flusher)
2860 if result then
2861 local figures = result.fig
2862 if figures then
2863 for f=1, #figures do
2864 info("flushing figure %s",f)
2865 local figure = figures[f]
2866 local objects = figure:objects()
2867 local fignum = tonumber(figure:filename():match("([%d]+)$") or figure:charcode() or 0)
2868 local miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
2869 local bbox = figure:boundingbox()
2870 local llx, lly, urx, ury = bbox[1], bbox[2], bbox[3], bbox[4] -- faster than unpack
2871 if urx < llx then

luamplib silently ignores this invalid figure for those that do not contain beginfig ... endfig.
(issue #70) Original code of ConTEXt general was:

-- invalid
pdf_startfigure(fignum,0,0,0,0)
pdf_stopfigure()

2872 else

For legacy behavior, insert ‘pre-fig’ TEX code here.
2873 if tex_code_pre_mplib[f] then
2874 put2output(tex_code_pre_mplib[f])
2875 end

86

2876 pdf_startfigure(fignum,llx,lly,urx,ury)
2877 start_pdf_code()
2878 if objects then
2879 local savedpath = nil
2880 local savedhtap = nil
2881 for o=1,#objects do
2882 local object = objects[o]
2883 local objecttype = object.type

The following 10 lines are part of btex...etex patch. Again, colors are processed at this stage.
2884 local prescript = object.prescript
2885 prescript = prescript and script2table(prescript) -- prescript is now a table
2886 local cr_over = do_preobj_CR(object,prescript) -- color
2887 local tr_opaq = do_preobj_TR(object,prescript) -- opacity
2888 local fading_ = do_preobj_FADE(object,prescript) -- fading
2889 local trgroup = do_preobj_GRP(object,prescript) -- transparency group
2890 local pattern_ = do_preobj_PAT(object,prescript) -- tiling pattern
2891 local shading_ = do_preobj_shading(object,prescript,savedpath) -- shading pattern
2892 if prescript and prescript.mplibtexboxid then
2893 put_tex_boxes(object,prescript)
2894 elseif objecttype == "start_bounds" or objecttype == "stop_bounds" then --skip
2895 elseif objecttype == "start_clip" then
2896 local evenodd = not object.istext and object.postscript == "evenodd"
2897 start_pdf_code()
2898 flushnormalpath(object.path,false)
2899 pdf_literalcode(evenodd and "W* n" or "W n")
2900 elseif objecttype == "stop_clip" then
2901 stop_pdf_code()
2902 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
2903 elseif objecttype == "special" then

Collect TEX codes that will be executed after flushing. Legacy behavior.
2904 if prescript and prescript.postmplibverbtex then
2905 figcontents.post[#figcontents.post+1] = prescript.postmplibverbtex
2906 end
2907 elseif objecttype == "text" then
2908 local ot = object.transform -- 3,4,5,6,1,2
2909 start_pdf_code()
2910 pdf_literalcode("%f %f %f %f %f %f cm",ot[3],ot[4],ot[5],ot[6],ot[1],ot[2])
2911 pdf_textfigure(object.font,object.dsize,object.text,object.width,object.height,object.depth)
2912 stop_pdf_code()
2913 elseif not trgroup and fading_ ~= "stop" then
2914 local evenodd, collect, both = false, false, false
2915 local postscript = object.postscript
2916 if not object.istext then
2917 if postscript == "evenodd" then
2918 evenodd = true
2919 elseif postscript == "collect" then
2920 collect = true
2921 elseif postscript == "both" then

87

2922 both = true
2923 elseif postscript == "eoboth" then
2924 evenodd = true
2925 both = true
2926 end
2927 end
2928 if collect then
2929 if not savedpath then
2930 savedpath = { object.path or false }
2931 savedhtap = { object.htap or false }
2932 else
2933 savedpath[#savedpath+1] = object.path or false
2934 savedhtap[#savedhtap+1] = object.htap or false
2935 end
2936 else

Removed from ConTEXt general: color stuff.

2937 local ml = object.miterlimit
2938 if ml and ml ~= miterlimit then
2939 miterlimit = ml
2940 pdf_literalcode("%f M",ml)
2941 end
2942 local lj = object.linejoin
2943 if lj and lj ~= linejoin then
2944 linejoin = lj
2945 pdf_literalcode("%i j",lj)
2946 end
2947 local lc = object.linecap
2948 if lc and lc ~= linecap then
2949 linecap = lc
2950 pdf_literalcode("%i J",lc)
2951 end
2952 local dl = object.dash
2953 if dl then
2954 local d = format("[%s] %f d",tableconcat(dl.dashes or {}," "),dl.offset)
2955 if d ~= dashed then
2956 dashed = d
2957 pdf_literalcode(dashed)
2958 end
2959 elseif dashed then
2960 pdf_literalcode("[] 0 d")
2961 dashed = false
2962 end
2963 local path = object.path
2964 local transformed, penwidth = false, 1
2965 local open = path and path[1].left_type and path[#path].right_type
2966 local pen = object.pen
2967 if pen then
2968 if pen.type == 'elliptical' then

88

2969 transformed, penwidth = pen_characteristics(object) -- boolean, value
2970 pdf_literalcode("%f w",penwidth)
2971 if objecttype == 'fill' then
2972 objecttype = 'both'
2973 end
2974 else -- calculated by mplib itself
2975 objecttype = 'fill'
2976 end
2977 end

Added : shading

2978 local shade_no, shade_stroking = do_preobj_SH(object,prescript) -- shading
2979 if shade_no then
2980 pdf_literalcode"q /Pattern cs"
2981 objecttype = false
2982 end
2983 if transformed then
2984 start_pdf_code()
2985 end
2986 if path then
2987 if savedpath then
2988 for i=1,#savedpath do
2989 local path = savedpath[i]
2990 if transformed then
2991 flushconcatpath(path,open)
2992 else
2993 flushnormalpath(path,open)
2994 end
2995 end
2996 savedpath = nil
2997 end
2998 if transformed then
2999 flushconcatpath(path,open)
3000 else
3001 flushnormalpath(path,open)
3002 end
3003 if objecttype == "fill" then
3004 pdf_literalcode(evenodd and "h f*" or "h f")
3005 elseif objecttype == "outline" then
3006 if both then
3007 pdf_literalcode(evenodd and "h B*" or "h B")
3008 else
3009 pdf_literalcode(open and "S" or "h S")
3010 end
3011 elseif objecttype == "both" then
3012 pdf_literalcode(evenodd and "h B*" or "h B")
3013 end
3014 end
3015 if transformed then

89

3016 stop_pdf_code()
3017 end
3018 local path = object.htap

How can we generate an htap object? Please let us know if you have succeeded.
3019 if path then
3020 if transformed then
3021 start_pdf_code()
3022 end
3023 if savedhtap then
3024 for i=1,#savedhtap do
3025 local path = savedhtap[i]
3026 if transformed then
3027 flushconcatpath(path,open)
3028 else
3029 flushnormalpath(path,open)
3030 end
3031 end
3032 savedhtap = nil
3033 evenodd = true
3034 end
3035 if transformed then
3036 flushconcatpath(path,open)
3037 else
3038 flushnormalpath(path,open)
3039 end
3040 if objecttype == "fill" then
3041 pdf_literalcode(evenodd and "h f*" or "h f")
3042 elseif objecttype == "outline" then
3043 pdf_literalcode(open and "S" or "h S")
3044 elseif objecttype == "both" then
3045 pdf_literalcode(evenodd and "h B*" or "h B")
3046 end
3047 if transformed then
3048 stop_pdf_code()
3049 end
3050 end

Added to ConTEXt general: post-object colors and shading stuff. Beware q ... Q scope.
3051 if shade_no then -- shading
3052 pdf_literalcode("W%s %s /MPlibSh%s sh Q",
3053 evenodd and "*" or "", shade_stroking == "yes" and "s" or "n", shade_no)
3054 end
3055 end
3056 end
3057 if fading_ == "start" then
3058 pdfetcs.fading.specialeffects = {fading_, tr_opaq, cr_over}
3059 elseif trgroup == "start" then
3060 pdfetcs.tr_group.specialeffects = {fading_, tr_opaq, cr_over}
3061 elseif fading_ == "stop" then

90

3062 local se = pdfetcs.fading.specialeffects
3063 if se then stop_special_effects(se[1], se[2], se[3]) end
3064 elseif trgroup == "stop" then
3065 local se = pdfetcs.tr_group.specialeffects
3066 if se then stop_special_effects(se[1], se[2], se[3]) end
3067 else
3068 stop_special_effects(fading_, tr_opaq, cr_over)
3069 end
3070 if fading_ or trgroup then -- extgs resetted
3071 miterlimit, linecap, linejoin, dashed = -1, -1, -1, false
3072 end
3073 end
3074 end
3075 stop_pdf_code()
3076 pdf_stopfigure()

output collected materials to PDF, plus legacy verbatimtex code.

3077 for _,v in ipairs(figcontents) do
3078 if type(v) == "table" then
3079 texsprint"\\mplibtoPDF{"; texsprint(v[1], v[2]); texsprint"}"
3080 else
3081 texsprint(v)
3082 end
3083 end
3084 if #figcontents.post > 0 then texsprint(figcontents.post) end
3085 figcontents = { post = { } }
3086 end
3087 end
3088 end
3089 end
3090 end
3091
3092 function luamplib.convert (result, flusher)
3093 flush(result, flusher)
3094 return true -- done
3095 end
3096 end
3097
3098 function luamplib.colorconverter (cr)
3099 local n = #cr
3100 if n == 4 then
3101 local c, m, y, k = cr[1], cr[2], cr[3], cr[4]
3102 return format("%.3f %.3f %.3f %.3f k %.3f %.3f %.3f %.3f K",c,m,y,k,c,m,y,k), "0 g 0 G"
3103 elseif n == 3 then
3104 local r, g, b = cr[1], cr[2], cr[3]
3105 return format("%.3f %.3f %.3f rg %.3f %.3f %.3f RG",r,g,b,r,g,b), "0 g 0 G"
3106 else
3107 local s = cr[1]
3108 return format("%.3f g %.3f G",s,s), "0 g 0 G"

91

3109 end
3110 end

2.2 TEX package

First we need to load some packages.

3111 \ifcsname ProvidesPackage\endcsname

We need LATEX 2024-06-01 as we use ltx.pdf.object_id when pdfmanagement is loaded. But as
fp package does not accept an option, we do not append the date option.
3112 \NeedsTeXFormat{LaTeX2e}
3113 \ProvidesPackage{luamplib}
3114 [2026/01/27 v2.38.3 mplib package for LuaTeX]
3115 \fi
3116 \ifdefined\newluafunction\else
3117 \input ltluatex
3118 \fi

In DVI mode, a new XObject (mppattern, mplibgroup) must be encapsulated in an \hbox.
But this should not affect typesetting. So we use Hook mechanism provided by LATEX kernel.
In Plain, atbegshi.sty is loaded.
3119 \ifnum\outputmode=0
3120 \ifdefined\AddToHookNext
3121 \def\luamplibatnextshipout{\AddToHookNext{shipout/background}}
3122 \def\luamplibatfirstshipout{\AddToHook{shipout/firstpage}}
3123 \def\luamplibateveryshipout{\AddToHook{shipout/background}}
3124 \else
3125 \input atbegshi.sty
3126 \def\luamplibatnextshipout#1{\AtBeginShipoutNext{\AtBeginShipoutAddToBox{#1}}}
3127 \let\luamplibatfirstshipout\AtBeginShipoutFirst
3128 \def\luamplibateveryshipout#1{\AtBeginShipout{\AtBeginShipoutAddToBox{#1}}}
3129 \fi
3130 \fi

Loading of lua code.
3131 \directlua{require("luamplib")}

legacy commands. Seems we don’t need it, but no harm.
3132 \ifx\pdfoutput\undefined
3133 \let\pdfoutput\outputmode
3134 \fi
3135 \ifx\pdfliteral\undefined
3136 \protected\def\pdfliteral{\pdfextension literal}
3137 \fi

Set the format for metapost.
3138 \def\mplibsetformat#1{\directlua{luamplib.setformat("#1")}}

luamplib works in both PDF and DVI mode, but only DVIPDFMx is supported currently
among a number of DVI tools. So we output a info.

92

3139 \ifnum\pdfoutput>0
3140 \let\mplibtoPDF\pdfliteral
3141 \else
3142 \def\mplibtoPDF#1{\special{pdf:literal direct #1}}
3143 \ifcsname PackageInfo\endcsname
3144 \PackageInfo{luamplib}{only dvipdfmx is supported currently}
3145 \else
3146 \immediate\write-1{luamplib Info: only dvipdfmx is supported currently}
3147 \fi
3148 \fi

To make mplibcode typeset always in horizontal mode.
3149 \def\mplibforcehmode{\let\prependtomplibbox\leavevmode}
3150 \def\mplibnoforcehmode{\let\prependtomplibbox\relax}
3151 \mplibnoforcehmode

Catcode. We want to allow comment sign in mplibcode.
3152 \def\mplibsetupcatcodes{%
3153 %catcode`\{=12 %catcode`\}=12
3154 \catcode`\#=12 \catcode`\^=12 \catcode`\~=12 \catcode`_=12
3155 \catcode`\&=12 \catcode`\$=12 \catcode`\%=12 \catcode`\^^M=12
3156 }

Make btex...etex box zero-metric.
3157 \def\mplibputtextbox#1{\vbox to 0pt{\vss\hbox to 0pt{\raise\dp#1\copy#1\hss}}}

use Transparency Group
3158 \protected\def\usemplibgroup#1#{\usemplibgroupmain}
3159 \def\usemplibgroupmain#1{%
3160 \prependtomplibbox\hbox dir TLT\bgroup
3161 \csname luamplib.group.#1\endcsname
3162 \egroup
3163 }
3164 \protected\def\mplibgroup#1{%
3165 \begingroup
3166 \def\MPllx{0}\def\MPlly{0}%
3167 \def\mplibgroupname{#1}%
3168 \mplibgroupgetnexttok
3169 }
3170 \def\mplibgroupgetnexttok{\futurelet\nexttok\mplibgroupbranch}
3171 \def\mplibgroupskipspace{\afterassignment\mplibgroupgetnexttok\let\nexttok= }
3172 \def\mplibgroupbranch{%
3173 \ifx [\nexttok
3174 \expandafter\mplibgroupopts
3175 \else
3176 \ifx\mplibsptoken\nexttok
3177 \expandafter\expandafter\expandafter\mplibgroupskipspace
3178 \else
3179 \let\mplibgroupoptions\empty
3180 \expandafter\expandafter\expandafter\mplibgroupmain
3181 \fi

93

3182 \fi
3183 }
3184 \def\mplibgroupopts[#1]{\def\mplibgroupoptions{#1}\mplibgroupmain}
3185 \def\mplibgroupmain{\setbox\mplibscratchbox\hbox\bgroup\ignorespaces}
3186 \protected\def\endmplibgroup{\egroup
3187 \directlua{ luamplib.registergroup(
3188 \the\mplibscratchbox, '\mplibgroupname', {\mplibgroupoptions}
3189)}%
3190 \endgroup
3191 }

Patterns
3192 {\def\:{\global\let\mplibsptoken= } \: }
3193 \protected\def\mppattern#1{%
3194 \begingroup
3195 \def\mplibpatternname{#1}%
3196 \mplibpatterngetnexttok
3197 }
3198 \def\mplibpatterngetnexttok{\futurelet\nexttok\mplibpatternbranch}
3199 \def\mplibpatternskipspace{\afterassignment\mplibpatterngetnexttok\let\nexttok= }
3200 \def\mplibpatternbranch{%
3201 \ifx [\nexttok
3202 \expandafter\mplibpatternopts
3203 \else
3204 \ifx\mplibsptoken\nexttok
3205 \expandafter\expandafter\expandafter\mplibpatternskipspace
3206 \else
3207 \let\mplibpatternoptions\empty
3208 \expandafter\expandafter\expandafter\mplibpatternmain
3209 \fi
3210 \fi
3211 }
3212 \def\mplibpatternopts[#1]{%
3213 \def\mplibpatternoptions{#1}%
3214 \mplibpatternmain
3215 }
3216 \def\mplibpatternmain{%
3217 \setbox\mplibscratchbox\hbox\bgroup\ignorespaces
3218 }
3219 \protected\def\endmppattern{%
3220 \egroup
3221 \directlua{ luamplib.registerpattern(
3222 \the\mplibscratchbox, '\mplibpatternname', {\mplibpatternoptions}
3223)}%
3224 \endgroup
3225 }

simple way to use mplib: \mpfig draw fullcircle scaled 10; \endmpfig

3226 \def\mpfiginstancename{@mpfig}
3227 \protected\def\mpfig{%

94

3228 \begingroup
3229 \futurelet\nexttok\mplibmpfigbranch
3230 }
3231 \def\mplibmpfigbranch{%
3232 \ifx *\nexttok
3233 \expandafter\mplibprempfig
3234 \else
3235 \ifx [\nexttok
3236 \expandafter\expandafter\expandafter\mplibgobbleoptsmpfig
3237 \else
3238 \expandafter\expandafter\expandafter\mplibmainmpfig
3239 \fi
3240 \fi
3241 }
3242 \def\mplibgobbleoptsmpfig[#1]{\mplibmainmpfig}
3243 \def\mplibmainmpfig{%
3244 \begingroup
3245 \mplibsetupcatcodes
3246 \mplibdomainmpfig
3247 }
3248 \long\def\mplibdomainmpfig#1\endmpfig{%
3249 \endgroup
3250 \directlua{
3251 local legacy = luamplib.legacyverbatimtex
3252 local everympfig = luamplib.everymplib["\mpfiginstancename"] or ""
3253 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"] or ""
3254 luamplib.legacyverbatimtex = false
3255 luamplib.everymplib["\mpfiginstancename"] = ""
3256 luamplib.everyendmplib["\mpfiginstancename"] = ""
3257 luamplib.process_mplibcode(
3258 "beginfig(0) "..everympfig.." "..[===[\unexpanded{#1}]===].." "..everyendmpfig.." endfig;",
3259 "\mpfiginstancename")
3260 luamplib.legacyverbatimtex = legacy
3261 luamplib.everymplib["\mpfiginstancename"] = everympfig
3262 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3263 }%
3264 \endgroup
3265 }
3266 \def\mplibprempfig#1{%
3267 \begingroup
3268 \mplibsetupcatcodes
3269 \mplibdoprempfig
3270 }
3271 \long\def\mplibdoprempfig#1\endmpfig{%
3272 \endgroup
3273 \directlua{
3274 local legacy = luamplib.legacyverbatimtex
3275 local everympfig = luamplib.everymplib["\mpfiginstancename"]
3276 local everyendmpfig = luamplib.everyendmplib["\mpfiginstancename"]

95

3277 luamplib.legacyverbatimtex = false
3278 luamplib.everymplib["\mpfiginstancename"] = ""
3279 luamplib.everyendmplib["\mpfiginstancename"] = ""
3280 luamplib.process_mplibcode([===[\unexpanded{#1}]===],"\mpfiginstancename")
3281 luamplib.legacyverbatimtex = legacy
3282 luamplib.everymplib["\mpfiginstancename"] = everympfig
3283 luamplib.everyendmplib["\mpfiginstancename"] = everyendmpfig
3284 }%
3285 \endgroup
3286 }
3287 \protected\def\endmpfig{endmpfig}

The Plain-specific stuff.
3288 \unless\ifcsname ver@luamplib.sty\endcsname
3289 \def\mplibcodegetinstancename[#1]{\xdef\currentmpinstancename{#1}\mplibcodeindeed}
3290 \protected\def\mplibcode{%
3291 \begingroup
3292 \futurelet\nexttok\mplibcodebranch
3293 }
3294 \def\mplibcodebranch{%
3295 \ifx [\nexttok
3296 \expandafter\mplibcodegetinstancename
3297 \else
3298 \global\let\currentmpinstancename\empty
3299 \expandafter\mplibcodeindeed
3300 \fi
3301 }
3302 \def\mplibcodeindeed{%
3303 \begingroup
3304 \mplibsetupcatcodes
3305 \mplibdocode
3306 }
3307 \long\def\mplibdocode#1\endmplibcode{%
3308 \endgroup
3309 \directlua{luamplib.process_mplibcode([===[\unexpanded{#1}]===],"\currentmpinstancename")}%
3310 \endgroup
3311 }
3312 \protected\def\endmplibcode{endmplibcode}
3313 \else

The LATEX-specific part: a new environment.
3314 \newenvironment{mplibcode}[1][]{%
3315 \xdef\currentmpinstancename{#1}%
3316 \mplibtmptoks{}\ltxdomplibcode
3317 }{}
3318 \def\ltxdomplibcode{%
3319 \begingroup
3320 \mplibsetupcatcodes
3321 \ltxdomplibcodeindeed
3322 }

96

3323 \def\mplib@mplibcode{mplibcode}
3324 \long\def\ltxdomplibcodeindeed#1\end#2{%
3325 \endgroup
3326 \mplibtmptoks\expandafter{\the\mplibtmptoks#1}%
3327 \def\mplibtemp@a{#2}%
3328 \ifx\mplib@mplibcode\mplibtemp@a
3329 \directlua{luamplib.process_mplibcode([===[\the\mplibtmptoks]===],"\currentmpinstancename")}%
3330 \end{mplibcode}%
3331 \else
3332 \mplibtmptoks\expandafter{\the\mplibtmptoks\end{#2}}%
3333 \expandafter\ltxdomplibcode
3334 \fi
3335 }
3336 \fi

User settings.
3337 \def\mplibshowlog#1{\directlua{
3338 local s = string.lower("#1")
3339 if s == "enable" or s == "true" or s == "yes" then
3340 luamplib.showlog = true
3341 else
3342 luamplib.showlog = false
3343 end
3344 }}
3345 \def\mpliblegacybehavior#1{\directlua{
3346 local s = string.lower("#1")
3347 if s == "enable" or s == "true" or s == "yes" then
3348 luamplib.legacyverbatimtex = true
3349 else
3350 luamplib.legacyverbatimtex = false
3351 end
3352 }}
3353 \def\mplibverbatim#1{\directlua{
3354 local s = string.lower("#1")
3355 if s == "enable" or s == "true" or s == "yes" then
3356 luamplib.verbatiminput = true
3357 else
3358 luamplib.verbatiminput = false
3359 end
3360 }}
3361 \newtoks\mplibtmptoks

\everymplib & \everyendmplib: macros resetting luamplib.every(end)mplib tables
3362 \ifcsname ver@luamplib.sty\endcsname
3363 \protected\def\everymplib{%
3364 \begingroup
3365 \mplibsetupcatcodes
3366 \mplibdoeverymplib
3367 }
3368 \protected\def\everyendmplib{%

97

3369 \begingroup
3370 \mplibsetupcatcodes
3371 \mplibdoeveryendmplib
3372 }
3373 \newcommand\mplibdoeverymplib[2][]{%
3374 \endgroup
3375 \directlua{
3376 luamplib.everymplib["#1"] = [===[\unexpanded{#2}]===]
3377 }%
3378 }
3379 \newcommand\mplibdoeveryendmplib[2][]{%
3380 \endgroup
3381 \directlua{
3382 luamplib.everyendmplib["#1"] = [===[\unexpanded{#2}]===]
3383 }%
3384 }
3385 \else
3386 \def\mplibgetinstancename[#1]{\def\currentmpinstancename{#1}}
3387 \protected\def\everymplib#1#{%
3388 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3389 \begingroup
3390 \mplibsetupcatcodes
3391 \mplibdoeverymplib
3392 }
3393 \long\def\mplibdoeverymplib#1{%
3394 \endgroup
3395 \directlua{
3396 luamplib.everymplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===]
3397 }%
3398 }
3399 \protected\def\everyendmplib#1#{%
3400 \ifx\empty#1\empty \mplibgetinstancename[]\else \mplibgetinstancename#1\fi
3401 \begingroup
3402 \mplibsetupcatcodes
3403 \mplibdoeveryendmplib
3404 }
3405 \long\def\mplibdoeveryendmplib#1{%
3406 \endgroup
3407 \directlua{
3408 luamplib.everyendmplib["\currentmpinstancename"] = [===[\unexpanded{#1}]===]
3409 }%
3410 }
3411 \fi

TEX macros for dimen/color
3412 \def\mpdim#1{ runscript("luamplibdimen{#1}") }
3413 \def\mpcolor#1#{\domplibcolor{#1}}
3414 \def\domplibcolor#1#2{ runscript("luamplibcolor{#1{#2}}") }

mplib’s number system. Now binary has gone away.

98

3415 \def\mplibnumbersystem#1{\directlua{
3416 local t = "#1"
3417 if t == "binary" then t = "decimal" end
3418 luamplib.numbersystem = t
3419 }}

Settings for .mp cache files.
3420 \def\mplibmakenocache#1{\mplibdomakenocache #1,*,}
3421 \def\mplibdomakenocache#1,{%
3422 \ifx\empty#1\empty
3423 \expandafter\mplibdomakenocache
3424 \else
3425 \ifx*#1\else
3426 \directlua{luamplib.noneedtoreplace["#1.mp"]=true}%
3427 \expandafter\expandafter\expandafter\mplibdomakenocache
3428 \fi
3429 \fi
3430 }
3431 \def\mplibcancelnocache#1{\mplibdocancelnocache #1,*,}
3432 \def\mplibdocancelnocache#1,{%
3433 \ifx\empty#1\empty
3434 \expandafter\mplibdocancelnocache
3435 \else
3436 \ifx*#1\else
3437 \directlua{luamplib.noneedtoreplace["#1.mp"]=false}%
3438 \expandafter\expandafter\expandafter\mplibdocancelnocache
3439 \fi
3440 \fi
3441 }
3442 \def\mplibcachedir#1{\directlua{luamplib.getcachedir("\unexpanded{#1}")}}

More user settings.
3443 \def\mplibtextextlabel#1{\directlua{
3444 local s = string.lower("#1")
3445 if s == "enable" or s == "true" or s == "yes" then
3446 luamplib.textextlabel = true
3447 else
3448 luamplib.textextlabel = false
3449 end
3450 }}
3451 \def\mplibcodeinherit#1{\directlua{
3452 local s = string.lower("#1")
3453 if s == "enable" or s == "true" or s == "yes" then
3454 luamplib.codeinherit = true
3455 else
3456 luamplib.codeinherit = false
3457 end
3458 }}
3459 \def\mplibglobaltextext#1{\directlua{
3460 local s = string.lower("#1")

99

3461 if s == "enable" or s == "true" or s == "yes" then
3462 luamplib.globaltextext = true
3463 else
3464 luamplib.globaltextext = false
3465 end
3466 }}

The followings are from ConTEXt general, mostly.
We use a dedicated scratchbox.

3467 \ifx\mplibscratchbox\undefined \newbox\mplibscratchbox \fi

We encapsulate the literals.
3468 \def\mplibstarttoPDF#1#2#3#4{%
3469 \prependtomplibbox
3470 \hbox dir TLT\bgroup
3471 \xdef\MPllx{#1}\xdef\MPlly{#2}%
3472 \xdef\MPurx{#3}\xdef\MPury{#4}%
3473 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3474 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3475 \parskip0pt%
3476 \leftskip0pt%
3477 \parindent0pt%
3478 \everypar{}%
3479 \setbox\mplibscratchbox\vbox\bgroup
3480 \noindent
3481 }
3482 \def\mplibstoptoPDF{%
3483 \par
3484 \egroup %
3485 \setbox\mplibscratchbox\hbox %
3486 {\hskip-\MPllx bp%
3487 \raise-\MPlly bp%
3488 \box\mplibscratchbox}%
3489 \setbox\mplibscratchbox\vbox to \MPheight
3490 {\vfill
3491 \hsize\MPwidth
3492 \wd\mplibscratchbox0pt%
3493 \ht\mplibscratchbox0pt%
3494 \dp\mplibscratchbox0pt%
3495 \box\mplibscratchbox}%
3496 \wd\mplibscratchbox\MPwidth
3497 \ht\mplibscratchbox\MPheight
3498 \box\mplibscratchbox
3499 \egroup
3500 }

Text items have a special handler.
3501 \def\mplibtextext#1#2#3#4#5{%
3502 \begingroup
3503 \setbox\mplibscratchbox\hbox

100

3504 {\font\temp=#1 at #2bp%
3505 \temp
3506 #3}%
3507 \setbox\mplibscratchbox\hbox
3508 {\hskip#4 bp%
3509 \raise#5 bp%
3510 \box\mplibscratchbox}%
3511 \wd\mplibscratchbox0pt%
3512 \ht\mplibscratchbox0pt%
3513 \dp\mplibscratchbox0pt%
3514 \box\mplibscratchbox
3515 \endgroup
3516 }

Input luamplib.cfg when it exists.
3517 \openin0=luamplib.cfg
3518 \ifeof0 \else
3519 \closein0
3520 \input luamplib.cfg
3521 \fi

Code for tagpdf
3522 \def\luamplibtagtextboxset#1#2{#2}
3523 \let\luamplibnotagtextboxset\luamplibtagtextboxset
3524 \let\luamplibtagasgroupset\relax
3525 \let\luamplibtagasgroupput\luamplibtagtextboxset
3526 \ifcsname SuspendTagging\endcsname\else\endinput\fi
3527 \ifcsname ver@tagpdf.sty\endcsname \else
3528 \ExplSyntaxOn
3529 \keys_define:nn{luamplib/tagging}
3530 {
3531 ,alt .code:n = { }
3532 ,actualtext .code:n = { }
3533 ,artifact .code:n = { }
3534 ,text .code:n = { }
3535 ,off .code:n = { }
3536 ,tag .code:n = { }
3537 ,adjust-BBox .code:n = { }
3538 ,tagging-setup .code:n = { }
3539 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
3540 ,instancename .meta:n = { instance = {#1} }
3541 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \l_keys_key_str }
3542 }
3543 \RenewDocumentCommand\mplibcode{O{}}
3544 {
3545 \tl_gclear:N \currentmpinstancename
3546 \keys_set:ne{luamplib/tagging}{#1}
3547 \mplibtmptoks{}\ltxdomplibcode
3548 }
3549 \cs_set_eq:NN \mplibalttext \use_none:n

101

3550 \cs_set_eq:NN \mplibactualtext \use_none:n

2025/12/05: \begin{center}\mpfig ...\endmpfig\end{center} raises an Error! aswe issue \everypar{}
before flushing literals out. It is related to \partokencontext=2 recently introduced by LATEX.
Why we used vbox initially? where hbox seems to be sufficient. Anyway, among various solu-
tions including \partokencontext\z@, \let\par\@@par, and \endgraf, we here attempt to address
the issue by adding the following line, which LATEX’s \everypar should have done.
3551 \tl_put_left:Nn \mplibstoptoPDF \@newlistfalse
3552 \ExplSyntaxOff
3553 \endinput\fi
3554 \ExplSyntaxOn
3555 \tl_new:N \l__luamplib_tag_envname_tl
3556 \tl_new:N \l__luamplib_tag_alt_tl
3557 \tl_new:N \l__luamplib_tag_alt_dflt_tl
3558 \tl_new:N \l__luamplib_tag_actual_tl
3559 \tl_new:N \l__luamplib_tag_struct_tl
3560 \tl_set:Nn\l__luamplib_tag_struct_tl {Figure}
3561 \bool_new:N \l__luamplib_tag_usetext_bool
3562 \bool_new:N \l__luamplib_tag_bboxcorr_bool
3563 \seq_new:N \l__luamplib_tag_bboxcorr_seq
3564 \tl_new:N \l__luamplib_tag_bbox_draw_tl
3565 \tl_new:N \l__luamplib_BBox_llx_tl
3566 \tl_new:N \l__luamplib_BBox_lly_tl
3567 \tl_new:N \l__luamplib_BBox_urx_tl
3568 \tl_new:N \l__luamplib_BBox_ury_tl
3569 \msg_new:nnn {luamplib}{figure-text-reuse}
3570 {
3571 tex-text~box~#1~probably~is~incorrectly~tagged.~
3572 Reusing~a~box~in~text~mode~is~strongly~discouraged.~
3573 Check~the~resulting~PDF.
3574 }
3575 \msg_new:nnn {luamplib}{mplibgroup-text-mode}
3576 {
3577 mplibgroup~'#1'~probably~is~incorrectly~tagged.~
3578 Using~mplibgroup~with~text~mode~is~not~recommended.~
3579 Check~the~resulting~PDF.
3580 }
3581 \msg_new:nnn{luamplib}{alt-text-missing}
3582 {
3583 Alternate~text~for~#1~is~missing.~
3584 Using~the~default~value~'#2'~instead.
3585 }

Sockets for tex-text boxes.
3586 \socket_new:nn{tagsupport/luamplib/textext/set}{2}
3587 \socket_new:nn{tagsupport/luamplib/textext/put}{2}
3588 \socket_new_plug:nnn{tagsupport/luamplib/textext/set}{default}
3589 {

TODO: we check text mode here. If we tag text boxes for all modes, we will get a lot of

102

structure-has-no-parent warning; no good-looking, though it seems to be no harm.
3590 \bool_if:NTF \l__luamplib_tag_usetext_bool
3591 {
3592 \tag_mc_end_push:
3593 \tag_struct_begin:n{tag=NonStruct, stash, parent-tag=text}
3594 \cs_gset_nopar:cpe {luamplib.taggedbox.#1} {\tag_get:n{struct_num}}

TODO: We force an MC. Otherwise a and b in btex a x b etex are not tagged.
3595 \tag_mc_begin:n{tag=text}
3596 #2
3597 \tag_mc_end:
3598 \tag_struct_end:
3599 \tag_mc_begin_pop:n{}
3600 }
3601 {
3602 \tag_suspend:n{\luamplibtagtextboxset}
3603 #2
3604 \tag_resume:n{\luamplibtagtextboxset}
3605 }
3606 }
3607 \socket_new_plug:nnn{tagsupport/luamplib/textext/put}{default}
3608 {
3609 \bool_lazy_and:nnTF
3610 { \l__luamplib_tag_usetext_bool }
3611 { \cs_if_free_p:c {luamplib.notaggedbox.#1} }
3612 {
3613 \tag_resume:n{\mplibputtextbox}
3614 \tag_mc_end:
3615 \cs_if_exist:cTF {luamplib.taggedbox.#1}
3616 {
3617 \exp_args:Nc \tag_struct_use_num:n {luamplib.taggedbox.#1}
3618 #2
3619 \cs_undefine:c {luamplib.taggedbox.#1}
3620 }
3621 {
3622 \msg_warning:nnn{luamplib}{figure-text-reuse}{#1}
3623 \tag_mc_begin:n{}
3624 \int_set:Nn \l_tmpa_int {#1}
3625 \tag_mc_reset_box:N \l_tmpa_int
3626 #2
3627 \tag_mc_end:
3628 }
3629 \tag_mc_begin:n{artifact}
3630 }
3631 {
3632 \int_set:Nn \l_tmpa_int {#1}
3633 \tag_mc_reset_box:N \l_tmpa_int
3634 #2
3635 }

103

3636 }
3637 \socket_assign_plug:nn{tagsupport/luamplib/textext/set}{default}
3638 \socket_assign_plug:nn{tagsupport/luamplib/textext/put}{default}
3639 \cs_set_nopar:Npn \luamplibtagtextboxset
3640 {
3641 \tag_socket_use:nnn{luamplib/textext/set}
3642 }

For tex-text boxes starting with [taggingoff], which we will not tag at all. They will be just in
the artifact MC-chunks.
3643 \cs_set_nopar:Npn \luamplibnotagtextboxset #1 #2
3644 {
3645 \bool_set_eq:NN \l_tmpa_bool \l__luamplib_tag_usetext_bool
3646 \bool_set_false:N \l__luamplib_tag_usetext_bool
3647 \tag_socket_use:nnn{luamplib/textext/set}{#1}{#2}
3648 \cs_gset_nopar:cpn {luamplib.notaggedbox.#1}{#1}
3649 \bool_set_eq:NN \l__luamplib_tag_usetext_bool \l_tmpa_bool
3650 }
3651 \cs_set_nopar:Npn \mplibputtextbox #1
3652 {
3653 \vbox to 0pt{\vss\hbox to 0pt{
3654 \socket_use:nnn{tagsupport/luamplib/textext/put}{#1}{\raise\dp#1\copy#1}
3655 \hss}}
3656 }

TODO: Not sure whether asgroup/mplibgroup with text mode will be tagged correctly. Prob-
ably not. At least, this will raise a warning.
3657 \cs_set_nopar:Npn \luamplibtagasgroupset
3658 {
3659 \bool_set_false:N \l__luamplib_tag_usetext_bool
3660 }
3661 \cs_set_nopar:Npn \luamplibtagasgroupput
3662 {
3663 \bool_if:NT \l__luamplib_tag_usetext_bool { \tag_resume:n{\luamplibtagasgroupput} }
3664 \tag_socket_use:nnn{luamplib/mplibgroup/put}
3665 }

A socket for mplibgroup. Again, we issue a warning upon text mode.
3666 \socket_new:nn{tagsupport/luamplib/mplibgroup/put}{2}
3667 \socket_new_plug:nnn{tagsupport/luamplib/mplibgroup/put}{default}
3668 {
3669 \cs_if_free:cT {luamplib.mplibgroup.text.#1}
3670 {
3671 \msg_warning:nnn {luamplib} {mplibgroup-text-mode} {#1}
3672 \cs_gset_nopar:cpn {luamplib.mplibgroup.text.#1} {#1}
3673 }
3674 \tag_mc_end:
3675 \tag_mc_begin:n{tag=text}
3676 #2
3677 \tag_mc_end:

104

3678 \tag_mc_begin:n{artifact}
3679 }
3680 \socket_assign_plug:nn{tagsupport/luamplib/mplibgroup/put}{default}

A macro for BBox attribute

3681 \cs_set_nopar:Npn __luamplib_tag_bbox_attribute:n #1
3682 {
3683 \tl_set:Ne \l_tmpa_tl {luamplib.BBox.\tag_get:n{struct_num}}
3684 \tex_savepos:D
3685 \property_record:ee{\l_tmpa_tl}{xpos,ypos}
3686 \tl_set:Ne \l__luamplib_BBox_llx_tl
3687 { \dim_to_decimal_in_bp:n { \property_ref:een {\l_tmpa_tl}{xpos}{0}sp } }
3688 \tl_set:Ne \l__luamplib_BBox_lly_tl
3689 { \dim_to_decimal_in_bp:n { \property_ref:een {\l_tmpa_tl}{ypos}{0}sp - \dp#1 } }
3690 \tl_set:Ne \l__luamplib_BBox_urx_tl
3691 { \dim_to_decimal_in_bp:n { \l__luamplib_BBox_llx_tl bp + \wd#1 } }
3692 \tl_set:Ne \l__luamplib_BBox_ury_tl
3693 { \dim_to_decimal_in_bp:n { \l__luamplib_BBox_lly_tl bp + \ht#1 + \dp#1 } }
3694 \bool_if:NT \l__luamplib_tag_bboxcorr_bool
3695 {
3696 \int_zero:N \l_tmpa_int
3697 \tl_map_inline:nn
3698 {
3699 \l__luamplib_BBox_llx_tl
3700 \l__luamplib_BBox_lly_tl
3701 \l__luamplib_BBox_urx_tl
3702 \l__luamplib_BBox_ury_tl
3703 }
3704 {
3705 \int_incr:N \l_tmpa_int
3706 \tl_set:Ne ##1
3707 {
3708 \fp_eval:n
3709 {
3710 ##1
3711 +
3712 \dim_to_decimal_in_bp:n { \seq_item:NV \l__luamplib_tag_bboxcorr_seq \l_tmpa_int }
3713 }
3714 }
3715 }
3716 }
3717 \tag_struct_gput:ene {\tag_get:n{struct_num}} {attribute}
3718 {
3719 /O /Layout /BBox [
3720 \l__luamplib_BBox_llx_tl\c_space_tl
3721 \l__luamplib_BBox_lly_tl\c_space_tl
3722 \l__luamplib_BBox_urx_tl\c_space_tl
3723 \l__luamplib_BBox_ury_tl
3724]

105

3725 }
3726 \bool_if:NT \l__tag_graphic_debug_bool
3727 {
3728 \iow_log:e
3729 {
3730 luamplib/tagging~debug:~BBox~of~structure~\tag_get:n{struct_num}~is~
3731 \l__luamplib_BBox_llx_tl\c_space_tl
3732 \l__luamplib_BBox_lly_tl\c_space_tl
3733 \l__luamplib_BBox_urx_tl\c_space_tl
3734 \l__luamplib_BBox_ury_tl
3735 }
3736 \sys_if_output_pdf:TF
3737 {
3738 \tl_set:Ne \l__luamplib_tag_bbox_draw_tl
3739 {
3740 \pdfextension save\relax
3741 \opacity_select:n{0.5} \color_select:n{red}
3742 \pdfextension literal~text
3743 {
3744 \l__luamplib_BBox_llx_tl\c_space_tl
3745 \l__luamplib_BBox_lly_tl\c_space_tl
3746 \fp_eval:n { \l__luamplib_BBox_urx_tl - \l__luamplib_BBox_llx_tl }~
3747 \fp_eval:n { \l__luamplib_BBox_ury_tl - \l__luamplib_BBox_lly_tl }~
3748 re~f
3749 }
3750 \pdfextension restore\relax
3751 }
3752 }
3753 {
3754 \tl_set:Ne \l__luamplib_tag_bbox_draw_tl
3755 {
3756 \special{pdf:bcontent}
3757 \opacity_select:n{0.5} \color_select:n{red}
3758 \special{pdf:code~
3759 1~0~0~1~
3760 -\dim_to_decimal_in_bp:n { \property_ref:een{\l_tmpa_tl}{xpos}{0}sp + \wd#1 }~
3761 -\dim_to_decimal_in_bp:n { \property_ref:een{\l_tmpa_tl}{ypos}{0}sp }~
3762 cm
3763 }
3764 \special{pdf:code~
3765 \l__luamplib_BBox_llx_tl\c_space_tl
3766 \l__luamplib_BBox_lly_tl\c_space_tl
3767 \fp_eval:n { \l__luamplib_BBox_urx_tl - \l__luamplib_BBox_llx_tl }~
3768 \fp_eval:n { \l__luamplib_BBox_ury_tl - \l__luamplib_BBox_lly_tl }~
3769 re~f
3770 }
3771 \special{pdf:econtent}
3772 }
3773 }

106

3774 }
3775 }

Sockets for main process

3776 \socket_new:nn{tagsupport/luamplib/figure/begin}{1}
3777 \socket_new:nn{tagsupport/luamplib/figure/end}{2}
3778 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{transparent}{#2}
3779 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{alt}
3780 {
3781 \tag_mc_end_push:
3782 \tl_if_empty:NT\l__luamplib_tag_alt_tl
3783 {
3784 \tl_if_empty:eTF{#1}
3785 { \tl_set:Nn \l__luamplib_tag_alt_tl {metapost~figure} }
3786 { \tl_set:Ne \l__luamplib_tag_alt_tl {metapost~figure~\text_purify:n{#1}} }
3787 \msg_warning:nnVV{luamplib}{alt-text-missing}
3788 \l__luamplib_tag_envname_tl \l__luamplib_tag_alt_tl
3789 }
3790 \tag_struct_begin:n
3791 {
3792 tag=\l__luamplib_tag_struct_tl,
3793 alt=\l__luamplib_tag_alt_tl,
3794 }
3795 \tag_mc_begin:n{}
3796 }
3797 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{alt}
3798 {
3799 __luamplib_tag_bbox_attribute:n {#1}
3800 #2
3801 \tl_use:N \l__luamplib_tag_bbox_draw_tl
3802 \tag_mc_end:
3803 \tag_struct_end:
3804 \tag_mc_begin_pop:n{}
3805 }
3806 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{actualtext}
3807 {
3808 \tag_mc_end_push:
3809 \tag_struct_begin:n
3810 {
3811 tag=Span,
3812 actualtext=\l__luamplib_tag_actual_tl,
3813 }
3814 \tag_mc_begin:n{}
3815 }
3816 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{actualtext}
3817 {
3818 #2
3819 \tag_mc_end:
3820 \tag_struct_end:

107

3821 \tag_mc_begin_pop:n{}
3822 }
3823 \socket_new_plug:nnn{tagsupport/luamplib/figure/begin}{artifact}
3824 {
3825 \tag_mc_end_push:
3826 \tag_mc_begin:n{artifact}
3827 }
3828 \socket_new_plug:nnn{tagsupport/luamplib/figure/end}{artifact}
3829 {
3830 #2
3831 \tag_mc_end:
3832 \tag_mc_begin_pop:n{}
3833 }

A socket for tagging init, so that we can declare \SetKeys[luamplib/tagging]{...} anywhere in
the document.
3834 \socket_new:nn{tagsupport/luamplib/figure/init}{0}
3835 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{alt}
3836 {
3837 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{alt}
3838 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{alt}
3839 }
3840 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{actualtext}
3841 {
3842 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{actualtext}
3843 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{actualtext}

In vmode, hmode will be forced by \noindent upon actualtext and text modes.
3844 \prependtomplibbox \mplibnoforcehmode
3845 \mode_if_vertical:T { \noindent \aftergroup\par }
3846 }
3847 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{artifact}
3848 {
3849 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3850 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3851 }
3852 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{text}
3853 {
3854 \bool_set_true:N \l__luamplib_tag_usetext_bool
3855 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{artifact}
3856 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{artifact}
3857 \prependtomplibbox \mplibnoforcehmode
3858 \mode_if_vertical:T { \noindent \aftergroup\par }
3859 }
3860 \socket_new_plug:nnn{tagsupport/luamplib/figure/init}{off}
3861 {
3862 \socket_assign_plug:nn{tagsupport/luamplib/figure/begin}{noop}
3863 \socket_assign_plug:nn{tagsupport/luamplib/figure/end}{transparent}
3864 }
3865 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}

108

Key-value options
3866 \keys_define:nn{luamplib/tagging}
3867 {
3868 ,alt .code:n =
3869 {
3870 \tl_set:Ne\l__luamplib_tag_alt_tl{\text_purify:n{#1}}
3871 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3872 }
3873 ,actualtext .code:n =
3874 {
3875 \tl_set:Ne\l__luamplib_tag_actual_tl{\text_purify:n{#1}}
3876 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{actualtext}
3877 }
3878 ,artifact .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{artifact} }
3879 ,text .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{text} }
3880 ,off .code:n = { \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{off} }
3881 ,tag .code:n =
3882 {
3883 \str_case:nnF {#1}
3884 {
3885 {false} { \keys_set:nn {luamplib/tagging} {off} }
3886 {artifact} { \keys_set:nn {luamplib/tagging} {artifact} }
3887 }
3888 {
3889 \tl_set:Nn\l__luamplib_tag_struct_tl{#1}
3890 \socket_assign_plug:nn{tagsupport/luamplib/figure/init}{alt}
3891 }
3892 }
3893 ,adjust-BBox .code:n =
3894 {
3895 \bool_set_true:N \l__luamplib_tag_bboxcorr_bool
3896 \seq_set_split:Nnn \l__luamplib_tag_bboxcorr_seq{~}{#1~0pt~0pt~0pt~0pt}
3897 }
3898 ,tagging-setup .code:n = { \keys_set_known:nn {luamplib/tagging} {#1} }
3899 }
3900 \keys_define:nn {luamplib/instance}
3901 {
3902 ,instance .code:n = { \tl_gset:Nn \currentmpinstancename {#1} }
3903 ,instancename .meta:n = { instance = {#1} }
3904 ,unknown .code:n = { \tl_gset:NV \currentmpinstancename \l_keys_key_str }
3905 }

Redefine our macros
3906 \cs_set_nopar:Npn \mplibstarttoPDF #1 #2 #3 #4
3907 {
3908 \prependtomplibbox
3909 \hbox dir~TLT\bgroup
3910 \tag_socket_use:nn{luamplib/figure/begin}\l__luamplib_tag_alt_dflt_tl
3911 \xdef\MPllx{#1}\xdef\MPlly{#2}%

109

3912 \xdef\MPurx{#3}\xdef\MPury{#4}%
3913 \xdef\MPwidth{\the\dimexpr#3bp-#1bp\relax}%
3914 \xdef\MPheight{\the\dimexpr#4bp-#2bp\relax}%
3915 \parskip0pt
3916 \leftskip0pt
3917 \parindent0pt
3918 \everypar{}%
3919 \setbox\mplibscratchbox\vbox\bgroup
3920 \tag_suspend:n{\mplibstarttoPDF}
3921 \noindent
3922 }
3923 \cs_set_nopar:Npn \mplibstoptoPDF
3924 {
3925 \par
3926 \egroup
3927 \setbox\mplibscratchbox\hbox
3928 {\hskip-\MPllx bp
3929 \raise-\MPlly bp
3930 \box\mplibscratchbox}%
3931 \setbox\mplibscratchbox\vbox to \MPheight
3932 {\vfill
3933 \hsize\MPwidth
3934 \wd\mplibscratchbox0pt
3935 \ht\mplibscratchbox0pt
3936 \dp\mplibscratchbox0pt
3937 \box\mplibscratchbox}%
3938 \wd\mplibscratchbox\MPwidth
3939 \ht\mplibscratchbox\MPheight
3940 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\box\mplibscratchbox}
3941 \egroup
3942 }
3943 \RenewDocumentCommand\mplibcode{O{}}
3944 {
3945 \tl_set:Nn \l__luamplib_tag_envname_tl {mplibcode}
3946 \tl_gclear:N \currentmpinstancename
3947 \keys_set_known:neN {luamplib/tagging} {#1} \l_tmpa_tl
3948 \keys_set:nV {luamplib/instance} \l_tmpa_tl
3949 \tl_set_eq:NN \l__luamplib_tag_alt_dflt_tl \currentmpinstancename
3950 \tag_socket_use:n{luamplib/figure/init}
3951 \mplibtmptoks{}\ltxdomplibcode
3952 }
3953 \RenewDocumentCommand\mpfig{s O{}}
3954 {
3955 \begingroup
3956 \tl_set:Nn \l__luamplib_tag_envname_tl {mpfig}
3957 \keys_set_known:ne {luamplib/tagging} {#2}
3958 \tl_set_eq:NN \l__luamplib_tag_alt_dflt_tl \mpfiginstancename
3959 \tag_socket_use:n{luamplib/figure/init}
3960 \IfBooleanTF{#1} { \mplibprempfig * }

110

3961 { \mplibmainmpfig }
3962 }
3963 \RenewDocumentCommand\usemplibgroup{O{} m}
3964 {
3965 \begingroup
3966 \tl_set:Nn \l__luamplib_tag_envname_tl {usemplibgroup}
3967 \keys_set_known:ne {luamplib/tagging} {#1}
3968 \tag_socket_use:n{luamplib/figure/init}
3969 \prependtomplibbox\hbox dir~TLT\bgroup
3970 \tag_socket_use:nn{luamplib/figure/begin}{#2}
3971 \setbox\mplibscratchbox\hbox\bgroup
3972 \bool_if:NF \l__luamplib_tag_usetext_bool { \tag_suspend:n{\usemplibgroup} }
3973 \tag_socket_use:nnn{luamplib/mplibgroup/put}{#2}{\csname luamplib.group.#2\endcsname}
3974 \egroup
3975 \tag_socket_use:nnn{luamplib/figure/end}{\mplibscratchbox}{\unhbox\mplibscratchbox}
3976 \egroup
3977 \endgroup
3978 }

Allow setting alt/actual text within metapost code. Of course we can use them in TEX code as
well.
3979 \cs_new_nopar:Npn \mplibalttext #1
3980 {
3981 \tl_set:Ne \l__luamplib_tag_alt_tl {\text_purify:n{#1}}
3982 }
3983 \cs_new_nopar:Npn \mplibactualtext #1
3984 {
3985 \tl_set:Ne \l__luamplib_tag_actual_tl {\text_purify:n{#1}}
3986 }
3987 \ExplSyntaxOff

That’s all folks!

111

3 The GNU GPL License v2

The GPL requires the complete license text to be distributed along with the code. I recommend
the canonical source, instead: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html. But if
you insist on an included copy, here it is. You might want to zoom in.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses formost software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foun-
dation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Pub-
lic Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.
Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses,
in effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and
Modification

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the
Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) Youmust cause anywork that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Ex-
ception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when

you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete correspondingmachine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommer-
cial distribution and only if you received the program in object code or exe-
cutable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission tomodify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the re-
cipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you can-
not distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to de-
cide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limi-
tation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

No Warranty

12. Because the program is licensed free of charge, there is no warranty for
the program, to the extent permitted by applicable law. Except when oth-
erwise stated in writing the copyright holders and/or other parties pro-
vide the program “as is” without warranty of any kind, either expressed
or implied, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose. The entire risk as to
the qality and performance of the program is with you. Should the pro-
gram prove defective, you assume the cost of all necessary servicing, repair
or correction.

13. In no event unless reqired by applicable law or agreed to in writing will
any copyright holder, or any other party who may modify and/or redis-
tribute the program as permitted above, be liable to you for damages, in-
cluding any general, special, incidental or conseqential damages arising
out of the use or inability to use the program (including but not limited to
loss of data or data being rendered inaccurate or losses sustained by you
or third parties or a failure of the program to operate with any other
programs), even if such holder or other party has been advised of the pos-
sibility of such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the pub-
lic, the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNUGeneral Public License alongwith
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.
This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever suits
your program.
You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

112

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

	Contents
	1 Documentation
	1.1 TeX
	1.1.1 \mplibforcehmode
	1.1.2 \everymplib, \everyendmplib
	1.1.3 \mplibsetformat
	1.1.4 \mplibnumbersystem
	1.1.5 \mplibshowlog
	1.1.6 \mpliblegacybehavior
	1.1.7 \mplibtextextlabel
	1.1.8 \mplibcodeinherit
	1.1.9 \mplibglobaltextext
	1.1.10 Separate metapost instances
	1.1.11 \mplibverbatim
	1.1.12 \mpdim
	1.1.13 \mpcolor
	1.1.14 \mpfig, \endmpfig
	1.1.15 About cache files
	1.1.16 About figure box metric
	1.1.17 luamplib.cfg
	1.1.18 Tagged PDF

	1.2 MetaPost
	1.2.1 mplibdimen, mplibcolor
	1.2.2 mplibtexcolor, mplibrgbtexcolor
	1.2.3 withmplibcolors
	1.2.4 withtransparency
	1.2.5 withshadingmethod
	1.2.6 withfademethod
	1.2.7 mplibgraphictext
	1.2.8 mplibglyph
	1.2.9 mplibdrawglyph, and its friends
	1.2.10 mpliboutlinetext
	1.2.11 \mppattern, withmppattern
	1.2.12 asgroup
	1.2.13 \mplibgroup
	1.2.14 mpliblength, mplibuclength
	1.2.15 mplibsubstring, mplibucsubstring

	1.3 Lua
	1.3.1 runscript
	1.3.2 luamplib.instances
	1.3.3 luamplib.process_mplibcode
	1.3.4 luamplib.registerpattern
	1.3.5 luamplib.registergroup

	2 Implementation
	2.1 Lua module
	2.2 TeX package

	3 The GNU GPL License v2

