Prototype reimplementation of IXTEX 2¢’s block
environments using templates

ETEX Project”
v0.9m 2026-01-16

Abstract

Contents

1 Introduction

w

2 Template types and templates for blocks and lists
2.1 Template types
2.1.1 The template type ‘blockenv’
2.1.2 The template type ‘block’ L.
2.1.3 The template type ‘para”o
2.1.4 The template type ‘list’ L.
2.1.5 The template type ‘captionedtext’
2.1.6 The template type ‘item’o
2.1.7 The template type ‘thmstyle’
2.2 Templates oL e
2.2.1 The blockenv template ‘std” L.
2.2.2 The block template ‘std” L.
2.2.3 The para template ‘std” oL
2.2.4 The list template ‘std” L 10
2.2.5 The item template ‘std” oL 10
2.2.6 The captionedtext template ‘thmlike” 11
2.2.7 The captionedtext template ‘proof” 11
2.2.8 The thmstyle template ‘std” 12

© 00 OO ULOUT UL i WwwWw

*Initial reimplementation of lists done by Bruno Le Floch, generalized second version with tagging
support by Frank Mittelbach.

3 Declaring standard display block environments and their instances
3.1 The display and displayflattened environments
3.1.1 Their blockenv instances
3.1.2 Their block instances
3.2 The center, flushleft, and flushright environments
3.2.1 Their blockenv instances
3.2.2 Their block instances
3.2.3 Their para instances oL oL
3.3 The quote and quotation environments
3.3.1 Their blockenv instances v v v v
3.3.2 Their block instances e
3.4 The verse environment oo
3.4.1 Their blockenv instances
3.5 The verbatim, verbatim* and alltt environments
3.5.1 Their blockenv instances
3.5.2 Their block instances vt e
3.6 The trivlist environment L.
3.7 The standard lists: itemize, enumerate, and description
3.7.1 Their blockenv instances
3.7.2 Their block instances
3.7.3 Their list instances e
3.74 Their item instances e
3.8 The legacy list and trivlist environments
3.8.1 [Its blockenv instance
3.8.2 Ttslistinstance
3.9 Theorem-like environments declared through \newtheorem
3.9.1 The blockenv instances they use
3.9.2 The captionedtext instances they use
3.9.3 The thmstyle instances theyuse
3.9.4 The block instances they use
3.10 The proof environment (from amsthm)
3.10.1 Block instances for the proofs

4 Declaring para instances
5 Advice on adjusting the layout of standard block environments
6 Tagging support
6.1 Paragraphtags L
6.1.1 Tagging recipes
7 Tracing and debugging

8 New and redefined kernel command

Index

13

30
32

32
32
34

35

36

38

1 Introduction

The list implementation in A TEX 2¢ serves a dual purpose: it implements real lists such
as itemize or enumerate, but it is also used as the basis for vertical blocks, i.e., to specify
the vertical spacing and paragraph handling after such block, e.g., in environments like
center, quote, verbatim, or in the theorem environments. They are all implemented as
“trivial” lists with a single (hidden) item.

While this was convenient to get a consistent layout using a single implementation
it is not adequate if it comes to interpreting the structure of a document, because envi-
ronments based on trivlist should not advertise themselves as being a “list” — after
all, from a semantic point of view they aren’t lists.

The approach taking here is therefore to offer separate template types: block (hor-
izontally or vertically oriented data that needs some handling at the start and the end),
para (that deals with different paragraph layouts), 1ist (that handles list related pa-
rameters, and item (for item layouts and handling).

To address the independent aspects we have the template type blockenv that ties
them together as necessary when we build document level environments.

For example, a quote environment would make use of a (display) block and some
para instance while a standard enumerate would make use of a display block, a list,
and an item and a para instance. An inline list (like enumerate* from the enumitem
package) would be using the same list instance but a different (horizontally oriented)
block instance build from a different template.

Instead of a 1list instance to handle the inner structure of the environment one can
use an instance of the type captionedtext to produce a display environment with an
associated heading/caption, such as a theorem-like environment or a proof environment.
Further possibilities (not yet implemented) are templates for producing boxed text or
formal quotes like those produced by the csquotes package.

2 Template types and templates for blocks and lists

2.1 Template types
2.1.1 The template type ‘blockenv’

Arg: 1 key/value list to alter the default parameters of the template instances used by
the particular blockenv environment

Arg: 2 Boolean to suppress a number in case this environment normally produces a
numbered caption

Arg: 3 Caption/heading text in case this environment supports a caption (most don’t),
otherwise \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption (most
don’t), otherwise \NoValue
Semantics:

This template type is used to implement document-level environments. It defines a
block instance to handle the layout at the “edge” of the environment data, possibly
some paragraph setup through a para instance, potentially an “inner” instance for more

complicated environments (such as lists), and possibly some additional setup code for
certain environments.

Arguments 2—4 are passed to the instance handling the inner structure, e.g., list
or captionedtext which may or may not make use of it.

It also defines how the blockenv behaves with respect to nesting, e.g., does it change
when nested and if so how many levels of nesting are supported, etc.

Finally, the template type defines how it appears in a tagged PDF document, what
tag names are used, how they are role-mapped and whether it adds additional attributes,
etc.

2.1.2 The template type ‘block’

Arg: 1 key/value list to alter the default block parameters

Semantics:

Handle the layout aspects of a block of data. In case of a “display” block (i.e., vertically
oriented) the spacing and page breaking as well as the handling if the block starts a
paragraph or ends one, that is, if text is immediately following the block without being
separated by an empty line, then this text is considered to be in the same paragraph as
the block.

In case of a horizontally oriented block it covers any special handling at the start
and end of the block, e.g, extra spacing, prohibiting or encouraging line breaks, and so
forth.

2.1.3 The template type ‘para’
Arg: 1 key/value list to alter the default item parameters

Semantics:

Sets up paragraph-specific parameters for H&J, e.g., to implement justification variations,
the behavior of \\ etc. The instances are used in higher-level templates, e.g., in a block.

2.1.4 The template type ‘list’
Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this list environment also produces a
numbered heading/caption

Arg: 3 Caption/heading text in case this environment supports a caption (lists normally
don’t), otherwise \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

Semantics:

Handle the aspects related to list design, e.g., the use and formatting of counters, etc.
Standard TTEX 2¢ lists have no heading/caption, so arguments 2-4 are ignored in
the standard 1ist template. But special lists, such as a list of ingredients for a cookbook,
might so there might be other templates that make use of them in the future.
Note that this template type does not cover block-related aspects, i.e., a list instance
could be used both for a display list or for an inline list.

2.1.5 The template type ‘captionedtext’
Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this environment also produces a numbered
heading/caption

Arg: 3 Caption/heading text for this text block; if not given then \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

Semantics:

Produces a text block with an associated caption/heading, e.g., a theorem-like environ-
ment. There may not be a user-supplied caption text—the caption may consist of a fixed
text only like “Lemma.

Handles the aspects related to the caption design and typically supports keys for
adjusting the layout of the body text, e.g., its font, etc.

Note that this template type does not cover block-related aspects, e.g., the dimen-
sions of the display block are handled there.

2.1.6 The template type ‘item’
Arg: 1 key/value list to alter the default item parameters

Semantics:

A sub-type used as part of 1ist to easily cover alternative layout for list items.

2.1.7 The template type ‘thmstyle’

Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this environment also produces a numbered
heading/caption

Arg: 3 Caption/heading text for this text block; if not given then \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

Semantics:

A sub-type used as part of captionedtext when producing theorem-like environments.
It does the bulk of the work and sets up most of the formatting. It has been separated
out because many theorem-like environments use the same theorem layout and only differ
in the fixed caption text they generate.

Not all templates of type captionedtext use thmstyle as an inner instance, e.g.,
proofs are implemented with a template that does everything necessary directly.

2.2 Templates
2.2.1 The blockenv template ‘std’
Attributes:

name (tokenlist) Name of the environment used in tracing and error messages.

tag-name (tokenlist) Name of the tag used for the block inside the PDF. If not explicitly
given the name is defined by the tagging-recipe. Note that in case of tagging-
recipe=basic no tag for the block is produced, so any key settings are ignored.
Default: (empty)

tag-attr-class (tokenlist) An explicit tag class attribute. Default: (empty)

tagging-recipe (tokenlist) Defines the way tagging is done. Currently the values
basic, standard, and list are supported. Default: standard

transparent-level (boolean) Isthis blockenv transparent for any blocks nested inside?
Default: false

legacy-code (tokenlist) Legacy setup code. This is executed after legacy defaults (from
\@listi, \@listii, etc.) are used but before the block instance is called.
Default: (empty)

block-instance (tokenlist) Part of the name of the block instance that is called. The
full name has a -(Ievel) appended. Default: std-display

para-instance (tokenlist) Paragraph settings to use within the environment. If (empty)
then the current (outer) values are retained. However, the inner-instance tem-
plate might reset/overwrite some of the para values, e.g., 1ist makes used of
\listparindent to explicitly set the paragraph indentation for compatibility.
Default: (empty)

inner-level-counter (fokenlist) Name of an existing (!) counter that is incremented
and used to determine final name of the inner-instance or empty if always the
same inner instance should be used.

max-inner-levels (tokenlist) Maximum number of nested environments of this kind.
Only relevant if there is a inner-level-counter specified. Default: 4

inner-instance-type (tokenlist) Template type of the inner instance. Currently sup-
ported types are list and captionedtext. Default: (empty)

inner-instance (tokenlist) Name of the inner instance (if any). If there is an inner-
level-counter then the instance name gets -(counter value) appended.
Default: (empty)

tagging-suppress-paras (boolean) describe Default: false

final-code (tokenlist) Final setup code Default: \ignorespaces

Semantics & Comments: The blockenv type handles the overall setup for the
document-level environments.

This blockenv template supports the legacy list setting that are found in many
document classes in the macros \@listi, \@listii, up to \@listvi. It also uses the
counter \@listdepth to track nesting of block, again mainly to support legacy setups
(internally it gives it a more appropriate name but it remains accessible through the
IATEX 2¢ name).

The internal block nesting level is stored (for historical reasons) in the \@listdepth
counter and incremented by each block by one. The starting value at top-level (outside
any block) is zero. A block environment with transparent-level=true also increments
the level before it evaluates and sets its parameters but then decrements it again, just
before it starts processing its body.

The template first checks that the block is not too deeply nested.

After the level was increased then corresponding \@list... macro to update the
legacy defaults is called.

It then sets up the tagging via the tagging-recipe setting and executes any code
in legacy-code.

Afterwards it calls the appropriate block instance based on block-instance and
current level, e.g., std-display-1.

Then it sets up paragraph parameters if a para-instance was specified (otherwise
they stay as they are).

If a inner-instance was specified this is called next, or more precisely: if no inner-
level-counter was specified the instance inner-instance is called.

Otherwise, the inner-level-counter is incremented and the instance with the name
inner-instance-inner-level-counter is called.

Finally, the final-code is executed (by default \ignorespaces).

The maximum number of blockenvs that can be nested into each other is restricted
by the IXTEX counter maxblocklevels with a default value of 6. If this value is increased
then it is necessary to provide additional instances, e.g., std-display-7, etc. Decreasing
is, of course, always possible, then some of the instances defined are not used and instead
the user gets an error that there is too much nesting going on.

If the key transparent-level is set to true then such an environment alters
the nesting level only temporarily (while processing the blockenv template) and you
can therefore nest those environments as often as you like (a typical example would
be flushleft anywhere in the nesting hierarchy) as long as the level isn’t already at
maxblocklevels).

2.2.2 The block template ‘std’
Attributes:
begin-vspace (skip) Vertical space before the block. Default: \topsep

begin-extra-vspace (skip) Extra vertical space before the block if the block forms its
own paragraph. Default: \partopsep

begin-unchained-vspace (skip) Vertical space before the block to use if this is a nested
block, both blocks have items or captions, and these should not be chained; see
description below. Default: .5\topsep

para-vspace (skip) The default for ordinary blocks is to use the \parskip from the
outer galley. In lists and some other special blocks this is then changed.
Default: \parskip

end-vspace (skip) Vertical space after the block. Default: value from begin-vspace

end-extra-vspace (skip) Extra vertical space after the block if the block forms its own
paragraph. Default: value from begin-extra-vspace

item-vspace (skip) The space in front of an item if the block is a list; if not, the setting
has no effect. Default: \itemsep

begin-penalty (integer) Penalty for breaking before the block.
Default: \@beginparpenalty

end-penalty (integer) Penalty for breaking after the block. Default: \@endparpenalty

item-penalty (integer) Penalty for breaking before an item in the list (except the first).
Default: \@itempenalty

left-margin (length) Space on the left of the block. Default: \leftmargin
right-margin (length) Space on the right of the block. Default: \rightmargin

para-indent (length) Paragraph indention for paragraphs within the block. Default: Opt

Semantics & Comments: Sets up the main block parameters, e.g. its spacing before
and after and the indentation on either side.

It also sets up some parameter defaults for the inner level, e.g., item—penalty,
item-vspace and para-indent, which may get overwritten by inner instances that are
called.

The vertical spacing before the block covers four different use cases: If there is a
caption or an item waiting to be placed, and this item allows for “chaining”, and the new
block also wants to place an item then no space is added (spacing was already added by
the outer block). Instead, the items are chained and placed that the start of the block,
i.e., producing a layout like the two nested itemize environments here:

. — A second-level item
— Another ...

More text for the first-level item

e Another first-level item

In that case there is also no vertical space after the block. If the items should not be
chained (as specified by the setup of the outer block), then one gets a result like this one
(using itemize environments inside description with different treatment of individual
description \items):
An normal label ¢ A second-level item

e Another ..

More text for the first-level item

An unchained label
e A second-level item
e Another ..

More text for the first-level item
A normal label Another first-level item

If “unchaining” happens, as in the second item, then vertical spacing with the value of
begin-unchained-vspace is used and at the end you get end-vertical-space.
Otherwise, if there is no item or caption waiting to be placed you get a vertical space
of begin-vspace before the block and if the block is its own paragraph you additionally
get begin-extra-vspace added to this.
Note that IATEX 2¢ always chained the list items, so the ability to prohibit this is
new functionality.

2.2.3 The para template ‘std’

Attributes:
para-indent (length) Default: \parindent
begin-hspace (skip) Horizontal skip added just in front of the indentation box if non-
Zero Default: Opt
left-hspace (skip) Default: Opt
right-hspace (skip) Default: Opt
end-hspace (skip) Default: \@flushglue
fixed-word-spaces (boolean) Default: false
final-hyphen-demerits (integer) Default: 5000
newline-cmd (function(0)) This defines the meaning of \\ Default: \@normalcr
para-attr-class (tokenlist) Default: justify

Semantics & Comments: The begin-hspace (normally Opt) is the counterpart of

end-hspace (which is normally Opt plus 1fil). It can be useful in special paragraph

shapes. The skip is only inserted into the paragraph if it is non-zero. If it is made non-zero

then paragraphs are always at least one line including a construct like \noindent\par!
TODO: to be further documented

2.2.4 The list template ‘std’
Attributes:

counter (tokenlist) Counter name to be used in a numbered list or empty, if the list is
unnumbered. Default: (empty)

item-label (tokenlist) Label “string” for a fixed label or as generated from the current
counter value. Default: (empty)

start (integer) Start value for the counter if the list is numbered, otherwise irrelevant.
Default: 1

resume (boolean) Should a numbered list be resumed from the last instance?.
Default: false

item-instance (instance) Instance of type item to be used to format the label string.
Default: basic

item-vspace (skip) The space in front of an item in the list. If not specified the value
specified in the block template instance is used.

item-penalty (integer) Penalty for breaking before an item (except the first). If not
specified the value specified in the block template instance is used.

item-indent (length) Horizontal displacement of the item. Default: Opt

label-width (length) Width reserved for the formatted item label.
Default: \1abelwidth

label-sep (length) Horizontal separation between label and following text.
Default: \1labelsep

legacy-support (boolean) Is formatting the label via \makelabel supported?
Default: false

Semantics & Comments: Sets up handling of list material, e.g., numbering (if any),
layout of items and list elements, and tagging, if requested.

2.2.5 The item template ‘std’

Attributes:

counter-label (functionl) unused. Default: \arabic{#1}
counter-ref (functionl) unused. Default: value from counter-label
label-ref (functionl) unused. Default: #1
label-autoref (functionl) unused. Default: item #1

label-format (functionl) Formatting of the label, questionable the way it is used.
Default: #1

label-strut (boolean) Add a \strut to the label? Default: false

10

(ﬁx

label-align (choice) Supported values left,center, right, and parleft. Only partly
implemented. Default: right

label-placement (choice) Placement of the label in relation to a directly following la-
bel (of a following inner list). Supported values are chained, unchained, and

standalone. Default: chained
label-boxed (boolean) Should the label be boxed? Default: true
next-line (boolean) Default: false

text-font (tokenlist) unused.

compatibility (boolean) Default: true

Semantics & Comments: This template is only rudimentary implemented at the mo-
ment. It probably needs other keys and the existing ones need a proper implementation!

2.2.6 The captionedtext template ‘thmlike’
Attributes:

counter (tokenlist) Counter name to be used if the caption is numbered, otherwise
empty. Default: (empty)

title (tokenlist) Fixed part of the caption, e.g., a theorem-like environment may want
to specify “Lemma” here. Default: (empty)

style (instance) Instance of type thmstyle that actually implements the theorem-like

environment. Default: plain

Semantics & Comments: The template combines the fixed title and a number (if
present) with the caption text as specified on the document element, if one is given, e.g.,
“Theorem 1. (Fermat)”. See also the proof template, which handles this differently.

The bulk of the work is then outsourced to an instance of type thmstyle. As many
such theorem-like environments share the same layout and only differ in the first caption
string they use, there is this split for convenience.

2.2.7 The captionedtext template ‘proof’
Attributes:

title (tokenlist) Heading for the environment unless overwritten on document level.
Default: Proof

punct (tokenlist) Punctuation following the heading. Default: .

caption-placement (choice) Supported values chained,unchained, and standalone
Default: unchained

before-hspace (skip) Horizontal displacement of the heading. Default: Opt

11

after-hspace (skip) Space following the heading, only relevant if text follows on the
same line. Default: 5pt

caption-decls (tokenlist) Declarations that are applied to the whole caption, e.g., some

font settings. Default: (empty)
title-format (functionl) Formatting applied to the title value. Default: #1
punct-format (function!) Formatting applied to the punct value. Default: #1

body-decls (tokenlist) Declarations that are applied to body of the environment, e.g.,
font settings. Default: (empty)

Semantics & Comments: The “unnumbered?” argument (#2) is ignored, as proofs
aren’t numbered. The template makes use of the caption argument (#3) but in contrast
to theorem-like environments this template replaces the title key value with the content
of this argument (if not \NoValue).

Typically there is only one layout for proofs so that there is no need to split the
formatting over two templates as done for theorem-like environment. That’s the reason
why the template has several layout customization parameters.

2.2.8 The thmstyle template ‘std’

Attributes:

numbered (boolean) Is this kind of environment numbered? Default: true
space (tokenlist) Space to be applied between elements of the heading Default: \\,
punct (tokenlist) Punctuation following the heading. Default: .

caption-placement (choice) Supported values chained,unchained, and standalone
Default: unchained

before-hspace (skip) Horizontal displacement of the heading. Default: Opt

after-hspace (skip) Space following the heading, only relevant if text follows on the
same line. Default: 5pt

order (commalist) Order of elements in the environment caption/heading. Supported
values are title, number, punct, space, and note.
Default: title, space,number,space,note

caption-decls (tokenlist) Declarations that are applied to the whole caption, e.g., some

font settings. Default: (empty)
title-format (functionl) Formatting applied to the title value. Default: #1
number-format (function!) Formatting applied to the number value. Default: #1
punct-format (tokenlist) Formatting applied to the punct value. Default: #1
note-format (functionl) Formatting applied to the note value. Default: (#1)

body-decls (tokenlist) Declarations that are applied to body of the environment, e.g.,
font settings. Default: (empty)

12

\SimpleBlockEnv

Semantics & Comments: Numbering of the environment is suppressed uncondition-
ally if the numbered is set to false. Otherwise the environment is numbered except
when #2 is \BooleanTrue, i.e., if the star form of the environment was used.

The caption of the environment can consist of a title, a number, a punctuation,
some spaces and a note. Their order is defined by the key order. If a component is
specified but has no value, e.g., no note or the numbering suppressed on an individual
environment, then the component and any preceding spaces are ignored.

Spaces between elements are uniform (as one can only specify space in the order key,
but it is possible to use this several times in a row and adjust the space key accordingly.

Alternatively, one can omit using space in the order key and instead put all neces-
sary spacing into the individual ...-format keys. This approach is used, for example,
if a theorem style is set up with \newtheoremstyle and its ninth argument contains a
declaration such as

\thmname{#1}\thmnumber{ #2}\thmnote{ (#3)}

This is then translated to

order = {title,number,punct,note} ,
title-format = {#1} ,

number-format = { #2} ,

note-format = { (#3)} ,

when \newtheoremstyle sets up a new instance. The downside of this approach is that
\swapnumbers would not work with such styles (because it would be necessary to transfer
the space inside value for the number-format key to the value of title-format).

If you look closely you also see that in the order key a punct was added in the list
even though it was not present originally. This is they way \newtheoremstyle worked
and so we mimic that.

3 Declaring standard display block environments and
their instances

Historically the IATEX kernel has defined a number of block environments directly, e.g.,
center or lists like itemize, but left others to be set up by document classes. For now
we declare all of them here, but in the future, some (or even all) might get moved to new
class files.

Most of the standard block environments have no need for a caption, so to sim-
plify the setup we have added the command \SimpleBlockEnv that hides the ar-
guments 2-4 required by a blockenv instance and gives them suitable values, i.e.,
\BooleanFalse\NoValue\Novalue. This way, a document level definition for the center
environment will look like this:

\NewDocumentEnvironment{center} { !'0{} }
{ \SimpleBlockEnv{center}{#1} } { \BlockEnvEnd }

instead of the more verbose

\NewDocumentEnvironment{center} { !'0{} }
{ \UseInstance{blockenv}{center}{#1} \BooleanFalse \NoValue \NoValue }
{ \BlockEnvEnd }

13

We use !'0{} for the optional argument so that it is only recognized if it immediately
follows \begin{center} without any spaces to avoid that a [at the start of the body
text is misinterpreted as the opening bracket of the optional argument. This is only done
for environments where this could be a problem.

This will then call the center instance of type blockenv that handles the rest.

\BlockEnv For the environments that make use of the other arguments, we offer \BlockEnv as syntac-
\BlockEnvEnd tic sugar so that most environment declarations look similar. And we use \BlockEnvEnd
in both cases to finish off.

1 (xclass-code)

In the following sections we provide for all block environments the top-level definition
and all instances that are used by it. Instances of type block are often reused across the
environments, in which case we just provide cross-references. Note that this is a design
decision, different classes my want to have adjusted settings for individual environments,
in which case they would provide special block instances instead of reusing, say, the
std-display-(level) instances.

3.1 The display and displayflattened environments

displayblock (env.) There are two basic block environments (displayblock and displayblockflattened)
displayblockflattened (env.) which are similar to IITEX 2¢’s trivlist except that they aren’t degenerated lists and
thus have no hidden \item inside.

> \NewDocumentEnvironment{displayblock}{ !'0{} }
{ \SimpleBlockEnv{displayblock} {#1} } { \BlockEnvEnd }

+ \NewDocumentEnvironment{displayblockflattened}{ !'0{} }
s { \SimpleBlockEnv{displayblockflattened} {#1} } { \BlockEnvEnd }

3.1.1 Their blockenv instances

blockenv displayblock (inst.) This is like W TEX 2¢’s trivlist, i.e., it produces a vertical block with default setting,
but doesn’t put a list inside but uses a <Div> structure.
We list all keys, those with default values, commented out.

6 \DeclareInstance{blockenv}{displayblock}{std}

+{

8 name = displayblock
9 % ,tagging-recipe = standard

0 % ,tag-name =

n % ,tag-attr-class =

12 ,transparent-level = true

3 % ,legacy-code =

14 % ,block-instance = std-display

15 % ,para-instance =
6 % ,tagging-suppress-paras = false
17 % ,inner-instance =

15 % ,inner-instance-type = % not relevant as there is no inner instance
19 % ,inner-level-counter = % not relevant as there is no inner instance
20 % ,max-inner-levels =4 % not relevant as there is no inner instance
21 % ,final-code = \ignorespaces

» }

The block uses the instance std-display which is shown below.

14

nv displayblockflattened (inst.) This flattens inner paragraphs without any surrounding tag structure by using the basic
tagging recipe.
\DeclareInstance{blockenv}{displayblockflattened}{std}

block
block
block
block
block
block

23

{

name displayblockflattened
,tagging-recipe = basic
,tagging-suppress-paras = true
,transparent-level true

3.1.2 Their block instances

We provide 6 nesting levels (as in IXTEX 2¢). If you want to provide more you need to
change the maxblocklevels counter, offer further std-display-(level) instances but
also define further (legacy) \list(romannumeral) commands for the defaults. If not,
then the settings from the previous level are reused automatically—which may or may
not be good enough).

5 \setcounter{maxblocklevels}{6}

std-display-1 (inst.
std-display-2

(
(inst.
std-display-3 (inst.
(
(
(

31

NN

std-display-4 (inst.) =

std-display-5 (inst.)
std-display-6 (inst.) 3

We show all keys here for reference, with those using their default values commented
out:

\DeclareInstance{block}{std-display-1}{std}

h
h
h
h
h

ne Y
38 o

h
h

%

{
,begin-vspace = \topsep
,begin-extra-vspace = \partopsep
,para-vspace = \parskip
,end-vspace = \KeyValue{begin-vspace}
,end-extra-vspace = \KeyValue{begin-extra-vspace}
,item-vspace = \itemsep
,begin-penalty = \UseName{@beginparpenalty}
,end-penalty = \UseName{@endparpenalty}
,left-margin = Opt
,right-margin = \rightmargin
,para-indent = Opt

}

\DeclareInstanceCopy{block}{std-display-2}{std-display-1}
\DeclareInstanceCopy{block}{std-display-3}{std-display-1}
\DeclareInstanceCopy{block}{std-display-4}{std-display-1}
\DeclareInstanceCopy{block}{std-display-5}{std-display-1}
\DeclareInstanceCopy{block}{std-display-6}{std-display-1}

3.2 The center, flushleft, and flushright environments

All three environments use the std-display instance as block instance. They only differ
in the choice of para instance.

center (env.) For now we redeclare various document environments as late as possible in order to make
flushleft (env.) tagging work, even if classes have changed the definitions. Of course, this means that
flushright (enwv.) such changes get lost.

s0 \AddToHook{begindocument/before}[./legacy-core]{

51

52

\RenewDocumentEnvironment{center} { !'0{} }
{ \SimpleBlockEnv{center}{#1} } { \BlockEnvEnd }

15

\RenewDocumentEnvironment{flushright} { '0{} }
ss { \SimpleBlockEnv{flushright}{#1} } { \BlockEnvEnd }

o

55 \RenewDocumentEnvironment{flushleft} { '0{} }
so { \SimpleBlockEnv{flushleft}{#1} } { \BlockEnvEnd }

3.2.1 Their blockenv instances

blockenv center (inst.) The center environment is defined through the blockenv instance center which makes
use of the block instance std-display-(level) and the para instance center. The
block nesting level is not incremented. With respect to tagging, text separated by \par
commands (or empty lines) inside the environment is not tagged as separate paragraphs,
i.e., the whole environment is considered to be part of an outer paragraph.

53 \DeclareInstance{blockenv}{center}{std}

50 {

60 name = center
61 ,tag—-name =

62 ,tag-attr-class =

63 ,tagging-recipe = basic
64 ,tagging-suppress-paras = true
65 ,inner-level-counter =

66 ,transparent-level = true
67 ,legacy-code =

68 ,block-instance = std-display
69 ,para-instance = center
70 ,inner-instance =

n ¥}

blockenv flushleft (inst.) Same as center except that we use the para instance raggedright.

72 %\DeclareInstance{blockenv}{flushleft}{std}
7wl
74 °/n name
s % ,tag-name =
© % ,tag-attr-class =
7 %h ,tagging-recipe = basic
s % ,tagging-suppress-paras = true
79 % ,inner-level-counter =

flushleft

20 % ,transparent-level = true

st h ,legacy-code =

&2 % ,block-instance = std-display

&3 /h ,para-instance = raggedright

s« % ,inner-instance =

85 ht

Or more concise in the source and perhaps even faster in processing if only few keys are
changed:

s \DeclareInstanceCopy{blockenv}{flushleft}{center}
s7 \EditInstance{blockenv}{flushleft}{

88 name = flushleft

89 ,para-instance = raggedright }

blockenv flushright (inst.) Same game for flushright.
o0 \DeclareInstanceCopy{blockenv}{flushright}{center}

16

quote (env.)

quotation (env.) are class defined, because some classes aren’t implementing them at all.

blockenv quotation (inst.)

blockenv quote (inst.)

o1 \EditInstance{blockenv}{flushright}{
92 name = flushright
93 ,para-instance = raggedleft }

3.2.2 Their block instances

They all use the block instances std which have already been set up in section 3.1.2.

3.2.3 Their para instances

Formatting of paragraphs is handled through the para-instance key which either refers
to a instance of type para or is empty, in which case the handling of paragraphs is

inherited. The predefined instances are discussed in section 4.

3.3 The quote and quotation environments

IWTEX 2¢ has two environments for quoting: quote and quotation. By default they
differ only in indentation of inner paragraphs. This is handled by using separate block
instances. The paragraph setup is inherited. The block nesting level is incremented.

The tag names are both role-mapped to <BlockQuote>.

We can’t use \RenewDocumentEnvironment for quote and other environments that

So we use

\DeclareDocumentEnvironment instead. This problem will vanish if all such definitions

move in new versions of the classes instead.

o+ \AddToHook{begindocument/before}[./legacy-quotes]{
o5 \DeclareDocumentEnvironment{quote}{ !0{} }
9% { \SimpleBlockEnv{quote} {#1} } { \BlockEnvEnd }

97 \DeclareDocumentEnvironment{quotation}{ !'0{} }
98 { \SimpleBlockEnv{quotation} {#1} } { \BlockEnvEnd }

3.3.1 Their blockenv instances

For the quotation environment:
100 \DeclareInstance{blockenv}{quotation}{std}

101 {

102 name = quotation
103 ,tag-name = \UseStructureName{block/quotation}
104 ,tag-attr-class =

105 ,tagging-recipe = standard
106 ,inner-level-counter =

107 ,transparent-level = false

108 ,legacy-code =

109 ,block-instance = quotation
110 ,inner-instance =

111 }

For the quote environment:

112 \DeclareInstance{blockenv}{quote}{std}
113 {

114 name = quote

17

block quote-1 (inst.)
block quote-2 (inst.)
block quote-3 (inst.)
block quote-4 (inst.)
block quote-5 (inst.)
block quote-6 (inst.)

block quotation-1 (inst.

block quotation-2 (inst.
block quotation-3 (inst.

block quotation-5 (inst.

NI AN NI NI NI AN

(

(

(
block quotation-4 (inst.

(

(

block quotation-6 (inst.

verse (env.)

blockenv verse (inst.)

s ,tag-name \UseStructureName{block/quote}

116 ,tag-attr-class

117 ,tagging-recipe = standard
118 ,inner-level-counter =

119 ,transparent-level = false

120 ,legacy-code =

121 ,block-instance = quote

122 ,inner-instance

3.3.2 Their block instances

Default layout is to indent equally from both sides.

122 \DeclareInstance{block}{quote-1}{std}

s { right-margin = \KeyValue{left-margin} }
126 \DeclareInstanceCopy{block}{quote-2}{quote-1}
127 \DeclareInstanceCopy{block}{quote-3}{quote-1}
126 \DeclareInstanceCopy{block}{quote-4}{quote-1}
120 \DeclareInstanceCopy{block}{quote-5}{quote-1}
130 \DeclareInstanceCopy{block}{quote-6}{quote-1}

Quotation additionally changes the para-indent.
131 \DeclareInstance{block}{quotation-1}{std}
132 { para-indent = 1.5em , right-margin = \KeyValue{left-margin} }

133 \DeclareInstanceCopy{block}{quotation-2}{quotation-1}
132 \DeclareInstanceCopy{block}{quotation-3}{quotation-1}
135 \DeclareInstanceCopy{block}{quotation-4}{quotation-1}
136 \DeclareInstanceCopy{block}{quotation-5}{quotation-1}
137 \DeclareInstanceCopy{block}{quotation-6}{quotation-1}

3.4 The verse environment

The verse environment of KTEX is intended for poetry. Not sure what that should mean
with respect to tagging.

Implementation is like quote etc.

135 \AddToHook{begindocument/before}[./legacy]{

139 \DeclareDocumentEnvironment{verse}{!0{}}

140 { \SimpleBlockEnv{verse} {#1} } { \BlockEnvEnd }
141 }

3.4.1 Their blockenv instances

122 \DeclareInstance{blockenv}{verse}{std}

143 {

144 name = verse

us ,tag-name = \UseStructureName{block/verse}
146 ,tag-attr-class =

147 ,tagging-recipe = standard

148 ,inner-level-counter =

149 ,transparent-level = false

18

150 ,legacy-code =

151 ,block-instance = quote % reuse?
152 ,para-instance = verse

153 ,inner-instance =

154 }

The special indentation on continuation lines (the way I¥TEX handled poetry is done in
the para instance verse, defined later on.

3.5 The verbatim, verbatim* and alltt environments

verbatim (env.) Here are the definitions for the verbatim environments They look somewhat different than
verbatimx (env.) others (but this isn’t the final definition). At the moment we use 2 optional arguments,
the second is only there so that there is yet another scan even if one optional argument
got detected. That then scans away the newline so that afterwards we can reinsert one
via \obeyedline. A better solution will be to use a c specifier for grabbing the body,

but that is for another day not Christmas Eve.

155 \AddToHook{begindocument/before}[./legacy-verbatims]{
156 \RenewDocumentEnvironment{verbatim}{ ={legacy-code} !o l!o }
157 { \SimpleBlockEnv{verbatim} {#1} \obeyedline } { \BlockEnvEnd }

155 \RenewDocumentEnvironment{verbatim*}{ ={legacy-code} !'o !o }
159 { \SimpleBlockEnv{verbatim*} {#1} \obeyedline } { \BlockEnvEnd }

alltt (env.) The alltt package implements a variation on verbatim handling where backslash and
alltt* (env.) braces retain their normal meanings. We also reimplement it using the template approach
The alltt* variant didn’t exist in the package, but it is trivial to set it up as well.
1o \NewDocumentEnvironment{alltt}{ ={legacy-code} 'o }

161 { \SimpleBlockEnv{alltt} {#1} } { \BlockEnvEnd }
162 \NewDocumentEnvironment{alltt*}{ ={legacy-code} 'o }
163 { \SimpleBlockEnv{alltt*} {#1} } { \BlockEnvEnd }
164 }

3.5.1 Their blockenv instances

blockenv verbatim (inst.) The verbatim environment is defined through blockenv instance verbatim that makes
use of the block instance verbatim-(level) and the para instance justify. The block
nesting level is not incremented. Verbatim processing requires various catcode changes,
etc. and as a consequence a special parsing routine that grabs the whole environment
while these catcodes are in force. This setup is done in the final-code key and its last
action is to initiate the special parsing.

165 \DeclareInstance{blockenv}{verbatim}{std}

166 {

167 name = verbatim
168 ,tag-name = \UseStructureName{block/verbatim}
160 ,tag-attr-class =

170 ,tagging-recipe = standard
171 ,tagging-suppress-paras = true

172 ,inner-level-counter =

173 ,transparent-level = true

174 ,legacy-code =

175 ,block-instance = verbatim
176 ,inner-instance =

19

177 ,para-instance = justify

Here is where verbatim and verbatim* technically differ: in the former we set up spaces
to become nonbreakable spaces (if necessary followed by a \pdffakespace in the pdfTEX
engine) and in verbatim* we set it up to generate visible space chars.

175 ,final-code = \legacyverbatimsetup{invisible}

Then we start the special scanning process to look for \end{verbatim} with special
catcodes and grab everything in between. For verbatim* we use \@sxverbatim to look
for \end{verbatimx} instead.'

179 \@xverbatim

The role-mapping is <verbatim> to <Code> and <codeline> to <Sub> (which is role
mapped to in pdf 1.7). Sub inside Code is allowed according the errata of ISO
32005. The paragraphs inside verbatim are flattened. Line numbers should be inside the
<codeline> structure and be tagged either as <Lbl> or <Artifact><Lbl>.

blockenv verbatim* (inst.) The implementation of verbatim* is similar using the blockenv instance verbatim*. Its
final-code sets up visible spaces and a slightly different parsing that grabs everything
up to \end{verbatimx*}. Otherwise the setup is identical.

151 \DeclareInstance{blockenv}{verbatim*}{std}

182 {

183 name = verbatim

14 ,tag-name = \UseStructureName{block/verbatim}
185 ,tag-attr-class =

186 ,tagging-recipe = standard

187 ,tagging-suppress-paras = true

188 ,inner-level-counter =

189 ,transparent-level = true

190 ,legacy-code =

191 ,block-instance = verbatim

192 ,inner-instance =

193 ,para-instance = justify

194 ,final-code = \legacyverbatimsetup{visible}
105 \@sxverbatim

196 }

blockenv alltt (inst.) The implementation of the alltt environment from the alltt is more or less identical as
well. We just need a slightly different final code to keep backslash and braces functional.

107 \DeclareInstance{blockenv}{alltt}{std}

198 {

199 name = alltt

200 ,tag-name = \UseStructureName{block/verbatim} % private tag instead?
201 ,tag-attr-class =

202 ,tagging-recipe = standard
203 ,tagging-suppress-paras = true

204 ,inner-level-counter =

205 ,transparent-level = true

206 ,legacy-code =

207 ,block-instance = verbatim
208 ,inner-instance =

200 ,para-instance = justify

1Perhaps there should be some other command names for this?

20

Now set up the special environment settings with most characters verbatim. We don’t
even have to scan ahead for the \end{alltt} because backslash and braces still have
their normal meaning.

210

211

,final-code = \legacyallttsetup {invisible}
}

blockenv alltt* (inst.) The alltt* variant didn’t exist in the alltt package, but it is trivial to set it up as well.

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

\DeclareInstance{blockenv}{alltt*}{std}

{

name = allttx*

,tag-name = \UseStructureName{block/verbatim} % private tag instead?

,tag-attr-class =

,tagging-recipe = standard

,tagging-suppress-paras = true

,inner-level-counter =

,transparent-level = true

,legacy-code =

,block-instance = verbatim

,inner-instance =

,para-instance = justify

,final-code = \legacyallttsetup {visible}
}

3.5.2 Their block instances

block verbatim-1 (inst.) Verbatim instances have there own levels so that one can specify specific indentations
block verbatim-2 (inst.) or vertical separations between lines.

block verbatim-3 (inst.) ..,
block verbatim-4 (inst.) us
block verbatim-5 (inst.) 22

block verbatim-6 (inst.) 230
231

232
233
234
235

236

\DeclareInstance{block}{verbatim-1}{std}
{
,left-margin = Opt
,para-vspace Opt

}

\DeclareInstanceCopy{block}{verbatim-2}{verbatim-1}
\DeclareInstanceCopy{block}{verbatim-3}{verbatim-1}
\DeclareInstanceCopy{block}{verbatim-4}{verbatim-1}
\DeclareInstanceCopy{block}{verbatim-5}{verbatim-1}
\DeclareInstanceCopy{block}{verbatim-6}{verbatim-1}

3.6 The trivlist environment

In IATEX 2¢ trivlist was used to define various display environments that aren’t really
lists at all. To support such legacy definitions (even though they should be updated to
achieve proper tagging) we continue to support and implement it as a 1ist environment

with a few hardwired settings mimicking the original behavior.

237
description (env.) o3

239

3.7 The standard lists: itemize, enumerate, and description

For the standard lists everything is managed by the blockenv instances.

\AddToHook{begindocument/before}[./legacy-lists]{
\RenewDocumentEnvironment{itemize}{!0{}}
{ \SimpleBlockEnv{itemize} {#1} } { \BlockEnvEnd }

21

blockenv itemize (inst.)

blockenv enumerate (inst.)

210 \RenewDocumentEnvironment{enumerate}{!'0{}}
241 { \SimpleBlockEnv{enumerate} {#1} } { \BlockEnvEnd }

22 \DeclareDocumentEnvironment{description}{!0{}}
243 { \SimpleBlockEnv{description} {#1} } { \BlockEnvEnd }
ous }

3.7.1 Their blockenv instances

The itemize environment is defined through the blockenv instance itemize which
makes use of the block instance list-(level), and an inner instance itemize-(inner-
level) of type list. The paragraph setup is inherited.” The (inner-level) is deter-
mined through \@itemdepth. The block nesting level and the inner list nesting level are
incremented.

215 \DeclareInstance{blockenv}{itemize}{std}

216 {

247 name = itemize

s ,tag-name = \UseStructureName{block/itemize}
249 ,tag-attr-class = itemize

250 ,tagging-recipe = list

251 ,inner-level-counter = \@itemdepth
252 ,transparent-level = false

253 ,max-inner-levels =4

254 ,legacy-code =

255 ,block-instance = std-list

256 ,inner-instance-type = list

257 ,inner-instance = itemize

258 ,para-instance =

259 }

The enumerate environment is similar to itemize but uses the blockenv instance
enumerate, the block instance 1ist-(level), and the inner instance enumerate-(inner-
level). The (inner-Ilevel) is determined through \@enumdepth.

20 \DeclareInstance{blockenv}{enumerate}{std}

261 {

262 name = enumerate
%3 ,tag-name = \UseStructureName{block/enumerate}
264 ,tag-attr-class = enumerate
265 ,tagging-recipe = list

266 ,transparent-level = false

267 ,max-inner-levels =4

268 ,legacy-code =

269 ,block-instance = std-list

270 ,inner-level-counter = \@enumdepth
271 ,inner-instance-type = list

272 ,inner-instance = enumerate
273 }

2In the IATEX 2¢ implementation justified paragraphs where forced, even if the whole document was
set in ragged text. If this slightly strange behavior is desired then one has to set the para-instance key
to justify.

22

blockenv description (inst.) The description environment uses the blockenv instance description, the block in-
stance list-(level), and the inner instance description (no dependency on the nesting
level), i.e., the environment has the same appearance on all nesting levels.

272 \DeclareInstance{blockenv}{description}{std}

275 {

276 name = description
277 ,tag-name = \UseStructureName{block/description}
278 ,tag-attr-class = description
279 ,tagging-recipe = list

280 ,inner-level-counter =

281 ,transparent-level = false

282 ,legacy-code =

283 ,block-instance = std-list

284 ,inner-instance-type = list

285 ,inner-instance = description
286 }

3.7.2 Their block instances

block std-list-1 (inst.) The block instances for the various list environments use the same underlying instance
block std-list-2 (inst.) (well, by default) and nothing needs to be set up specifically (because that is already
block std-list-3 (inst.) done in the legacy \list(romannumeral) unless a different layout is wanted.
(inst.)
(inst.)
(

block std-list-4 (inst.) \DeclareInstance{block}{std-list-1}{std}{

block std-list-5 288 begin-vspace = \topsep
block std-list-6 (inst.) .., % begin-extra-vspace = \partopsep

inst.

This is the only one we have to explicitly set for lists if the default setup is wanted.

290 ,para-vspace = \parsep

21 % ,end-vspace = \KeyValue{begin-vspace}

22 % ,end-extra-vspace = \KeyValue{begin-extra-vspace}
203 th ,item-vspace = \itemsep

204 % ,begin-penalty = \UseName{@beginparpenalty}

25 % ,end-penalty = \UseName{@endparpenalty}

26 % ,left-margin = \leftmargin

207 % ,right-margin = \rightmargin

28 % ,para-indent = Opt

209

;00 \DeclareInstanceCopy{block}{std-list-2}{std-list-1}
;00 \DeclareInstanceCopy{block}{std-1list-3}{std-1list-2}
500 \DeclareInstanceCopy{block}{std-list-4}{std-1list-3}
;02 \DeclareInstanceCopy{block}{std-list-5}{std-1list-4}
500 \DeclareInstanceCopy{block}{std-1list-6}{std-1ist-5}

If the legacy \list(romannumeral) is not used in a modern class then, of course, these
instances all need to set up the different parameters explicitly. The new implementation
of the standard classes (will) show that approach.

3.7.3 Their 1list instances

For all list instances we have to say what kind of label we want (item-label) and how
it should be formatted.

23

list itemize-1 (inst.)

(

list itemize-2 (inst.)

list itemize-3 (inst.)
(

list itemize-4 (inst.)

list enumerate-1 (inst.

inst.

(inst.)
list enumerate-2 (inst.)
list enumerate-3 ()

(

list enumerate-4 (inst.)

list description (inst.)

item basic (inst.)
item description (inst.)

list (env.)

For itemize environments this is all we need to do and we refer back to the external
definitions rather than defining the item-label code in the instance to ensure that old
documents still work.

305 \DeclareInstance{list}{itemize-1}{std}{ item-label
300 \DeclareInstance{list}{itemize-2}{std}{ item-label = \labelitemii }
307 \DeclareInstance{list}{itemize-3}{std}{ item-label \labelitemiii }
308 \DeclareInstance{list}{itemize-4}{std}{ item-label = \labelitemiv }

\labelitemi }

enumerate environments are similar, except that we also have to say which counter to
use on each level.

30 \DeclareInstance{list}{enumerate-1}{std}

3.0 { item-label = \labelenumi , counter = enumi }

511 \DeclareInstance{list}{enumerate-2}{std}

512 { item-label = \labelenumii , counter = enumii 1}

313 \DeclareInstance{list}{enumerate-3}{std}

314 { item-label = \labelenumiii , counter = enumiii }

315 \DeclareInstance{list}{enumerate-4}{std}

316 { item-label = \labelenumiv , counter = enumiv }

The description lists also use only a single list instance with only one key not using
the default:

;17 \DeclareInstance{list}{description}{std} { item-instance = description }

Of course, if handling of description lists should differ in nested lists all one has to do is
to provide an inner-level-counter and then define description-1, description-2,
etc.

3.7.4 Their item instances

There are two item instances to set up: description for use with the description
environment and basic for use with all other lists (up to now).

313 \DeclareInstance{item}{basic}{std}

319 { label-align = right }

320 \DeclareInstance{item}{description}{std}

321 {

322 ,label-format = \normalfont\bfseries #1
323 ,label-align = left

24}

3.8 The legacy list and trivlist environments

The legacy 2e list environment is more complicated as we have to get the extra arguments
accounted for.

325 \AddToHook{begindocument/before}[./legacyl{

326 \RenewDocumentEnvironment{list}{0{} m m }

327 {

We do this by storing them away and then call the list instance. Inside this instance the
legacy-code key contains \legacylistsetup which makes use of the stored values.

328 \tl_set:Nn \1_0@_legacy_env_params_tl

329 {

330 \tl_set:Nn \Q@itemlabel {#2}

24

331 #3

332 }

The IATEX 2¢ lists don’t support captions so we use \SimpleBlockEnv.
333 \SimpleBlockEnv{list} {#1}

334 ¥

335 { \BlockEnvEnd }

336 }

triviist (env.) KTEX2c defined trivlist as an implementation of list (or rather the other way

around).

337 \AddToHook{begindocument/before}[./legacyl{

133 \RenewDocumentEnvironment{trivlist}{ '0{} }

339 { \list[#1]1{}

340 {

341 \dim_zero:N \leftmargin
342 \dim_zero:N \labelwidth
343 \cs_set_eq:NN \makelabel \use:n
344 }

345 ¥

346 { \BlockEnvEnd }

27

3.8.1 Its blockenv instance

blockenv list (inst.) The generic 1ist environment of IXTEX 2¢ is modeled with a blockenv instance named
list, a block instance named std-list-(Ievel), and an inner instance named legacy
(with no dependency on the nesting level). This environment has two arguments and
customization of the layout is expected to be directly set in the second argument. For
this reason this legacy instance is something that shouldn’t be changed (all that is
attempted to provide a way to support legacy setups).
To set up the default settings (as they were used in IWTEX 2¢) the legacy-code key gets
\legacylistsetup assigned that contains the necessary code to set up these defaults.
Changing the blockenv is therefore not recommended for the legacy 1ist environment.

115 \DeclareInstance{blockenv}{list}{std}

349 {

350 name = list

351 ,tag-name = \UseStructureName{block/list}
352 ,tag-attr-class =

353 ,tagging-recipe = list

354 ,transparent-level = false

355 ,legacy-code = \legacylistsetup
356 ,block-instance = std-list

357 ,inner-level-counter =

358 ,inner-instance-type = list

359 ,inner-instance = legacy

360 }

3.8.2 1Its list instance

list legacy (inst.) For the legacy list environment there is only one instance which is reused on all levels.
This is done this way because the legacy 1ist environment sets all its parameters through

25

its arguments. So this instances shouldn’t really be touched. It sets the legacy-support
key to true, which means that the list code uses \makelabel for formatting the label.

s61 \DeclareInstance{list}{legacy}{std} {

362 ,item—-instance = basic
363 ,legacy-support = true
364 }

3.9 Theorem-like environments declared through \newtheorem

In standard A TEX theorem-like environments are not defined directly, but with the help
of a \newtheorem declaration. That allows specifying the typeset environment title, e.g.,
“Lemma”, and the counter to use to number the environments, e.g., they could be all
numbered individually or one could number them using the same counter as some other
theorem-like environment.

This was first augmented by the theorem package which implemented the idea of
a \theoremstyle; this is now considered obsolete. Michael Downes from the AMS
improved on these early ideas and wrote the amsthm package, which offered more
functionality including a \newtheoremstyle declaration and for the document level a
\swapnumbers and an proof environment. It also provided star-forms for \newtheorem
(to define an unnumbered environment) and allowed to use star-forms of the theorem-like
environments to suppress numbering on an individual instance in the document.

This new implementation based on templates, is supposed to cover the functionality
of amsthm including it declarations so that documents that use amsthm explicitly or
implicitly via their class should continue to work seamlessly.

For other packages that provide theorem-like environments we have to see if they
could be easily remodeled using the new implementation or if there is a need for extended
templates.

Assuming declarations such as

% \swapnumbers % <- commented out
\theoremstyle{definition}
\newtheorem{axiom} [def] {Axiom}

in a document, then the following instances of type blockenv and captionedtext are
declared by \newtheorem.
3.9.1 The blockenv instances they use

Given the above input \newtheorem defines the following blockenv instance:

\DeclareInstance{blockenv}{axiom}{std}

{
name = theorem-like
,tag-name = \UseStructureName{block/theorem-like}
,tagging-recipe = standalone
,transparent-level = true

,block-instance:e = thm-
\IfInstanceExistsTF{block}
{ thm-definition-1 }
{ definition } { plain }
,inner-instance-type = captionedtext

26

,inner-instance = axiom
,para-instance justify

3

The setting for block-instance means that it checks if a block instance with the
name thm-definition-1 exists. If so then the value thm-definition is used, otherwise
thm-plain is used which is always defined, i.e., if the theoremstyle does not specify any
special vertical spacing the block instance from the plain style is reused.

What varies from blockenv instance to instance are the values for block-instance
and inner-instance.

We use <theorem-like> as the structure name and role-map it to a <Sect> because
that can hold a <Caption>.

3.9.2 The captionedtext instances they use

The instance of type captionedtext is also defined by \newtheorem and in this case it
looks like this:

\DeclareInstance{captionedtext}{axiom}{thmlike}

{
,counter = def
,title = Axiom % <-- that the title provided to \newtheorem
,style = definition ¥ <-- that's the used \theoremstyle

}

If we uncomment the \swapnumbers line in the example above then we get
,style = definition-swap

in the captionedtext instance instead.

3.9.3 The thmstyle instances they use

New theorem styles can be declared with \newtheoremstyle which then generates an
instance of type thmstyle. Alternatively, it is, of course, possible to declare the instances
directly (which gives you a bit more flexibility). A few such styles are predeclared,
matching what is offered by amsthm. These are shown below.

thmstyle plain (inst.) The main style used for many theorem-like environments, i.e., the one you get if no
special \theoremstyle has been specified.

565 \DeclareInstance{thmstyle}{plain}{std}

366 {

367 ,caption-placement = unchained

368 ,numbered = true

360 ,space =\

370 ,punct = .

371 ,before-hspace = Opt

372 ,after-hspace = 5pt plus 1pt minus 1pt
373 ,order = {title, space, number, punct, space, note}
374 ,caption-decls = \bfseries

375 ,title-format = #1

376 ,number-format = #1

377 ,punct-format = #1

27

thmstyle remark (inst.)

thmstyle definition (inst.)

thmstyle legacy2e (inst.)

block thm-plain-1 (inst.)
block thm-plain-2 (inst.)

block thm-remark-1 (inst.)
block thm-remark-2 (inst.)

378 ,note-format = (#1)
379 ,body-decls = \itshape
380 }

The remark is like plain with two changes:

ss1 \DeclareInstanceCopy{thmstyle}{remark}{plain}
;52 \EditInstance{thmstyle}{remark}

s {

384 ,caption-decls = \itshape

35 ,body-decls = \normalfont
386 }

The definition is like plain with only a difference in the font used for the body:
;57 \DeclareInstanceCopy{thmstyle}{definition}{plain}

ses \EditInstance{thmstyle}{definition}

350 {

30 ,body-decls = \normalfont

301 }

Vanilla BTEX 2¢ (without amsthm loaded) had a slightly different default. We provide
this under the name legacy2e. It doesn’t use a punctuation after the number and it has
slightly different vertical spacing (defined by thm-legacy2e-1 below).

Thus, to reprocess an old document for tagging that uses \newtheorem without loading
amsthm one has to set \theoremstyle{legacy2e} to avoid layout changes. How such a
compatibility setting is automated is not yet decided.

302 \DeclareInstanceCopy{thmstyle}{legacy2e}{plain}

503 \EditInstance{thmstyle}{legacy2e}{ punct = }

3.9.4 The block instances they use

Theorems do not support nesting, so in theory we have only one to set up. There are,
however, documents that put theorem-like environments inside of lists or other block
environments. While that is in most case somewhat dubious, it can make sense, for
example, in description lists. So we support it by providing thm-plain instances for
levels 1 and 2. If somebody really nests them further down, then more such instances
need to be declared.

The IATEX default reused the general value of \parindent and \parskip and, of course,
they start at the outer margin.

;04 \DeclareInstance{block}{thm-plain-1}{std}

395 {

396 ,begin-extra-vspace = Opt

307 ,left-margin = Opt

398 ,para-indent = \parindent
399 ,para-vspace = \parskip
400 }

s01 \DeclareInstanceCopy{block}{thm-plain-2}{thm-plain-1}

The \thmstyle for “remarks” is defined by amsthm to use less vertical spacing. It
therefore needs its own block instance.

102 \DeclareInstance{block}{thm-remark-1}{std}
403 {
404 ,begin-vspace = 0.5\topsep

28

block thm-legacy2e-1 (inst.)
block thm-legacy2e-2 (inst.)

proof (env.)

blockenv proof (inst.)

405 ,begin-extra-vspace = Opt

406 ,left-margin = Opt
407 ,para-indent = \parindent
408 ,para-vspace = \parskip

409 }
210 \DeclareInstanceCopy{block}{thm-remark-2}{thm-remark-1}

These are like the plain ones but without resetting begin-extra-vspace to zero.
211 \DeclareInstance{block}{thm-legacy2e-1}{std}

412 {

413 ,left-margin = Opt

414 ,para-indent = \parindent
415 ,para-vspace = \parskip
416 }

217 \DeclareInstanceCopy{block}{thm-legacy2e-2}{thm-legacy2e-1}

3.10 The proof environment (from amsthm)

The proof environment expects one optional argument holding an alternative title for
the proof. We parse this optional argument as an implicit key/value argument, so that
it is possible to interpret it either as the value for the key note or as a key/value list
that holds special key settings for this particular environment instance. The result is
analyzed by \ParseLaTeXeTheoremlike which then calls a blockenv instance with the
name proof.

In addition we have to set up handling of QED symbols using \pushQED and \popQED
using the logic already defined in amsthm. Details on all this is given in the code section
of this module but normally this top-level declaration doesn’t require any changes.

215 \NewDocumentEnvironment{proof}{ ={note}o }

419 { \pushQED{\qed}/

420 \ParseLaTeXeTheoremlike {proof} \BooleanTrue {#1} }

421 { \popQED \BlockEnvEnd }

A proof uses its own proofblock instance of type block for vertical spacing. As the
proof has a heading we use a captionedtext instance with name proof as the inner
instance and the paragraphs of the proof are justified.

22 \DeclareInstance{blockenv}{proof}{std}

a3 {

424 name = proof

w5 ,tag-name = \UseStructureName{block/proof}
426 ,tag-attr-class =

427 ,tagging-recipe = standalone

428 ,inner-level-counter =

429 ,transparent-level = true

430 ,legacy-code =

431 ,block-instance = proof

432 ,inner-instance-type = captionedtext
433 ,inner-instance = proof

434 ,para-instance = justify

435}

29

captionedtext proof (inst.) We use a special captionedtext template to set up the proof because proofs are not

block proof-1 (inst.)
block proof-2 (inst.)

para justify (inst.)

para center (inst.)

numbered and the argument to a proof environment has a somewhat different semantic
meaning than that of theorem-like environments.

23 \DeclareInstance{captionedtext}{proof}{proof}

437 {

438 ,title = Proof

439 ,punct = .

440 ,before-hspace = Opt

441 ,after-hspace = 5pt plus 1pt minus 1pt
442 ,caption-decls = \itshape

443 ,title-format = #1

444 ,punct-format = #1

445 ,body-decls = \normalfont

446 }

3.10.1 Block instances for the proofs

Blocks for proofs are pretty normal (the values are taken from the amsthm implementa-
tion):
27 \DeclareInstance{block}{proof-1}{std}

448 {

449 ,begin-vspace = 6pt plus 6pt
450 ,left-margin = Opt

451 ,para-indent = \parindent
42 ,para-vspace = \parskip

453 }

252 \DeclareInstanceCopy{block}{proof-2}{proof-1}

4 Declaring para instances

Display block environments often require special paragraph settings and therefore have a
para-instance key to specify and appropriate instance. Here are the standard instances
that are predefined for this purpose.

Justifying is exactly what the default values do, so the instance hasn’t any special setup.
255 \DeclareInstance{para}{justify}{std}

256 {

w7 % ,para-attr-class = justify

w3 % ,para-indent = \parindent

w90 % ,begin-hspace = Opt

w0 % ,left-hspace = \z@skip

w1 % ,right-hspace = \z@skip

w6 % ,end-hspace = \@flushglue
w3 % ,final-hyphen-demerits = 5000

w64 % ,newline-cmd = \@normalcr

465 F

Centering a paragraph means putting stretchable glue on both sides.

w6 \DeclareInstance{para}{center}{std}
467 {

ws ,para-attr-class = center
469 ,para-indent = Opt

30

para raggedright (inst.)

para raggedleft (inst.)

|

this should be
moved elsewhere

\centering
\raggedleft
\raggedright
\justifying

w0 % ,begin-hspace = Opt

a1 ,left-hspace = \@flushglue
«2 ,right-hspace = \@flushglue
43 ,end-hspace = \z@skip

474 ,final-hyphen-demerits = 0

475 ,newline-cmd = \@centercr
476

This is the plain TEX version of ragged right, which basically means no hyphenation
unless a word is truly longer than a line. This implements flushleft.

177 \DeclareInstance{para}{raggedright}{std}

s {

479 ,para-attr-class = raggedright
480 ,para-indent = Opt

w1 % ,begin-hspace = Opt

w2 ,left-hspace = \z@skip

w3 ,right-hspace = \@flushglue
«s ,end-hspace = \z@skip

485 ,final-hyphen-demerits = 0

486 ,newline-cmd = \@centercr
487 }

This here is for flushright.
25 \DeclareInstance{para}{raggedleft}{std}

489 {

490 ,para-attr-class = raggedleft
401 ,para-indent = Opt

22 % ,begin-hspace = Opt

203 ,left-hspace = \@flushglue
w1 ,right-hspace = \z@skip

25 ,end-hspace = \z@skip

496 ,final-hyphen-demerits = 0

497 ,newline-cmd = \@centercr
208 F

Here are the attribute definitions used in the para-attr-class in the above in-

stances:

20 \tagpdfsetup

500 {

501 ,role/new-attribute = {justify} {/0 /Layout /TextAlign/Justify}
502 ,role/new-attribute = {center} {/0 /Layout /TextAlign/Center}
503 ,role/new-attribute = {raggedright}{/0 /Layout /TextAlign/Start}
504 ,role/new-attribute = {raggedleft} {/0 /Layout /TextAlign/End}

505 }

These instances are also used to implement declarations for direct use in documents or
in user definitions.

so6 \DeclareRobustCommand\centering {\UselInstance{para}{center}{}}
507 \DeclareRobustCommand\raggedleft {\UseInstance{para}{raggedleft}{}}
sos \DeclareRobustCommand\raggedright{\UseInstance{para}{raggedright}{}}
s00 \DeclareRobustCommand\justifying {\UseInstance{para}{justify}{}}

IATEX’s default is to typeset paragraphs justified.
s10 \justifying

31

(End of definition for \centering and others.)

para verse (inst.) For the verse environment we use a special para instance. If the right hand side should
be ragged then a different right-hspace is needed.

511 \DeclareInstance{para}{verse}{std}

512 {

513~ para-attr-class = justify ,

514 para-indent = Opt ,

515 begin-hspace = -1.5em ,

516 left-hspace = 1.5em ,

517 right-hspace = Opt ,

55 end-hspace = \@flushglue ,
519 final-hyphen-demerits = 0 ,

520 newline-cmd = \@centercr ,
521 }

522 (/class-code)

5 Advice on adjusting the layout of standard block
environments

to document

6 Tagging support

6.1 Paragraph tags

Paragraphs in IXTEX can be nested, e.g., you can have a paragraph containing a display
quote, which in turn consists of more than one (sub)paragraph, followed by some more
text which all belongs to the same outer paragraph.

In the PDF model and in the HTML model that is not supported — a limitation
that conflicts with real life, given that such constructs are quite normal in spoken and
written language.

The approach we take to resolve this is to model such “big” paragraphs with a
structure named <text-unit> and use <text> (role-mapped to <P>) only for (portions
of) the actual paragraph text in a way that the <text>s are not nested. As a result we
have for a simple paragraph the structures

<text>
<text>
The paragraph text ...
</text>
</text>

The <text-unit> structure is role-mapped to <Part> or possibly to <Div> so we get a
valid PDF, but processors who care can identify the complete paragraphs by looking for
<text-unit> tags.

In the case of an element, such as a display quote or a display list inside the para-
graph, we then have

32

<text-unit>
<text>
The paragraph text before the display element ...
</text>
<display element structure>
Content of the display structure possibly involving inner <text-unit> tags
</display element structure>
<text>
... continuing the outer paragraph text
</text>
</text-unit>

In other words such a display block is always embedded in a <text-unit> structure,
possibly preceded by a <text>..</text> block and possibly followed by one, though
both such blocks are optional.

Thus an itemize environment that has some introductory text but no text imme-
diately following the list would be tagged as follows:

<text-unit>
<text>
The intro text for the itemize environment ...
</text>
<itemize>

<itemlabel> label </itemlabel>
<itembody>
The text of the first item involving <text-unit> as necessary ..
</itembody>

The second item ...

... further items ...
</itemize>
</text-unit>

The <itemize> is roll-mapped to <L>

For some display blocks, such as centered text, we use a simpler strategy. Such
blocks still ensure that they are inside a <text-unit> structure but their body uses
simple <text> blocks and not <text-unit><text> inside, e.g., the input

This is a paragraph with some
\begin{center}
centered lines

with a paragraph break between them

\end{center}
followed by some more text.

33

will be tagged as follows:

<text-unit>
<text>
This is a paragraph with some
</text>
<text /0 /Layout /TextAlign/Center>
centered lines
</text>
<text /0 /Layout /TextAlign/Center>
with a paragraph break between them
</text>
<text>
followed by some more text.
</text-unit>

The text-unit structures are added by using the tagging sockets para/semantic/begin
and para/semantic/end declared in 1ttagging.dtx. They can be disabled by assigning
these sockets the plug noop.

6.1.1 Tagging recipes

There are a number of different tagging recipes that implement different tagging ap-
proaches. They are selected through the tagging-recipe of the blockenv template.
Currently the following values are implemented:

standalone This recipe does the following;:
o Ensure that the blockenv is not inside a <text-unit> structure. If

necessary, close the open one (and any open <text> structure).

e Text inside the body of the environment start with <text-unit><text>
unless the key tagging-suppress-paras is set to true (which is most likely
the wrong thing to do because we then get just <text> as the structure).

e At the end of the environment close </text> and possibly an inner
</text-unit> if open.

o Finally, ensure that after the environment a new <text-unit> is started, if
appropriate, e.g., if text is following.
basic This recipe does the following:
o Ensure that the blockenv is inside a <text-unit> structure, if necessary,
start one.

o If inside a <text-unit><text>, then close the </text> but leave the
<text-unit> open.

o Text inside the body of the environment start with <text-unit><text> if
tagging-suppress-paras is set to false, otherwise just with <text>.

e At the end of the environment close </text> and possibly an inner
</text-unit> if open.

34

\DebugBlocks0On
\DebugBlocks0ff
\block_debug_on:
\block_debug_off:

(cleanup

N o oA W N e

Then look if the environment is followed by an empty line (\par). If so, close
the outer </text-unit> and start any following text with
<text-unit><text>. Otherwise, don’t and following text restarts with a just
a <text> (and no paragraph indentation)

standard This recipe is like the basic one as far as handling <text-unit> and <text>
is concerned. In addition

it starts an inner tagging structure (i.e., which is therefore a child of the
outer <text-unit>).

By default this structure is a <Div> unless overwritten by the key tag-name.
If that key is used, a suitable role-map needs to be provided for the name
given.

At the end of the environment that inner structure is closed again so that we
are back on the <text-unit> level from the outside.

Then the lookahead for an empty line is done as described previously.

list This recipe is like the standard one except that

the inner structure is a list (<L>).

Furthermore everything is set up so that we have list items () with
suitable substructures (<itemlabel> for the item labels and <itembody> for
the item bodies).

If the key tag-name is specified, this is used as the tag name for the whole
list instead of <L>. Of course, it should then have a suitable rolemap.

If the key tag-attr-class is specified then this is used as the class
attribute. Again, this requires a suitable setup on the outside.

At the end of the environment the </itembody>, , and </L> (or the
tag name used) are closed.

Then the lookahead for an empty line is done as described previously.

7 Tracing and debugging

These commands enable/disable debugging messages for blocks. They also enable/disable
debugging of templates (e.g., call \DebugTemplatesOn or \DebugTemplates0ff).

The data that is produced is rather verbose and largely guided (so far) by what
seemed helpful while developing the code. This needs some cleanup at a later stage. At
the moment, if you have the following simple document

\DocumentMetadata{tagging=on, lang=en}

\documentclass{article}

\DebugBlocksOn

\begin{document}

35

8 \begin{itemize} [item-vspace=3pt]

9 \item A normal item
10 \item[\textbf{+}] A special item
11 \end{itemize}
12 \end{document}

then you will get the following information on the screen and in the .log file:

[Template] ==> Use 'blockenv' instance: itemize on input line 8
[Template] ==> template: 'std'; arguments: |item-vspace=3pt|\BooleanFalse |\NoValue |\NoValue |
[Template] ==> Use 'block' instance: std-list-1 on input line 8

[Template] == template: 'std'; argument: |item-vspace={3pt}|
[Blocks] ==> @endpe=false on input line 8
[Template] ==> Use 'list' instance: itemize-1 on input line 8

[Template] ==> template: 'std'; arguments: ||\BooleanFalse |\NoValue |\NoValue |
[Blocks] ==> Set first block everypar on input line 8
[Blocks] ==> template:list:std end

[Template] ==> Use 'item' instance: basic on input line 9
[Template] ==> template: 'std'; argument: ||

[Blocks] ==> Set item block everypar on input line 9
[Blocks] ==> ... in item block everypar on input line 9
[Blocks] ==> increment P on input line 9

[Blocks] ==> Set noop block everypar on input line 9

[Template] ==> Use 'item' instance: basic on input line 10
[Template] ==> template: 'std'; argument: |label={\textbf {+}}|
[Blocks] ==> item with optional

[Blocks] ==> Set item block everypar on input line 10

[Blocks] ==> ... in item block everypar on input line 10

[Blocks] ==> increment P on input line 10

[Blocks] ==> Set noop block everypar on input line 10

[Blocks] ==> blockenv common ending on input line 11

[Blocks] ==> flattened=false on input line 12
[Blocks] ==> Structure-end text-unit after displayblock on input line 12

8 New and redefined kernel command

\SimpleBlockEnv to be documented
\BlockEnv

\BlockEnvEnd
\g_block_nesting_depth_int

\legacyverbatimsetup to be documented
\legacyallttsetup

\legacylistsetup

\@setupverbinvisiblespace A counterpart definition to the kernel command \@setupverbinvisiblespace, needed
as we need to handle real space chars in verbatim.

36

\newtheorem
\newtheoremstyle

\@nthm

\@xnthm

\@ynthm

\@thm

\@xthm

\@ythm

\@othm
\@begintheorem
\@opargbegintheorem
\@endtheorem

\item
\@itemlabel

\c@maxblocklevels

\begin

\@doendpe
\para_end:

para/begin

Reimplemented to fit the template approach. \newtheoremstyle was defined by amsthm.

These are no longer used (to be removed).

The \item is redefined.

A counter to increase or decrease the number of supported level. If increased, one needs
to supply additional level instances.

The \begin is slightly redefined to handle \@doendpe better. TODO: move to kernel

The original IXTEX 2 command is augmented to allow for tagging.

TODO: consider name, document

The para/begin hook is enhanced to support list ends

37

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols

@@ commands:

\1_0Q@_legacy_env_params_tl 328
AL e 369

A
\AddToHook 50, 94, 138, 155, 237, 325, 337
alltt (env.) 160
alltt* (env.) 160
B

\begin 37
\bfseries 322, 374
block commands:

\block_debug_off: 35

\block_debug on: 35

\g_block_nesting_depth_int 36
block proof-1 (instance) 447
block proof-2 (instance) 447
block quotation-1 (instance) 131
block quotation-2 (instance) 131
block quotation-3 (instance) 131
block quotation-4 (instance) 131
block quotation-5 (instance) 131
block quotation-6 (instance) 131
block quote-1 (instance) 124
block quote-2 (instance) 124
block quote-3 (instance) 124
block quote-4 (instance) 124
block quote-5 (instance) 124
block quote-6 (instance) 124
block std-display-1 (instance) 31
block std-display-2 (instance) 31
block std-display-3 (instance) 31
block std-display-4 (instance) 31
block std-display-5 (instance) 31
block std-display-6 (instance) 31
block std-list-1 (instance) 287
block std-list-2 (instance) 287
block std-list-3 (instance) 287
block std-list-4 (instance) 287
block std-list-5 (instance) 287
block std-list-6 (instance) 287
block thm-legacy2e-1 (instance) 411
block thm-legacy2e-2 (instance) 411
block thm-plain-1 (instance) 394
block thm-plain-2 (instance) 394
block thm-remark-1 (instance) 402

38

block thm-remark-2 (instance) 402
block verbatim-1 (instance) 227
block verbatim-2 (instance) 227
block verbatim-3 (instance) 227
block verbatim-4 (instance) 227
block verbatim-5 (instance) 227
block verbatim-6 (instance) 227
\BlockEnvc...... 14
\BlockEnv 14, 36
blockenv alltt (instance) 197
blockenv alltt* (instance) 212
blockenv center (instance) 58
blockenv description (instance) 274
blockenv displayblock (instance) 6
blockenv displayblockflattened (in-
stance) 23
blockenv enumerate (instance) 260
blockenv flushleft (instance) 72
blockenv flushright (instance) 90
blockenv itemize (instance) 245
blockenv list (instance) 348
blockenv proof (instance) 422
blockenv quotation (instance) 100
blockenv quote (instance) 112
blockenv verbatim (instance) 165
blockenv verbatim* (instance) 181
blockenv verse (instance) 142
\BlockEnvEnd 14
\BlockEnvEnd 14, 36, 3,

5, 52, 54, 56, 96, 98, 140, 157, 159,
161, 163, 239, 241, 243, 335, 346, 421

\BooleanFalse 13
\BooleanTrue 13, 420
C
captionedtext proof (instance) 436
center (env.) 50
\centering 506

cs commands:
\cs_set_eq:NN 343
D
\DebugBlocksOff 35
\DebugBlocksOn 35
\DebugTemplatesOff 35
\DebugTemplatesOn 35

\DeclareDocumentEnvironment
17,95, 97, 139, 242

\DeclareIlnstance
6, 23, 31, 58, 72, 100, 112, 124,
131, 142, 165, 181, 197, 212, 227
245, 260, 274, 287, 305, 306, 307,
308, 309, 311, 313, 315, 317, 318,
320, 348, 361, 365, 394, 402, 411,
422, 436, 447, 455, 466, 477, 488, 511
\DeclareInstanceCopy 45, 46, 47, 48
49, 86, 90, 126, 127, 128, 129, 130,
133, 134, 135, 136, 137, 232, 233,
234, 235, 236, 300, 301, 302, 303,
304, 381, 387, 392, 401, 410, 417, 454
\DeclareRobustCommand . 506, 507, 508, 509

description (env.) 237
dim commands:

\dim_zero:N 341, 342
displayblock (env.) 2
displayblockflattened (env.) 2

E
\EditInstance 87, 91, 382, 388, 393
enumerate (env.) 237
environments:

alltt ... 160

alltt* 160

centerii 50

description 237

displayblock 2

displayblockflattened 2

enumerate 237

flushleft 50

flushright 50

itemize 237

1ist oo 325

proof 418

quotation 94

quote 94

trivlist 337

verbatim 155

verbatim*x 155

VELSE . .ttt 138

F
flushleft (env.) 50
flushright (env.) 50
I
\ignorespaces 21
instances:

block proof-1 447

block proof-2 447

block quotation-1 131

block quotation-2 131

block quotation-3 131

39

block quotation-4 131
block quotation-5 131
block quotation-6 131
block quote-1 124
block quote-2 124
block quote-3 124
block quote-4 124
block quote-5 124
block quote-6 124
block std-display-1 31
block std-display-2 31
block std-display-3 31
block std-display-4 31
block std-display-5 31
block std-display-6 31
block std-list-1 287
block std-list-2 287
block std-list-3 287
block std-list-4 287
block std-list-5 287
block std-list-6 287
block thm-legacy2e-1 411
block thm-legacy2e-2 411
block thm-plain-1 394
block thm-plain-2 394
block thm-remark-1 402
block thm-remark-2 402
block verbatim-1 227
block verbatim-2 227
block verbatim-3 227
block verbatim-4 227
block verbatim-5 227
block verbatim-6 227
blockenv alltt 197
blockenv alltt*x 212
blockenv center 58
blockenv description 274
blockenv displayblock 6
blockenv displayblockflattened .. 23
blockenv enumerate 260
blockenv flushleft 72
blockenv flushright 90
blockenv itemize 245
blockenv list 348
blockenv proof 422
blockenv quotation 100
blockenv quote 112
blockenv verbatim 165
blockenv verbatim* 181
blockenv verse 142
captionedtext proof 436
item basic 318
item description 318
list description 317

list enumerate-1 309
list enumerate-2 309
list enumerate-3 309
list enumerate-4 309
list itemize-1 305
list itemize-2 305
list itemize-3 305
list itemize-4 305
list legacyc.ovuvn... 361
para center 466
para justify 455
para raggedleft 488
para raggedright 477
para verse 511
thmstyle definition 387
thmstyle legacy2e 392
thmstyle plain 365
thmstyle remark 381
\item 9, 37
item basic (instance) 318
item description (instance) 318
itemize (env.) 237
\itemsep 38, 293
\itshape 379, 384, 442
J
\justifying 506
K
\KeyValue 36, 37, 125, 132, 291, 292
L
\labelenumi 310
\labelenumii 312
\labelenumiii 314
\labelenumiv 316
\labelitemi 305
\labelitemii 306
\labelitemiii 307
\labelitemiv 308
\labelwidth 342
\leftmargin 296, 341
\legacyallttsetup 36, 210, 225
\legacylistsetup 25, 36, 355
\legacyverbatimsetup 36, 178, 194
list (env.) 325
\ldist ... 339
list description (instance) 317
list enumerate-1 (instance) 309
list enumerate-2 (instance) 309
list enumerate-3 (instance) 309
list enumerate-4 (instance) 309
list itemize-1 (instance) 305
list itemize-2 (instance) 305

40

list itemize-3 (instance) 305

list itemize-4 (instance) 305

list legacy (instance) 361

\listparindent 6
M

\makelabel 343
N

\NewDocumentEnvironment 2, 4, 160, 162, 418
\newtheorem 26-28, 37

\newtheoremstyle 13, 26, 27, 37

\normalfont 322, 385, 390, 445

\NoValue 3-5, 12, 13

\Novalue 18
(0)

\obeyedline 19, 157, 159
P

\par ... 16

para center (instance) 466

para commands:

\para_end: 37
para justify (instance) 455
para raggedleft (instance) 488
para raggedright (instance) 477
para verse (instance) 511
para/begin 37
\parindent 398, 407, 414, 451, 458
\ParseLaTeXeTheoremlike 29, 420
\Parsepii 290
\parskip 8, 35, 399, 408, 415, 452
\partopsep 34, 289
\popQED 29, 421
proof (env.) ... 418
\pushQED 29, 419

Q
\ged ... 419
quotation (env.) 94
quote (ENV.) 94
R
\raggedleft 506
\raggedright 506
\RenewDocumentEnvironment 17,

51, 53, 55, 156, 158, 238, 240, 326, 338

\rightmargin 42, 297
S

\setcounter 30

\SimpleBlockEnv 13

\SimpleBlockEnv 13,

25, 36, 3, 5, 52, 54, 56, 96, 98, 140,
157, 159, 161, 163, 239, 241, 243, 333
\swapnumbers 18, 26, 27

\tagpdfsetup 499
TEX and KWTEX 2¢ commands:
\@beginparpenalty 8
\@begintheorem 37
\@centercr 475, 486, 497, 520
\@doendpe 37
\@endparpenalty 8
\@endtheorem 37
\@enumdepth 22, 270
\@flushglue
...... 9, 462, 471, 472, 483, 493, 518
\@itemdepth 22, 251
\@itemlabel 37, 330
\@itempenalty 8
\@list... 7
\@listdepth 7
\@listi 6, 7
\@listii 6, 7
\@listvi 7
\@normalcr 9, 464
\@nthm 37
\@opargbegintheorem 37
\@thm 37
\@setupverbinvisiblespace 36
\@sxverbatim 20, 195
\ethm 37
\@xnthm 37
\@xthm 37
\@xverbatim 179
\@ynthm 37
\Qythmo 37
\arabic 10
\begin 37
\c@maxblocklevels 37
\ignorespaces 7
\item 14, 37
\itemsep 8

41

\labelsepc.c.ueuen... 10

\labelwidth 10

\leftmargin 8

\legacylistsetup 24

\list ... 25

\list(romannumeral) 15, 23

\makelabel 10, 26

\pari 35

\parindent 9, 28

\parskip 8, 28

\partopsep 8

\pdffakespace 20

\rightmargin 8

\strut 10

\topsep 8

\z@skip 460, 461, 473, 482, 484, 494, 495
\theoremstyle 26, 27
\thmstyle 28
thmstyle definition (instance) 387
thmstyle legacy2e (instance) 392
thmstyle plain (instance) 365
thmstyle remark (instance) 381
tl commands:

\tl_set:Nn 328, 330
\topsep 33, 288, 404
trivlist (env.) 337

U
use commands:

\use:n 343
\UseInstance 506, 507, 508, 509
\UseName 39, 40, 294, 295
\UseStructureName 103, 115, 145, 168

184, 200, 215, 248, 263, 277, 351, 425

\%
verbatim (env.) 155
verbatim* (env.) 155
verse (ENV.) 138

	Contents
	1 Introduction
	2 Template types and templates for blocks and lists
	2.1 Template types
	2.1.1 The template type `blockenv'
	2.1.2 The template type `block'
	2.1.3 The template type `para'
	2.1.4 The template type `list'
	2.1.5 The template type `captionedtext'
	2.1.6 The template type `item'
	2.1.7 The template type `thmstyle'

	2.2 Templates
	2.2.1 The blockenv template `std'
	2.2.2 The block template `std'
	2.2.3 The para template `std'
	2.2.4 The list template `std'
	2.2.5 The item template `std'
	2.2.6 The captionedtext template `thmlike'
	2.2.7 The captionedtext template `proof'
	2.2.8 The thmstyle template `std'

	3 Declaring standard display block environments and their instances
	3.1 The display and displayflattened environments
	3.1.1 Their blockenv instances
	3.1.2 Their block instances

	3.2 The center, flushleft, and flushright environments
	3.2.1 Their blockenv instances
	3.2.2 Their block instances
	3.2.3 Their para instances

	3.3 The quote and quotation environments
	3.3.1 Their blockenv instances
	3.3.2 Their block instances

	3.4 The verse environment
	3.4.1 Their blockenv instances

	3.5 The verbatim, verbatim* and alltt environments
	3.5.1 Their blockenv instances
	3.5.2 Their block instances

	3.6 The trivlist environment
	3.7 The standard lists: itemize, enumerate, and description
	3.7.1 Their blockenv instances
	3.7.2 Their block instances
	3.7.3 Their list instances
	3.7.4 Their item instances

	3.8 The legacy list and trivlist environments
	3.8.1 Its blockenv instance
	3.8.2 Its list instance

	3.9 Theorem-like environments declared through \newtheorem
	3.9.1 The blockenv instances they use
	3.9.2 The captionedtext instances they use
	3.9.3 The thmstyle instances they use
	3.9.4 The block instances they use

	3.10 The proof environment (from amsthm)
	3.10.1 Block instances for the proofs

	4 Declaring para instances
	5 Advice on adjusting the layout of standard block environments
	6 Tagging support
	6.1 Paragraph tags
	6.1.1 Tagging recipes

	7 Tracing and debugging
	8 New and redefined kernel command
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

