Prototype reimplementation of IXTEX 2¢’s block

Contents
1 Introduction

2 Template types and templates for blocks and lists
2.1 Template types

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7

2.2 Templates oL e

2.2.1
2.2.2
2.2.3
224
2.2.5
2.2.6
2.2.7
2.2.8

environments using templates

ETEX Project”
v0.9m 2026-01-16

Abstract

S~

The template type ‘blockenv’,
The template type ‘block” L.
The template type ‘para’
The template type ‘list”
The template type ‘captionedtext”
The template type ‘item’”,
The template type ‘thmstyle’

The blockenv template ‘std”
The block template ‘std”
The para template ‘std’ L. 10
The list template ‘std” 11
The item template ‘std’ L. 11
The captionedtext template ‘thmlike’ 12
The captionedtext template ‘proof’ 12
The thmstyle template std” 13

NoREN BEN e e i NG, S d) JEG; BININTANTS

*Initial reimplementation of lists done by Bruno Le Floch, generalized second version with tagging
support by Frank Mittelbach.

Declaring standard display block environments and their instances
3.1 The display and displayflattened environments
3.1.1 Their blockenv instances
3.1.2 Their block instances
3.2 The center, flushleft, and flushright environments
3.2.1 Their blockenv instances
3.2.2 Their block instances
3.2.3 Their para instances oL oL
3.3 The quote and quotation environments
3.3.1 Their blockenv instances v v v v
3.3.2 Their block instances e
3.4 The verse environment oo
3.4.1 Their blockenv instances
3.5 The verbatim, verbatim* and alltt environments
3.5.1 Their blockenv instances
3.5.2 Their block instances vt e
3.6 The trivlist environment L.
3.7 The standard lists: itemize, enumerate, and description
3.7.1 Their blockenv instances
3.7.2 Their block instances
3.7.3 Their list instances e
3.74 Their item instances e
3.8 The legacy list and trivlist environments
3.8.1 [Its blockenv instance
3.8.2 Ttslistinstance
3.9 Theorem-like environments declared through \newtheorem
3.9.1 The blockenv instances they use
3.9.2 The captionedtext instances they use
3.9.3 The thmstyle instances theyuse
3.9.4 The block instances they use
3.10 The proof environment (from amsthm)
3.10.1 Block instances for the proofs

Declaring para instances

Advice on adjusting the layout of standard block environments

Tagging support

6.1 Paragraphtags L
6.1.1 Tagging recipes

Tracing and debugging

New and redefined kernel command

14

31

33

33
33
35

36

37

9 The Implementation
9.1 Candidates for kernel changes

9.1.1
9.1.2
9.1.3
9.14

Augmented \SetKnownTemplateKeys.
Tracing templates and instances
Handling \par after the end of the list
Other useful expl3 commands

9.2 Tracing and debugging interfaces
9.3 Template types and template interfaces
9.4 TImplementation of templates

9.4.1

9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7

Some notes on the KTEX 2¢ legacy switches
9.4.1.1 Original usage: o
9.4.1.2 Repurpose:
Implementation of blockenv templates
Implementation of para templates
Implementation of block templates.
Implementation of 1list templates
Implementation of item templates
Implementation of captionedtext and thmstyle templates

9.5 Tagging support commands L oL

9.5.1
9.5.2

List tags o L
Tagging recipeso Lo e

10 Support code for document-level block environments
10.1 Verbatim-like environments oL
10.1.1 Helper commands for verbatim and verbatim*
10.1.2 Helper commands for alltt and alltt*
10.1.3 Helper command for legacy list environment
10.2 Theorem-like environments
10.2.1 Declarations for theorem-like environments
10.2.2 Supporting QED in proofs oo

11 Support for other packages and classes
11.1 Replacement for alltt
11.2 Replacement for amsthm L oo
11.3 Support for amsart and amsbook classes
11.4 Support for the enumitem interfaces
11.5 Support for the doc package

Index

38
39
39
40
40
42
42
44
46
46
47
47
48
53
95
99
62
69
(0]
79
81

83
83
83
84
85
86
86
92

94
94
94
94
96
96

97

1 Introduction

The list implementation in A TEX 2¢ serves a dual purpose: it implements real lists such
as itemize or enumerate, but it is also used as the basis for vertical blocks, i.e., to specify
the vertical spacing and paragraph handling after such block, e.g., in environments like
center, quote, verbatim, or in the theorem environments. They are all implemented as
“trivial” lists with a single (hidden) item.

While this was convenient to get a consistent layout using a single implementation
it is not adequate if it comes to interpreting the structure of a document, because envi-
ronments based on trivlist should not advertise themselves as being a “list” — after
all, from a semantic point of view they aren’t lists.

The approach taking here is therefore to offer separate template types: block (hor-
izontally or vertically oriented data that needs some handling at the start and the end),
para (that deals with different paragraph layouts), 1ist (that handles list related pa-
rameters, and item (for item layouts and handling).

To address the independent aspects we have the template type blockenv that ties
them together as necessary when we build document level environments.

For example, a quote environment would make use of a (display) block and some
para instance while a standard enumerate would make use of a display block, a list,
and an item and a para instance. An inline list (like enumerate* from the enumitem
package) would be using the same list instance but a different (horizontally oriented)
block instance build from a different template.

Instead of a 1list instance to handle the inner structure of the environment one can
use an instance of the type captionedtext to produce a display environment with an
associated heading/caption, such as a theorem-like environment or a proof environment.
Further possibilities (not yet implemented) are templates for producing boxed text or
formal quotes like those produced by the csquotes package.

2 Template types and templates for blocks and lists

2.1 Template types
2.1.1 The template type ‘blockenv’

Arg: 1 key/value list to alter the default parameters of the template instances used by
the particular blockenv environment

Arg: 2 Boolean to suppress a number in case this environment normally produces a
numbered caption

Arg: 3 Caption/heading text in case this environment supports a caption (most don’t),
otherwise \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption (most
don’t), otherwise \NoValue
Semantics:

This template type is used to implement document-level environments. It defines a
block instance to handle the layout at the “edge” of the environment data, possibly
some paragraph setup through a para instance, potentially an “inner” instance for more

complicated environments (such as lists), and possibly some additional setup code for
certain environments.

Arguments 2—4 are passed to the instance handling the inner structure, e.g., list
or captionedtext which may or may not make use of it.

It also defines how the blockenv behaves with respect to nesting, e.g., does it change
when nested and if so how many levels of nesting are supported, etc.

Finally, the template type defines how it appears in a tagged PDF document, what
tag names are used, how they are role-mapped and whether it adds additional attributes,
etc.

2.1.2 The template type ‘block’

Arg: 1 key/value list to alter the default block parameters

Semantics:

Handle the layout aspects of a block of data. In case of a “display” block (i.e., vertically
oriented) the spacing and page breaking as well as the handling if the block starts a
paragraph or ends one, that is, if text is immediately following the block without being
separated by an empty line, then this text is considered to be in the same paragraph as
the block.

In case of a horizontally oriented block it covers any special handling at the start
and end of the block, e.g, extra spacing, prohibiting or encouraging line breaks, and so
forth.

2.1.3 The template type ‘para’
Arg: 1 key/value list to alter the default item parameters

Semantics:

Sets up paragraph-specific parameters for H&J, e.g., to implement justification variations,
the behavior of \\ etc. The instances are used in higher-level templates, e.g., in a block.

2.1.4 The template type ‘list’
Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this list environment also produces a
numbered heading/caption

Arg: 3 Caption/heading text in case this environment supports a caption (lists normally
don’t), otherwise \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

Semantics:

Handle the aspects related to list design, e.g., the use and formatting of counters, etc.
Standard TTEX 2¢ lists have no heading/caption, so arguments 2-4 are ignored in
the standard 1ist template. But special lists, such as a list of ingredients for a cookbook,
might so there might be other templates that make use of them in the future.
Note that this template type does not cover block-related aspects, i.e., a list instance
could be used both for a display list or for an inline list.

2.1.5 The template type ‘captionedtext’
Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this environment also produces a numbered
heading/caption

Arg: 3 Caption/heading text for this text block; if not given then \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

Semantics:

Produces a text block with an associated caption/heading, e.g., a theorem-like environ-
ment. There may not be a user-supplied caption text—the caption may consist of a fixed
text only like “Lemma.

Handles the aspects related to the caption design and typically supports keys for
adjusting the layout of the body text, e.g., its font, etc.

Note that this template type does not cover block-related aspects, e.g., the dimen-
sions of the display block are handled there.

2.1.6 The template type ‘item’
Arg: 1 key/value list to alter the default item parameters

Semantics:

A sub-type used as part of 1ist to easily cover alternative layout for list items.

2.1.7 The template type ‘thmstyle’

Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this environment also produces a numbered
heading/caption

Arg: 3 Caption/heading text for this text block; if not given then \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

Semantics:

A sub-type used as part of captionedtext when producing theorem-like environments.
It does the bulk of the work and sets up most of the formatting. It has been separated
out because many theorem-like environments use the same theorem layout and only differ
in the fixed caption text they generate.

Not all templates of type captionedtext use thmstyle as an inner instance, e.g.,
proofs are implemented with a template that does everything necessary directly.

2.2 Templates
2.2.1 The blockenv template ‘std’
Attributes:

name (tokenlist) Name of the environment used in tracing and error messages.

tag-name (tokenlist) Name of the tag used for the block inside the PDF. If not explicitly
given the name is defined by the tagging-recipe. Note that in case of tagging-
recipe=basic no tag for the block is produced, so any key settings are ignored.
Default: (empty)

tag-attr-class (tokenlist) An explicit tag class attribute. Default: (empty)

tagging-recipe (tokenlist) Defines the way tagging is done. Currently the values
basic, standard, and list are supported. Default: standard

transparent-level (boolean) Isthis blockenv transparent for any blocks nested inside?
Default: false

legacy-code (tokenlist) Legacy setup code. This is executed after legacy defaults (from
\@listi, \@listii, etc.) are used but before the block instance is called.
Default: (empty)

block-instance (tokenlist) Part of the name of the block instance that is called. The
full name has a -(Ievel) appended. Default: std-display

para-instance (tokenlist) Paragraph settings to use within the environment. If (empty)
then the current (outer) values are retained. However, the inner-instance tem-
plate might reset/overwrite some of the para values, e.g., 1ist makes used of
\listparindent to explicitly set the paragraph indentation for compatibility.
Default: (empty)

inner-level-counter (fokenlist) Name of an existing (!) counter that is incremented
and used to determine final name of the inner-instance or empty if always the
same inner instance should be used.

max-inner-levels (tokenlist) Maximum number of nested environments of this kind.
Only relevant if there is a inner-level-counter specified. Default: 4

inner-instance-type (tokenlist) Template type of the inner instance. Currently sup-
ported types are list and captionedtext. Default: (empty)

inner-instance (tokenlist) Name of the inner instance (if any). If there is an inner-
level-counter then the instance name gets -(counter value) appended.
Default: (empty)

tagging-suppress-paras (boolean) describe Default: false

final-code (tokenlist) Final setup code Default: \ignorespaces

Semantics & Comments: The blockenv type handles the overall setup for the
document-level environments.

This blockenv template supports the legacy list setting that are found in many
document classes in the macros \@listi, \@listii, up to \@listvi. It also uses the
counter \@listdepth to track nesting of block, again mainly to support legacy setups
(internally it gives it a more appropriate name but it remains accessible through the
IATEX 2¢ name).

The internal block nesting level is stored (for historical reasons) in the \@listdepth
counter and incremented by each block by one. The starting value at top-level (outside
any block) is zero. A block environment with transparent-level=true also increments
the level before it evaluates and sets its parameters but then decrements it again, just
before it starts processing its body.

The template first checks that the block is not too deeply nested.

After the level was increased then corresponding \@list... macro to update the
legacy defaults is called.

It then sets up the tagging via the tagging-recipe setting and executes any code
in legacy-code.

Afterwards it calls the appropriate block instance based on block-instance and
current level, e.g., std-display-1.

Then it sets up paragraph parameters if a para-instance was specified (otherwise
they stay as they are).

If a inner-instance was specified this is called next, or more precisely: if no inner-
level-counter was specified the instance inner-instance is called.

Otherwise, the inner-level-counter is incremented and the instance with the name
inner-instance-inner-level-counter is called.

Finally, the final-code is executed (by default \ignorespaces).

The maximum number of blockenvs that can be nested into each other is restricted
by the IXTEX counter maxblocklevels with a default value of 6. If this value is increased
then it is necessary to provide additional instances, e.g., std-display-7, etc. Decreasing
is, of course, always possible, then some of the instances defined are not used and instead
the user gets an error that there is too much nesting going on.

If the key transparent-level is set to true then such an environment alters
the nesting level only temporarily (while processing the blockenv template) and you
can therefore nest those environments as often as you like (a typical example would
be flushleft anywhere in the nesting hierarchy) as long as the level isn’t already at
maxblocklevels).

2.2.2 The block template ‘std’
Attributes:
begin-vspace (skip) Vertical space before the block. Default: \topsep

begin-extra-vspace (skip) Extra vertical space before the block if the block forms its
own paragraph. Default: \partopsep

begin-unchained-vspace (skip) Vertical space before the block to use if this is a nested
block, both blocks have items or captions, and these should not be chained; see
description below. Default: .5\topsep

para-vspace (skip) The default for ordinary blocks is to use the \parskip from the
outer galley. In lists and some other special blocks this is then changed.
Default: \parskip

end-vspace (skip) Vertical space after the block. Default: value from begin-vspace

end-extra-vspace (skip) Extra vertical space after the block if the block forms its own
paragraph. Default: value from begin-extra-vspace

item-vspace (skip) The space in front of an item if the block is a list; if not, the setting
has no effect. Default: \itemsep

begin-penalty (integer) Penalty for breaking before the block.
Default: \@beginparpenalty

end-penalty (integer) Penalty for breaking after the block. Default: \@endparpenalty

item-penalty (integer) Penalty for breaking before an item in the list (except the first).
Default: \@itempenalty

left-margin (length) Space on the left of the block. Default: \leftmargin
right-margin (length) Space on the right of the block. Default: \rightmargin

para-indent (length) Paragraph indention for paragraphs within the block. Default: Opt

Semantics & Comments: Sets up the main block parameters, e.g. its spacing before
and after and the indentation on either side.

It also sets up some parameter defaults for the inner level, e.g., item—penalty,
item-vspace and para-indent, which may get overwritten by inner instances that are
called.

The vertical spacing before the block covers four different use cases: If there is a
caption or an item waiting to be placed, and this item allows for “chaining”, and the new
block also wants to place an item then no space is added (spacing was already added by
the outer block). Instead, the items are chained and placed that the start of the block,
i.e., producing a layout like the two nested itemize environments here:

. — A second-level item
— Another ...

More text for the first-level item

e Another first-level item

In that case there is also no vertical space after the block. If the items should not be
chained (as specified by the setup of the outer block), then one gets a result like this one
(using itemize environments inside description with different treatment of individual
description \items):
An normal label ¢ A second-level item

e Another ..

More text for the first-level item

An unchained label
e A second-level item
e Another ..

More text for the first-level item
A normal label Another first-level item

If “unchaining” happens, as in the second item, then vertical spacing with the value of
begin-unchained-vspace is used and at the end you get end-vertical-space.
Otherwise, if there is no item or caption waiting to be placed you get a vertical space
of begin-vspace before the block and if the block is its own paragraph you additionally
get begin-extra-vspace added to this.
Note that IATEX 2¢ always chained the list items, so the ability to prohibit this is
new functionality.

2.2.3 The para template ‘std’

Attributes:
para-indent (length) Default: \parindent
begin-hspace (skip) Horizontal skip added just in front of the indentation box if non-
Zero Default: Opt
left-hspace (skip) Default: Opt
right-hspace (skip) Default: Opt
end-hspace (skip) Default: \@flushglue
fixed-word-spaces (boolean) Default: false
final-hyphen-demerits (integer) Default: 5000
newline-cmd (function(0)) This defines the meaning of \\ Default: \@normalcr
para-attr-class (tokenlist) Default: justify

Semantics & Comments: The begin-hspace (normally Opt) is the counterpart of

end-hspace (which is normally Opt plus 1fil). It can be useful in special paragraph

shapes. The skip is only inserted into the paragraph if it is non-zero. If it is made non-zero

then paragraphs are always at least one line including a construct like \noindent\par!
TODO: to be further documented

10

2.2.4 The list template ‘std’
Attributes:

counter (tokenlist) Counter name to be used in a numbered list or empty, if the list is
unnumbered. Default: (empty)

item-label (tokenlist) Label “string” for a fixed label or as generated from the current
counter value. Default: (empty)

start (integer) Start value for the counter if the list is numbered, otherwise irrelevant.
Default: 1

resume (boolean) Should a numbered list be resumed from the last instance?.
Default: false

item-instance (instance) Instance of type item to be used to format the label string.
Default: basic

item-vspace (skip) The space in front of an item in the list. If not specified the value
specified in the block template instance is used.

item-penalty (integer) Penalty for breaking before an item (except the first). If not
specified the value specified in the block template instance is used.

item-indent (length) Horizontal displacement of the item. Default: Opt

label-width (length) Width reserved for the formatted item label.
Default: \1abelwidth

label-sep (length) Horizontal separation between label and following text.
Default: \1labelsep

legacy-support (boolean) Is formatting the label via \makelabel supported?
Default: false

Semantics & Comments: Sets up handling of list material, e.g., numbering (if any),
layout of items and list elements, and tagging, if requested.

2.2.5 The item template ‘std’

Attributes:

counter-label (functionl) unused. Default: \arabic{#1}
counter-ref (functionl) unused. Default: value from counter-label
label-ref (functionl) unused. Default: #1
label-autoref (functionl) unused. Default: item #1

label-format (functionl) Formatting of the label, questionable the way it is used.
Default: #1

label-strut (boolean) Add a \strut to the label? Default: false

11

(ﬁx

label-align (choice) Supported values left,center, right, and parleft. Only partly
implemented. Default: right

label-placement (choice) Placement of the label in relation to a directly following la-
bel (of a following inner list). Supported values are chained, unchained, and

standalone. Default: chained
label-boxed (boolean) Should the label be boxed? Default: true
next-line (boolean) Default: false

text-font (tokenlist) unused.

compatibility (boolean) Default: true

Semantics & Comments: This template is only rudimentary implemented at the mo-
ment. It probably needs other keys and the existing ones need a proper implementation!

2.2.6 The captionedtext template ‘thmlike’
Attributes:

counter (tokenlist) Counter name to be used if the caption is numbered, otherwise
empty. Default: (empty)

title (tokenlist) Fixed part of the caption, e.g., a theorem-like environment may want
to specify “Lemma” here. Default: (empty)

style (instance) Instance of type thmstyle that actually implements the theorem-like

environment. Default: plain

Semantics & Comments: The template combines the fixed title and a number (if
present) with the caption text as specified on the document element, if one is given, e.g.,
“Theorem 1. (Fermat)”. See also the proof template, which handles this differently.

The bulk of the work is then outsourced to an instance of type thmstyle. As many
such theorem-like environments share the same layout and only differ in the first caption
string they use, there is this split for convenience.

2.2.7 The captionedtext template ‘proof’
Attributes:

title (tokenlist) Heading for the environment unless overwritten on document level.
Default: Proof

punct (tokenlist) Punctuation following the heading. Default: .

caption-placement (choice) Supported values chained,unchained, and standalone
Default: unchained

before-hspace (skip) Horizontal displacement of the heading. Default: Opt

12

after-hspace (skip) Space following the heading, only relevant if text follows on the
same line. Default: 5pt

caption-decls (tokenlist) Declarations that are applied to the whole caption, e.g., some

font settings. Default: (empty)
title-format (functionl) Formatting applied to the title value. Default: #1
punct-format (function!) Formatting applied to the punct value. Default: #1

body-decls (tokenlist) Declarations that are applied to body of the environment, e.g.,
font settings. Default: (empty)

Semantics & Comments: The “unnumbered?” argument (#2) is ignored, as proofs
aren’t numbered. The template makes use of the caption argument (#3) but in contrast
to theorem-like environments this template replaces the title key value with the content
of this argument (if not \NoValue).

Typically there is only one layout for proofs so that there is no need to split the
formatting over two templates as done for theorem-like environment. That’s the reason
why the template has several layout customization parameters.

2.2.8 The thmstyle template ‘std’

Attributes:

numbered (boolean) Is this kind of environment numbered? Default: true
space (tokenlist) Space to be applied between elements of the heading Default: \\,
punct (tokenlist) Punctuation following the heading. Default: .

caption-placement (choice) Supported values chained,unchained, and standalone
Default: unchained

before-hspace (skip) Horizontal displacement of the heading. Default: Opt

after-hspace (skip) Space following the heading, only relevant if text follows on the
same line. Default: 5pt

order (commalist) Order of elements in the environment caption/heading. Supported
values are title, number, punct, space, and note.
Default: title, space,number,space,note

caption-decls (tokenlist) Declarations that are applied to the whole caption, e.g., some

font settings. Default: (empty)
title-format (functionl) Formatting applied to the title value. Default: #1
number-format (function!) Formatting applied to the number value. Default: #1
punct-format (tokenlist) Formatting applied to the punct value. Default: #1
note-format (functionl) Formatting applied to the note value. Default: (#1)

body-decls (tokenlist) Declarations that are applied to body of the environment, e.g.,
font settings. Default: (empty)

13

\SimpleBlockEnv

Semantics & Comments: Numbering of the environment is suppressed uncondition-
ally if the numbered is set to false. Otherwise the environment is numbered except
when #2 is \BooleanTrue, i.e., if the star form of the environment was used.

The caption of the environment can consist of a title, a number, a punctuation,
some spaces and a note. Their order is defined by the key order. If a component is
specified but has no value, e.g., no note or the numbering suppressed on an individual
environment, then the component and any preceding spaces are ignored.

Spaces between elements are uniform (as one can only specify space in the order key,
but it is possible to use this several times in a row and adjust the space key accordingly.

Alternatively, one can omit using space in the order key and instead put all neces-
sary spacing into the individual ...-format keys. This approach is used, for example,
if a theorem style is set up with \newtheoremstyle and its ninth argument contains a
declaration such as

\thmname{#1}\thmnumber{ #2}\thmnote{ (#3)}

This is then translated to

order = {title,number,punct,note} ,
title-format = {#1} ,

number-format = { #2} ,

note-format = { (#3)} ,

when \newtheoremstyle sets up a new instance. The downside of this approach is that
\swapnumbers would not work with such styles (because it would be necessary to transfer
the space inside value for the number-format key to the value of title-format).

If you look closely you also see that in the order key a punct was added in the list
even though it was not present originally. This is they way \newtheoremstyle worked
and so we mimic that.

3 Declaring standard display block environments and
their instances

Historically the IATEX kernel has defined a number of block environments directly, e.g.,
center or lists like itemize, but left others to be set up by document classes. For now
we declare all of them here, but in the future, some (or even all) might get moved to new
class files.

Most of the standard block environments have no need for a caption, so to sim-
plify the setup we have added the command \SimpleBlockEnv that hides the ar-
guments 2-4 required by a blockenv instance and gives them suitable values, i.e.,
\BooleanFalse\NoValue\Novalue. This way, a document level definition for the center
environment will look like this:

\NewDocumentEnvironment{center} { !'0{} }
{ \SimpleBlockEnv{center}{#1} } { \BlockEnvEnd }

instead of the more verbose

\NewDocumentEnvironment{center} { !'0{} }
{ \UseInstance{blockenv}{center}{#1} \BooleanFalse \NoValue \NoValue }
{ \BlockEnvEnd }

14

We use !'0{} for the optional argument so that it is only recognized if it immediately
follows \begin{center} without any spaces to avoid that a [at the start of the body
text is misinterpreted as the opening bracket of the optional argument. This is only done
for environments where this could be a problem.

This will then call the center instance of type blockenv that handles the rest.

\BlockEnv For the environments that make use of the other arguments, we offer \BlockEnv as syntac-
\BlockEnvEnd tic sugar so that most environment declarations look similar. And we use \BlockEnvEnd
in both cases to finish off.

1 (*class-code)

In the following sections we provide for all block environments the top-level definition
and all instances that are used by it. Instances of type block are often reused across the
environments, in which case we just provide cross-references. Note that this is a design
decision, different classes my want to have adjusted settings for individual environments,
in which case they would provide special block instances instead of reusing, say, the
std-display-(level) instances.

3.1 The display and displayflattened environments

displayblock (env.) There are two basic block environments (displayblock and displayblockflattened)
displayblockflattened (env.) which are similar to IITEX 2¢’s trivlist except that they aren’t degenerated lists and
thus have no hidden \item inside.

> \NewDocumentEnvironment{displayblock}{ !'0{} }
s { \SimpleBlockEnv{displayblock} {#1} } { \BlockEnvEnd }

+ \NewDocumentEnvironment{displayblockflattened}{ !0{} }
5 { \SimpleBlockEnv{displayblockflattened} {#1} } { \BlockEnvEnd }

3.1.1 Their blockenv instances

blockenv displayblock (inst.) This is like W TEX 2¢’s trivlist, i.e., it produces a vertical block with default setting,
but doesn’t put a list inside but uses a <Div> structure.
We list all keys, those with default values, commented out.

s \DeclareInstance{blockenv}{displayblock}{std}

8 name = displayblock
o % ,tagging-recipe = standard

0 % ,tag-name =

1 % ,tag-attr-class =

12 ,transparent-level = true
5 % ,legacy-code =
1 % ,block-instance = std-display

15 % ,para-instance =
6 % ,tagging-suppress-paras = false
17 % ,inner-instance =

15 % ,inner-instance-type = % not relevant as there is no inner instance
19 % ,inner-level-counter = % not relevant as there is no inner instance
20 % ,max-inner-levels =4 % not relevant as there is no inner instance
21 % ,final-code = \ignorespaces

22}

The block uses the instance std-display which is shown below.

15

nv displayblockflattened (inst.) This flattens inner paragraphs without any surrounding tag structure by using the basic
tagging recipe.
>3 \DeclareInstance{blockenv}{displayblockflattened}{std}

2 {

25 name = displayblockflattened
26 ,tagging-recipe = basic

27 ,tagging-suppress-paras = true

28 ,transparent-level = true

29 }

3.1.2 Their block instances

We provide 6 nesting levels (as in IXTEX 2¢). If you want to provide more you need to
change the maxblocklevels counter, offer further std-display-(level) instances but
also define further (legacy) \list(romannumeral) commands for the defaults. If not,
then the settings from the previous level are reused automatically—which may or may
not be good enough).

50 \setcounter{maxblocklevels}{6}

block std-display-1 (inst.) We show all keys here for reference, with those using their default values commented
block std-display-2 (inst.) out:
block std-display-3 (inst.) i \DeclareInstance{block}{std-display-1}{std}
block std-display-4 (inst.) = {
block std-display-5 (inst.) 3 % ,begin-vspace = \topsep
block std-display-6 (inst.) 3 h ,begin-extra-vspace = \partopsep
s h ,para-vspace = \parskip
56 ,end-vspace = \KeyValue{begin-vspace}
CaA ,end-extra-vspace = \KeyValue{begin-extra-vspace}
s h ,item-vspace = \itemsep
29 % ,begin-penalty = \UseName{@beginparpenalty}
w0 ,end-penalty = \UseName{@endparpenalty}
41 ,left-margin = Opt
2 h ,right-margin = \rightmargin
3 % ,para-indent = Opt
44 }

s \DeclareInstanceCopy{block}{std-display-2}{std-display-1}
s \DeclareInstanceCopy{block}{std-display-3}{std-display-1}
27 \DeclareInstanceCopy{block}{std-display-4}{std-display-1}
s \DeclareInstanceCopy{block}{std-display-5}{std-display-1}
2 \DeclareInstanceCopy{block}{std-display-6}{std-display-1}

3.2 The center, flushleft, and flushright environments

All three environments use the std-display instance as block instance. They only differ
in the choice of para instance.

center (env.) For now we redeclare various document environments as late as possible in order to make
flushleft (env.) tagging work, even if classes have changed the definitions. Of course, this means that
flushright (enwv.) such changes get lost.
50 \AddToHook{begindocument/before}[./legacy-corel{

51 \RenewDocumentEnvironment{center} { '0{} }
52 { \SimpleBlockEnv{center}{#1} } { \BlockEnvEnd }

16

53 \RenewDocumentEnvironment{flushright} { !'0{} }
s« { \SimpleBlockEnv{flushright}{#1} } { \BlockEnvEnd }

55 \RenewDocumentEnvironment{flushleft} { '0{} }
s6 { \SimpleBlockEnv{flushleft}{#1} } { \BlockEnvEnd }

3.2.1 Their blockenv instances

blockenv center (inst.) The center environment is defined through the blockenv instance center which makes
use of the block instance std-display-(level) and the para instance center. The
block nesting level is not incremented. With respect to tagging, text separated by \par
commands (or empty lines) inside the environment is not tagged as separate paragraphs,
i.e., the whole environment is considered to be part of an outer paragraph.

53 \DeclareInstance{blockenv}{center}{std}

so {

60 name = center
61 ,tag-name =

62 ,tag-attr-class =

63 ,tagging-recipe = basic

64 ,tagging-suppress-paras = true
65 ,inner-level-counter

66 ,transparent-level = true
67 ,legacy-code =
68 ,block-instance = std-display

69 ,para-instance center

70 ,inner-instance =

blockenv flushleft (inst.) Same as center except that we use the para instance raggedright.

72 %\DeclareInstance{blockenv}{flushleft}{std}
7
7 % name
s % ,tag-name =
% % ,tag-attr-class =
7 % ,tagging-recipe = basic
s % ,tagging-suppress-paras = true
79 % ,inner-level-counter =

flushleft

&0 % ,transparent-level = true

s h ,legacy-code =

2 % ,block-instance = std-display

& % ,para-instance = raggedright

s % ,inner-—instance =

& ht
Or more concise in the source and perhaps even faster in processing if only few keys are
changed:

s \DeclareInstanceCopy{blockenv}{flushleft}{center}
&7 \EditInstance{blockenv}{flushleft}{

88 name = flushleft

89 ,para-instance = raggedright }

blockenv flushright (inst.) Same game for flushright.
o0 \DeclareInstanceCopy{blockenv}{flushright}{center}

17

o \EditInstance{blockenv}{flushright}{
92 name = flushright
93 ,para-instance = raggedleft }

3.2.2 Their block instances

They all use the block instances std which have already been set up in section 3.1.2.

3.2.3 Their para instances

Formatting of paragraphs is handled through the para-instance key which either refers
to a instance of type para or is empty, in which case the handling of paragraphs is
inherited. The predefined instances are discussed in section 4.

3.3 The quote and quotation environments

IWTEX 2¢ has two environments for quoting: quote and quotation. By default they

differ only in indentation of inner paragraphs. This is handled by using separate block

instances. The paragraph setup is inherited. The block nesting level is incremented.
The tag names are both role-mapped to <BlockQuote>.

quote (env.) We can’t use \RenewDocumentEnvironment for quote and other environments that
quotation (env.) are class defined, because some classes aren’t implementing them at all. So we use
\DeclareDocumentEnvironment instead. This problem will vanish if all such definitions

move in new versions of the classes instead.

o \AddToHook{begindocument/before}[./legacy-quotes]{
o5 \DeclareDocumentEnvironment{quote}{ !0{} }
96 { \SimpleBlockEnv{quote} {#1} } { \BlockEnvEnd }

o7 \DeclareDocumentEnvironment{quotation}{ !'0{} }
98 { \SimpleBlockEnv{quotation} {#1} } { \BlockEnvEnd }

3.3.1 Their blockenv instances

blockenv quotation (inst.) For the quotation environment:
100 \DeclareInstance{blockenv}{quotation}{std}

101 {

102 name = quotation

103 ,tag-name = \UseStructureName{block/quotation}
104 ,tag-attr-class =

105 ,tagging-recipe = standard

106 ,inner-level-counter =

107 ,transparent-level = false

108 ,legacy-code =

109 ,block-instance = quotation

110 ,inner-instance

1}

blockenv quote (inst.) For the quote environment:

112 \DeclareInstance{blockenv}{quote}{std}
113 {

114 name = quote

18

115 ,tag-name \UseStructureName{block/quote}

116 ,tag-attr-class =

117 ,tagging-recipe = standard
118 ,inner-level-counter =

119 ,transparent-level = false

120 ,legacy-code =

121 ,block-instance = quote

122 ,inner-instance =

123 }

3.3.2 Their block instances

Default layout is to indent equally from both sides.

122 \DeclareInstance{block}{quote-1}{std}
125 { right-margin = \KeyValue{left-margin} }

block quote-1 (inst.

(inst.)
block quote-2 (inst.)
block quote-3 (inst.)
block quote-4 (inst.) 126 \DeclareInstanceCopy{block}{quote-2}{quote-1}

() »7 \DeclareInstanceCopy{block}{quote-3}{quote-1}

() \DeclareInstanceCopy{block}{quote-4}{quote-1}
120 \DeclareInstanceCopy{block}{quote-5}{quote-1}

130 \DeclareInstanceCopy{block}{quote-6}{quote-1}

block quote-5 (inst.

block quote-6

inst.

block quotation-1 (inst.) Quotation additionally changes the para-indent.

block quotation-2 (inst.) 5 \DeclareInstance{block}{quotation-1}{std}

(inst.)
(inst.)
block quotation-3 (inst.) ix { para-indent = 1.5em , right-margin = \KeyValue{left-margin} }
block quotation-4 (inst.) 133 \DeclareInstanceCopy{block}{quotation-2}{quotation-1}

() 132 \DeclareInstanceCopy{block}{quotation-3}{quotation-1}

() \DeclareInstanceCopy{block}{quotation-4}{quotation-1}
136 \DeclareInstanceCopy{block}{quotation-5}{quotation-1}

137 \DeclareInstanceCopy{block}{quotation-6}{quotation-1}

block quotation-5 (inst.

block quotation-6 (inst.

3.4 The verse environment

The verse environment of KTEX is intended for poetry. Not sure what that should mean
with respect to tagging.

verse (env.) Implementation is like quote etc.

135 \AddToHook{begindocument/before}[./legacyl{
130 \DeclareDocumentEnvironment{verse}{!0{}}
140 { \SimpleBlockEnv{verse} {#1} } { \BlockEnvEnd }

3.4.1 Their blockenv instances

blockenv verse (inst.)

112 \DeclareInstance{blockenv}{verse}{std}

s {

144 name = verse

us ,tag-name = \UseStructureName{block/verse}
146 ,tag-attr-class =

147 ,tagging-recipe = standard

148 ,inner-level-counter =

149 ,transparent-level = false

19

150 ,legacy-code =
151 ,block-instance
152 ,para-instance
153 ,inner-instance =

154}

The special indentation on continuation lines (the way I¥TEX handled poetry is done in
the para instance verse, defined later on.

quote % reuse?
verse

3.5 The verbatim, verbatim* and alltt environments

verbatim (env.) Here are the definitions for the verbatim environments They look somewhat different than
verbatimx (env.) others (but this isn’t the final definition). At the moment we use 2 optional arguments,
the second is only there so that there is yet another scan even if one optional argument
got detected. That then scans away the newline so that afterwards we can reinsert one
via \obeyedline. A better solution will be to use a c specifier for grabbing the body,

but that is for another day not Christmas Eve.

155 \AddToHook{begindocument/before}[./legacy-verbatims]{
156 \RenewDocumentEnvironment{verbatim}{ ={legacy-code} !'o !o }
157 { \SimpleBlockEnv{verbatim} {#1} \obeyedline } { \BlockEnvEnd }

155 \RenewDocumentEnvironment{verbatim*}{ ={legacy-code} !o !o }
150 { \SimpleBlockEnv{verbatim*} {#1} \obeyedline } { \BlockEnvEnd }

alltt (env.) The alltt package implements a variation on verbatim handling where backslash and
alltt* (env.) braces retain their normal meanings. We also reimplement it using the template approach
The alltt* variant didn’t exist in the package, but it is trivial to set it up as well.

1o \NewDocumentEnvironment{alltt}{ ={legacy-code} !o }

161 { \SimpleBlockEnv{alltt} {#1} } { \BlockEnvEnd }
12 \NewDocumentEnvironment{alltt*}{ ={legacy-code} !o }
163 { \SimpleBlockEnv{alltt*} {#1} } { \BlockEnvEnd }
164 }

3.5.1 Their blockenv instances

blockenv verbatim (inst.) The verbatim environment is defined through blockenv instance verbatim that makes
use of the block instance verbatim-(level) and the para instance justify. The block
nesting level is not incremented. Verbatim processing requires various catcode changes,
etc. and as a consequence a special parsing routine that grabs the whole environment
while these catcodes are in force. This setup is done in the final-code key and its last
action is to initiate the special parsing.

165 \DeclareInstance{blockenv}{verbatim}{std}

166 {

167 name = verbatim

s ,tag-name = \UseStructureName{block/verbatim}
169 ,tag-attr-class =

170 ,tagging-recipe = standard

171 ,tagging-suppress-paras = true
172 ,inner-level-counter =

173 ,transparent-level = true
174 ,legacy-code =
175 ,block-instance = verbatim

176 ,inner-instance =

20

177 ,para-instance = justify
Here is where verbatim and verbatim* technically differ: in the former we set up spaces
to become nonbreakable spaces (if necessary followed by a \pdffakespace in the pdfTEX
engine) and in verbatim* we set it up to generate visible space chars.

175 ,final-code = \legacyverbatimsetup{invisible}
Then we start the special scanning process to look for \end{verbatim} with special
catcodes and grab everything in between. For verbatim* we use \@sxverbatim to look
for \end{verbatimx} instead.'

179 \@xverbatim

180 }

The role-mapping is <verbatim> to <Code> and <codeline> to <Sub> (which is role
mapped to in pdf 1.7). Sub inside Code is allowed according the errata of ISO
32005. The paragraphs inside verbatim are flattened. Line numbers should be inside the
<codeline> structure and be tagged either as <Lbl> or <Artifact><Lbl>.

blockenv verbatim* (inst.) The implementation of verbatim* is similar using the blockenv instance verbatim*. Its
final-code sets up visible spaces and a slightly different parsing that grabs everything
up to \end{verbatimx*}. Otherwise the setup is identical.

131 \DeclareInstance{blockenv}{verbatim*}{std}

182 {

183 name = verbatim

12 ,tag-name = \UseStructureName{block/verbatim}
185 ,tag-attr-class =

186 ,tagging-recipe = standard

187 ,tagging-suppress-paras = true

188 ,inner-level-counter =

189 ,transparent-level = true

190 ,legacy-code =

191 ,block-instance = verbatim

192 ,inner-instance =

193 ,para-instance = justify

04 ,final-code = \legacyverbatimsetup{visible}
105 \@sxverbatim

196 }

blockenv alltt (inst.) The implementation of the alltt environment from the alltt is more or less identical as
well. We just need a slightly different final code to keep backslash and braces functional.

197 \DeclareInstance{blockenv}{alltt}{std}

198 {

199 name = alltt

20 ,tag-name = \UseStructureName{block/verbatim} 7 private tag instead?
201 ,tag-attr-class =

202 ,tagging-recipe = standard

203 ,tagging-suppress-paras = true
204 ,inner-level-counter =

205 ,transparent-level = true

206 ,legacy-code =

207 ,block-instance = verbatim
208 ,inner-instance =

209 ,para-instance = justify

1Perhaps there should be some other command names for this?

21

Now set up the special environment settings with most characters verbatim. We don’t
even have to scan ahead for the \end{alltt} because backslash and braces still have
their normal meaning.

210 ,final-code = \legacyallttsetup {invisible}
211 }

blockenv alltt* (inst.) The alltt* variant didn’t exist in the alltt package, but it is trivial to set it up as well.
212 \DeclareInstance{blockenv}{alltt*}{std}

213 {

214 name = alltt*

215 ,tag-name = \UseStructureName{block/verbatim} % private tag instead?
216 ,tag-attr-class =

217 ,tagging-recipe = standard

218 ,tagging-suppress-paras = true
219 ,inner-level-counter =

220 ,transparent-level = true

221 ,legacy-code =

222 ,block-instance = verbatim

223 ,inner-instance =

24 ,para-instance = justify

25 ,final-code = \legacyallttsetup {visible}
226 }

3.5.2 Their block instances

block verbatim-1 (inst.) Verbatim instances have there own levels so that one can specify specific indentations
block verbatim-2 (inst.) or vertical separations between lines.

block verbatim-3 (inst.) .., \DeclareInstance{block}{verbatim-1}{std}
block verbatim-4 (inst.) s {

block verbatim-5 (inst.) 22 ,left-margin = Opt
block verbatim-6 (inst.) 23 ,para-vspace = Opt
EETI

3> \DeclareInstanceCopy{block}{verbatim-2}{verbatim-1}
233 \DeclareInstanceCopy{block}{verbatim-3}{verbatim-1}
231 \DeclareInstanceCopy{block}{verbatim-4}{verbatim-1}
235 \DeclareInstanceCopy{block}{verbatim-5}{verbatim-1}
236 \DeclareInstanceCopy{block}{verbatim-6}{verbatim-1}

3.6 The trivlist environment

In IATEX 2¢ trivlist was used to define various display environments that aren’t really
lists at all. To support such legacy definitions (even though they should be updated to
achieve proper tagging) we continue to support and implement it as a 1ist environment
with a few hardwired settings mimicking the original behavior.

3.7 The standard lists: itemize, enumerate, and description

For the standard lists everything is managed by the blockenv instances.

237 \AddToHook{begindocument/before}[./legacy-lists]{
description (env.) . \RenewDocumentEnvironment{itemize}{!0{}}
239 { \SimpleBlockEnv{itemize} {#1} } { \BlockEnvEnd }

22

240 \RenewDocumentEnvironment{enumerate}{!0{}}

241 { \SimpleBlockEnv{enumerate} {#1} } { \BlockEnvEnd }
22 \DeclareDocumentEnvironment{description}{!0{}}

243 { \SimpleBlockEnv{description} {#1} } { \BlockEnvEnd }
244 }

3.7.1 Their blockenv instances

blockenv itemize (inst.) The itemize environment is defined through the blockenv instance itemize which
makes use of the block instance list-(level), and an inner instance itemize-(inner-
level) of type list. The paragraph setup is inherited.” The (inner-level) is deter-
mined through \@itemdepth. The block nesting level and the inner list nesting level are

incremented.
215 \DeclareInstance{blockenv}{itemize}{std}
26 {
247 name = itemize
%3 ,tag-name = \UseStructureName{block/itemize}
249 ,tag-attr-class = itemize
250 ,tagging-recipe = list
251 ,inner-level-counter = \@itemdepth
252 ,transparent-level = false
253 ,max-inner-levels =4
254 ,legacy-code =
255 ,block-instance = std-list
256 ,inner-instance-type = list
257 ,inner-instance = itemize
258 ,para-instance =
259 }

blockenv enumerate (inst.) The enumerate environment is similar to itemize but uses the blockenv instance
enumerate, the block instance 1ist-(level), and the inner instance enumerate-(inner-
level). The (inner-Ilevel) is determined through \@enumdepth.

20 \DeclareInstance{blockenv}{enumerate}{std}

261 {

262 name = enumerate
23 ,tag-name = \UseStructureName{block/enumerate}
264 ,tag-attr-class = enumerate
265 ,tagging-recipe = list

266 ,transparent-level = false

267 ,max-inner-levels =4

268 ,legacy-code =

269 ,block-instance = std-list

270 ,inner-level-counter = \@enumdepth
271 ,inner-instance-type = list

272 ,inner-instance = enumerate
273 }

2In the IATEX 2¢ implementation justified paragraphs where forced, even if the whole document was
set in ragged text. If this slightly strange behavior is desired then one has to set the para-instance key
to justify.

23

blockenv description (inst.) The description environment uses the blockenv instance description, the block in-
stance list-(level), and the inner instance description (no dependency on the nesting
level), i.e., the environment has the same appearance on all nesting levels.

o7 \DeclareInstance{blockenv}{description}{std}

275 {

276 name = description
277 ,tag-name = \UseStructureName{block/description}
278 ,tag-attr-class = description
279 ,tagging-recipe = list

280 ,inner-level-counter =

281 ,transparent-level = false

282 ,legacy-code =

283 ,block-instance = std-list

284 ,inner-instance-type = list

285 ,inner-instance = description
286 }

3.7.2 Their block instances

block std-list-1 (inst.) The block instances for the various list environments use the same underlying instance
block std-list-2 (inst.) (well, by default) and nothing needs to be set up specifically (because that is already
block std-list-3 (inst.) done in the legacy \list(romannumeral) unless a different layout is wanted.
(inst.)
(inst.)
(

block std-list-4 (inst.) \DeclareInstance{block}{std-list-1}{std}{

block std-list-5 285 begin-vspace = \topsep
block std-list-6 (inst.) .., % , begin-extra-vspace = \partopsep

inst.

This is the only one we have to explicitly set for lists if the default setup is wanted.

290 ,para-vspace = \parsep

21 % ,end-vspace = \KeyValue{begin-vspace}

22 % ,end-extra-vspace = \KeyValue{begin-extra-vspace}
203 % ,item-vspace = \itemsep

204 % ,begin-penalty = \UseName{@beginparpenalty}

25 % ,end-penalty = \UseName{@endparpenalty}

26 % ,left-margin = \leftmargin

207 % ,right-margin = \rightmargin

25 % ,para-indent = Opt

299 }

;00 \DeclareInstanceCopy{block}{std-list-2}{std-1list-1}
201 \DeclareInstanceCopy{block}{std-list-3}{std-1list-2}
302 \DeclareInstanceCopy{block}{std-list-4}{std-1list-3}
;s \DeclareInstanceCopy{block}{std-1list-5}{std-1ist-4}
500 \DeclareInstanceCopy{block}{std-list-6}{std-1list-5}

If the legacy \list(romannumeral) is not used in a modern class then, of course, these
instances all need to set up the different parameters explicitly. The new implementation
of the standard classes (will) show that approach.

3.7.3 Their 1ist instances

For all list instances we have to say what kind of label we want (item-label) and how
it should be formatted.

24

list itemize-1 (inst.) For itemize environments this is all we need to do and we refer back to the external
list itemize-2 (inst.) definitions rather than defining the item-label code in the instance to ensure that old
list itemize-3 (inst.) documents still work.

(

list itemize-4 (inst.) ;05 \DeclareInstance{list}{itemize-1}{std}{ item-label = \labelitemi }

s \DeclareInstance{list}{itemize-2}{std}{ item-label = \labelitemii }
307 \DeclareInstance{list}{itemize-3}{std}{ item-label \labelitemiii }
;08 \DeclareInstance{list}{itemize-4}{std}{ item-label = \labelitemiv }

list enumerate-1 (inst.) enumerate environments are similar, except that we also have to say which counter to
list enumerate-2 (inst.) use on each level.
(inst.)
(

list enumerate-3 (inst.) ., \DeclareInstance{list}{enumerate-1}{std}
list enumerate-4 (inst.) 30 { item-label = \labelenumi |, counter = enumi }
311 \DeclareInstance{list}{enumerate-2}{std}
312 { item-label = \labelenumii , counter = enumii }
13 \DeclareInstance{list}{enumerate-3}{std}
314 { item-label = \labelenumiii , counter = enumiii }
5 \DeclareInstance{list}{enumerate-4}{std}

16 { item-label = \labelenumiv , counter = enumiv 1}

w

list description (inst.) The description lists also use only a single list instance with only one key not using
the default:

;17 \DeclareInstance{list}{description}{std} { item-instance = description }

Of course, if handling of description lists should differ in nested lists all one has to do is
to provide an inner-level-counter and then define description-1, description-2,
etc.

3.7.4 Their item instances

item basic (inst.) There are two item instances to set up: description for use with the description
item description (inst.) environment and basic for use with all other lists (up to now).

518 \DeclareInstance{item}{basic}{std}

319 { label-align = right }

220 \DeclareInstance{item}{description}{std}

321 {

322 ,label-format = \normalfont\bfseries #1
323 ,label-align = left

324 }

3.8 The legacy list and trivlist environments

list (env.) The legacy 2e list environment is more complicated as we have to get the extra arguments
accounted for.
s \AddToHook{begindocument/beforel}[./legacyl{
326 \RenewDocumentEnvironment{list}{0{} m m }
327 {
We do this by storing them away and then call the list instance. Inside this instance the
legacy-code key contains \legacylistsetup which makes use of the stored values.

328 \tl_set:Nn \1_@@_legacy_env_params_tl
329 {
330 \tl_set:Nn \Q@itemlabel {#2}

25

331 #3

332 }
The IATEX 2¢ lists don’t support captions so we use \SimpleBlockEnv.
333 \SimpleBlockEnv{list} {#1}
334 3
335 { \BlockEnvEnd }
336 }

) ITEX2: defined trivlist as an implementation of list (or rather the other way
around).

337 \AddToHook{begindocument/before}[./legacyl{

333 \RenewDocumentEnvironment{trivlist}{ '0{} }

339 { \list[#11{}

340 {

341 \dim_zero:N \leftmargin
342 \dim_zero:N \labelwidth
343 \cs_set_eq:NN \makelabel \use:n
344 }

345 }

346 { \BlockEnvEnd }

w7 }

trivlist (enw.

3.8.1 Its blockenv instance

blockenv list (inst.) The generic 1ist environment of IXTEX 2¢ is modeled with a blockenv instance named
list, a block instance named std-list-(Ievel), and an inner instance named legacy
(with no dependency on the nesting level). This environment has two arguments and
customization of the layout is expected to be directly set in the second argument. For
this reason this legacy instance is something that shouldn’t be changed (all that is
attempted to provide a way to support legacy setups).
To set up the default settings (as they were used in IWTEX 2¢) the legacy-code key gets
\legacylistsetup assigned that contains the necessary code to set up these defaults.
Changing the blockenv is therefore not recommended for the legacy 1ist environment.

315 \DeclareInstance{blockenv}{list}{std}

349 {

350 name = list

351 ,tag-name = \UseStructureName{block/list}
352 ,tag-attr-class =

353 ,tagging-recipe = list

354 ,transparent-level = false

355 ,legacy-code = \legacylistsetup

356 ,block-instance = std-list

357 ,inner-level-counter =
358 ,inner-instance-type = list
350 ,inner-instance = legacy

360 }

3.8.2 1Its list instance

list legacy (inst.) For the legacy list environment there is only one instance which is reused on all levels.
This is done this way because the legacy 1ist environment sets all its parameters through

26

its arguments. So this instances shouldn’t really be touched. It sets the legacy-support
key to true, which means that the list code uses \makelabel for formatting the label.
561 \DeclareInstance{list}{legacy}{std} {
362 ,item-instance = basic
363 ,legacy-support = true

364 F

3.9 Theorem-like environments declared through \newtheorem

In standard A TEX theorem-like environments are not defined directly, but with the help
of a \newtheorem declaration. That allows specifying the typeset environment title, e.g.,
“Lemma”, and the counter to use to number the environments, e.g., they could be all
numbered individually or one could number them using the same counter as some other
theorem-like environment.

This was first augmented by the theorem package which implemented the idea of
a \theoremstyle; this is now considered obsolete. Michael Downes from the AMS
improved on these early ideas and wrote the amsthm package, which offered more
functionality including a \newtheoremstyle declaration and for the document level a
\swapnumbers and an proof environment. It also provided star-forms for \newtheorem
(to define an unnumbered environment) and allowed to use star-forms of the theorem-like
environments to suppress numbering on an individual instance in the document.

This new implementation based on templates, is supposed to cover the functionality
of amsthm including it declarations so that documents that use amsthm explicitly or
implicitly via their class should continue to work seamlessly.

For other packages that provide theorem-like environments we have to see if they
could be easily remodeled using the new implementation or if there is a need for extended
templates.

Assuming declarations such as

% \swapnumbers % <- commented out
\theoremstyle{definition}
\newtheorem{axiom} [def] {Axiom}

in a document, then the following instances of type blockenv and captionedtext are
declared by \newtheorem.
3.9.1 The blockenv instances they use

Given the above input \newtheorem defines the following blockenv instance:

\DeclareInstance{blockenv}{axiom}{std}

{
name = theorem-like
,tag-name = \UseStructureName{block/theorem-like}
,tagging-recipe = standalone
,transparent-level = true

,block-instance:e = thm-
\IfInstanceExistsTF{block}
{ thm-definition-1 }
{ definition } { plain }
,inner-instance-type = captionedtext

27

,inner-instance = axiom
,para-instance justify

3

The setting for block-instance means that it checks if a block instance with the
name thm-definition-1 exists. If so then the value thm-definition is used, otherwise
thm-plain is used which is always defined, i.e., if the theoremstyle does not specify any
special vertical spacing the block instance from the plain style is reused.

What varies from blockenv instance to instance are the values for block-instance
and inner-instance.

We use <theorem-like> as the structure name and role-map it to a <Sect> because
that can hold a <Caption>.

3.9.2 The captionedtext instances they use

The instance of type captionedtext is also defined by \newtheorem and in this case it
looks like this:

\DeclareInstance{captionedtext}{axiom}{thmlike}

{
,counter = def
,title = Axiom % <-- that the title provided to \newtheorem
,style = definition ¥ <-- that's the used \theoremstyle

}

If we uncomment the \swapnumbers line in the example above then we get
,style = definition-swap

in the captionedtext instance instead.

3.9.3 The thmstyle instances they use

New theorem styles can be declared with \newtheoremstyle which then generates an
instance of type thmstyle. Alternatively, it is, of course, possible to declare the instances
directly (which gives you a bit more flexibility). A few such styles are predeclared,
matching what is offered by amsthm. These are shown below.

thmstyle plain (inst.) The main style used for many theorem-like environments, i.e., the one you get if no
special \theoremstyle has been specified.

365 \DeclareInstance{thmstyle}{plain}{std}

366 {

367 ,caption-placement = unchained

368 ,numbered = true

360 ,space =\

370 ,punct = .

371 ,before-hspace = Opt

372 ,after-hspace = 5pt plus 1pt minus 1pt
373 ,order = {title, space, number, punct, space, note}
374 ,caption-decls = \bfseries

375 ,title-format = #1

376 ,humber-format = #1

377 ,punct-format = #1

28

thmstyle remark (inst.)

thmstyle definition (inst.)

thmstyle legacy2e (inst.)

block thm-plain-1 (inst.)
block thm-plain-2 (inst.)

block thm-remark-1 (inst.)
block thm-remark-2 (inst.)

(#1)
\itshape

378 ,note-format
379 ,body-decls
380 }

The remark is like plain with two changes:

ss1 \DeclareInstanceCopy{thmstyle}{remark}{plain}
;22 \EditInstance{thmstyle}{remark}

383 {

384 ,caption-decls = \itshape

35 ,body-decls = \normalfont
386 }

The definition is like plain with only a difference in the font used for the body:
ss7 \DeclareInstanceCopy{thmstyle}{definition}{plain}

s \EditInstance{thmstyle}{definition}

380 {

30 ,body-decls = \normalfont

01 }

Vanilla BTEX 2¢ (without amsthm loaded) had a slightly different default. We provide
this under the name legacy2e. It doesn’t use a punctuation after the number and it has
slightly different vertical spacing (defined by thm-legacy2e-1 below).

Thus, to reprocess an old document for tagging that uses \newtheorem without loading
amsthm one has to set \theoremstyle{legacy2e} to avoid layout changes. How such a
compatibility setting is automated is not yet decided.

;0> \DeclareInstanceCopy{thmstyle}{legacy2e}{plain}

303 \EditInstance{thmstyle}{legacy2e}{ punct = }

3.9.4 The block instances they use

Theorems do not support nesting, so in theory we have only one to set up. There are,
however, documents that put theorem-like environments inside of lists or other block
environments. While that is in most case somewhat dubious, it can make sense, for
example, in description lists. So we support it by providing thm-plain instances for
levels 1 and 2. If somebody really nests them further down, then more such instances
need to be declared.

The IATEX default reused the general value of \parindent and \parskip and, of course,
they start at the outer margin.

50 \DeclareInstance{block}{thm-plain-1}{std}

305 {

396 ,begin-extra-vspace = Opt

397 ,left-margin = Opt

38 ,para-indent = \parindent
399 ,para-vspace = \parskip
400 }

w01 \DeclareInstanceCopy{block}{thm-plain-2}{thm-plain-1}

The \thmstyle for “remarks” is defined by amsthm to use less vertical spacing. It
therefore needs its own block instance.
102 \DeclareInstance{block}{thm-remark-1}{std}

403 {
404 ,begin-vspace = 0.5\topsep

29

405 ,begin-extra-vspace = Opt

406 ,left-margin = Opt
407 ,para-indent = \parindent
408 ,para-vspace = \parskip

409 }
210 \DeclareInstanceCopy{block}{thm-remark-2}{thm-remark-1}

block thm-legacy2e-1 (inst.) These are like the plain ones but without resetting begin-extra-vspace to zero.
block thm-legacy2e-2 (inst.) ., \DeclareInstance{block}{thm-legacy2e-1}{std}

412 {

413 ,left-margin = Opt

414 ,para-indent = \parindent
415 ,para-vspace = \parskip

416 }
217 \DeclareInstanceCopy{block}{thm-legacy2e-2}{thm-legacy2e-1}

3.10 The proof environment (from amsthm)

proof (env.) The proof environment expects one optional argument holding an alternative title for

the proof. We parse this optional argument as an implicit key/value argument, so that
it is possible to interpret it either as the value for the key note or as a key/value list
that holds special key settings for this particular environment instance. The result is
analyzed by \ParseLaTeXeTheoremlike which then calls a blockenv instance with the
name proof.
In addition we have to set up handling of QED symbols using \pushQED and \popQED
using the logic already defined in amsthm. Details on all this is given in the code section
of this module but normally this top-level declaration doesn’t require any changes.

215 \NewDocumentEnvironment{proof}{ ={note}o }

419 { \pushQED{\qed}/

420 \ParseLaTeXeTheoremlike {proof} \BooleanTrue {#1} }

41 { \popQED \BlockEnvEnd }

blockenv proof (inst.) A proof uses its own proofblock instance of type block for vertical spacing. As the
proof has a heading we use a captionedtext instance with name proof as the inner
instance and the paragraphs of the proof are justified.

222 \DeclareInstance{blockenv}{proof}{std}

a3 {

424 name = proof

©5 ,tag-name = \UseStructureName{block/proof}
426 ,tag-attr-class =

427 ,tagging-recipe = standalone

428 ,inner-level-counter =

429 ,transparent-level = true

430 ,legacy-code =

431 ,block-instance = proof

432 ,inner-instance-type = captionedtext
433 ,inner-instance = proof

434 ,para-instance = justify

435 }

30

captionedtext proof (inst.) We use a special captionedtext template to set up the proof because proofs are not
numbered and the argument to a proof environment has a somewhat different semantic
meaning than that of theorem-like environments.

436

\DeclareInstance{captionedtext}{proof}{proof}
{
,title
,punct = .
,before-hspace = Opt
,after-hspace 5pt plus 1pt minus 1pt

Proof

,caption-decls = \itshape
,title-format = #1
,punct-format = #1
,body-decls = \normalfont

3.10.1 Block instances for the proofs

block proof-1 (inst.) Blocks for proofs are pretty normal (the values are taken from the amsthm implementa-
block proof-2 (inst.) tion):

para justify (inst.)

para center (inst.)

447
448
449
450
451
452
453

454

4

\DeclareInstance{block}{proof-1}{std}

{
,begin-vspace = 6pt plus 6pt
,left-margin = Opt
,para-indent = \parindent
,para-vspace = \parskip

}

\DeclareInstanceCopy{block}{proof-2}{proof-1}

Declaring para instances

Display block environments often require special paragraph settings and therefore have a
para-instance key to specify and appropriate instance. Here are the standard instances
that are predefined for this purpose.

Justifying is exactly what the default values do, so the instance hasn’t any special setup.

455

456

457

458

459

460

461

463

464

465

\DeclareInstance{para}{justify}{std}

% ,para-attr-class = justify
% ,para-indent = \parindent
% ,begin-hspace = Opt
% ,left-hspace = \z@skip
% ,right-hspace = \z@skip
> % ,end-hspace = \@flushglue
% ,final-hyphen-demerits = 5000
% ,newline-cmd = \@normalcr

Centering a paragraph means putting stretchable glue on both sides.

466

467

468

469

\DeclareInstance{para}{center}{std}
{
,para-attr-class = center
,para-indent = Opt

31

w0 % ,begin-hspace = Opt
s ,left-hspace = \@flushglue

a2 ,right-hspace = \@flushglue
a3 ,end-hspace = \z@skip

474 ,final-hyphen-demerits = 0

475 ,newline-cmd = \@centercr

a6}

para raggedright (inst.) This is the plain TEX version of ragged right, which basically means no hyphenation
unless a word is truly longer than a line. This implements flushleft.

s77 \DeclareInstance{para}{raggedright}{std}
s {

a79 ,para-attr-class raggedright
480 ,para-indent Opt

w1 % ,begin-hspace = Opt

s ,left-hspace = \z@skip

w3 ,right-hspace = \@flushglue
w4 ,end-hspace = \z@skip

485 ,final-hyphen-demerits = 0

486 ,newline-cmd = \@centercr
487 }

para raggedleft (inst.) This here is for flushright.

sss \DeclareInstance{para}{raggedleft}{std}
40 {

490 ,para-attr-class raggedleft
491 ,para-indent Opt

w2 % ,begin-hspace = Opt

w03 ,left-hspace = \@flushglue
w204 ,right-hspace = \z@skip

25 ,end-hspace = \z@skip

49 ,final-hyphen-demerits = 0

497 ,newline-cmd = \@centercr
208 F

Here are the attribute definitions used in the para-attr-class in the above in-
this should be stances:
moved elsewhere

209 \tagpdfsetup

500 {

501 ,role/new-attribute = {justify} {/0 /Layout /TextAlign/Justify}
502 ,role/new-attribute = {center} {/0 /Layout /TextAlign/Center}
503 ,role/new-attribute = {raggedright}{/0 /Layout /TextAlign/Start}

504 ,role/new-attribute = {raggedleft} {/0 /Layout /TextAlign/End}
505 }

\centering These instances are also used to implement declarations for direct use in documents or
\raggedleft in user definitions.

\raggedright ,,; \DeclareRobustCommand\centering {\UseInstance{para}{center}{}}

\justifying s \DeclareRobustCommand\raggedleft {\UseInstance{para}{raggedleft}{}}
s0s \DeclareRobustCommand\raggedright{\UseInstance{para}{raggedright}{}}
500 \DeclareRobustCommand\justifying {\UseInstance{para}{justify}{}}

IATEX’s default is to typeset paragraphs justified.
s10 \justifying

32

(End of definition for \centering and others.)

para verse (inst.) For the verse environment we use a special para instance. If the right hand side should
be ragged then a different right-hspace is needed.

511 \DeclareInstance{para}{verse}{std}

512 {

513 para-attr-class = justify ,

514 para—indent = Opt ,

515 begin-hspace = -1.5em ,

516 left-hspace = 1.5em ,

si7 right-hspace = Opt ,

si5. end-hspace = \@flushglue ,
510 final-hyphen-demerits = 0 ,

520 newline-cmd = \@centercr ,
521 }

s22 (/class-code)

5 Advice on adjusting the layout of standard block
environments

to document

6 Tagging support
6.1 Paragraph tags

Paragraphs in IXTEX can be nested, e.g., you can have a paragraph containing a display
quote, which in turn consists of more than one (sub)paragraph, followed by some more
text which all belongs to the same outer paragraph.

In the PDF model and in the HTML model that is not supported — a limitation
that conflicts with real life, given that such constructs are quite normal in spoken and
written language.

The approach we take to resolve this is to model such “big” paragraphs with a
structure named <text-unit> and use <text> (role-mapped to <P>) only for (portions
of) the actual paragraph text in a way that the <text>s are not nested. As a result we
have for a simple paragraph the structures

<text>
<text>
The paragraph text ...
</text>
</text>

The <text-unit> structure is role-mapped to <Part> or possibly to <Div> so we get a
valid PDF, but processors who care can identify the complete paragraphs by looking for
<text-unit> tags.

In the case of an element, such as a display quote or a display list inside the para-
graph, we then have

33

<text-unit>
<text>
The paragraph text before the display element ...
</text>
<display element structure>
Content of the display structure possibly involving inner <text-unit> tags
</display element structure>
<text>
... continuing the outer paragraph text
</text>
</text-unit>

In other words such a display block is always embedded in a <text-unit> structure,
possibly preceded by a <text>..</text> block and possibly followed by one, though
both such blocks are optional.

Thus an itemize environment that has some introductory text but no text imme-
diately following the list would be tagged as follows:

<text-unit>
<text>
The intro text for the itemize environment ...
</text>
<itemize>

<itemlabel> label </itemlabel>
<itembody>
The text of the first item involving <text-unit> as necessary ..
</itembody>

The second item ...

... further items ...
</itemize>
</text-unit>

The <itemize> is roll-mapped to <L>

For some display blocks, such as centered text, we use a simpler strategy. Such
blocks still ensure that they are inside a <text-unit> structure but their body uses
simple <text> blocks and not <text-unit><text> inside, e.g., the input

This is a paragraph with some
\begin{center}
centered lines

with a paragraph break between them

\end{center}
followed by some more text.

34

will be tagged as follows:

<text-unit>
<text>
This is a paragraph with some
</text>
<text /0 /Layout /TextAlign/Center>
centered lines
</text>
<text /0 /Layout /TextAlign/Center>
with a paragraph break between them
</text>
<text>
followed by some more text.
</text-unit>

The text-unit structures are added by using the tagging sockets para/semantic/begin
and para/semantic/end declared in 1ttagging.dtx. They can be disabled by assigning
these sockets the plug noop.

6.1.1 Tagging recipes

There are a number of different tagging recipes that implement different tagging ap-
proaches. They are selected through the tagging-recipe of the blockenv template.
Currently the following values are implemented:

standalone This recipe does the following;:
o Ensure that the blockenv is not inside a <text-unit> structure. If

necessary, close the open one (and any open <text> structure).

e Text inside the body of the environment start with <text-unit><text>
unless the key tagging-suppress-paras is set to true (which is most likely
the wrong thing to do because we then get just <text> as the structure).

e At the end of the environment close </text> and possibly an inner
</text-unit> if open.

o Finally, ensure that after the environment a new <text-unit> is started, if
appropriate, e.g., if text is following.
basic This recipe does the following:
o Ensure that the blockenv is inside a <text-unit> structure, if necessary,
start one.

o If inside a <text-unit><text>, then close the </text> but leave the
<text-unit> open.

o Text inside the body of the environment start with <text-unit><text> if
tagging-suppress-paras is set to false, otherwise just with <text>.

e At the end of the environment close </text> and possibly an inner
</text-unit> if open.

35

\DebugBlocks0On
\DebugBlocks0ff
\block_debug_on:
\block_debug_off:

(cleanup

N o oA W N e

Then look if the environment is followed by an empty line (\par). If so, close
the outer </text-unit> and start any following text with
<text-unit><text>. Otherwise, don’t and following text restarts with a just
a <text> (and no paragraph indentation)

standard This recipe is like the basic one as far as handling <text-unit> and <text>
is concerned. In addition

it starts an inner tagging structure (i.e., which is therefore a child of the
outer <text-unit>).

By default this structure is a <Div> unless overwritten by the key tag-name.
If that key is used, a suitable role-map needs to be provided for the name
given.

At the end of the environment that inner structure is closed again so that we
are back on the <text-unit> level from the outside.

Then the lookahead for an empty line is done as described previously.

list This recipe is like the standard one except that

the inner structure is a list (<L>).

Furthermore everything is set up so that we have list items () with
suitable substructures (<itemlabel> for the item labels and <itembody> for
the item bodies).

If the key tag-name is specified, this is used as the tag name for the whole
list instead of <L>. Of course, it should then have a suitable rolemap.

If the key tag-attr-class is specified then this is used as the class
attribute. Again, this requires a suitable setup on the outside.

At the end of the environment the </itembody>, , and </L> (or the
tag name used) are closed.

Then the lookahead for an empty line is done as described previously.

7 Tracing and debugging

These commands enable/disable debugging messages for blocks. They also enable/disable
debugging of templates (e.g., call \DebugTemplatesOn or \DebugTemplates0ff).

The data that is produced is rather verbose and largely guided (so far) by what
seemed helpful while developing the code. This needs some cleanup at a later stage. At
the moment, if you have the following simple document

\DocumentMetadata{tagging=on, lang=en}

\documentclass{article}

\DebugBlocksOn

\begin{document}

36

8 \begin{itemize} [item-vspace=3pt]

9 \item A normal item
10 \item[\textbf{+}] A special item
11 \end{itemize}
12 \end{document}

then you will get the following information on the screen and in the .log file:

[Template] ==> Use 'blockenv' instance: itemize on input line 8
[Template] ==> template: 'std'; arguments: |item-vspace=3pt|\BooleanFalse |\NoValue |\NoValue |
[Template] ==> Use 'block' instance: std-list-1 on input line 8

[Template] == template: 'std'; argument: |item-vspace={3pt}|
[Blocks] ==> @endpe=false on input line 8
[Template] ==> Use 'list' instance: itemize-1 on input line 8

[Template] ==> template: 'std'; arguments: ||\BooleanFalse |\NoValue |\NoValue |
[Blocks] ==> Set first block everypar on input line 8
[Blocks] ==> template:list:std end

[Template] ==> Use 'item' instance: basic on input line 9
[Template] ==> template: 'std'; argument: ||

[Blocks] ==> Set item block everypar on input line 9
[Blocks] ==> ... in item block everypar on input line 9
[Blocks] ==> increment P on input line 9

[Blocks] ==> Set noop block everypar on input line 9

[Template] ==> Use 'item' instance: basic on input line 10
[Template] ==> template: 'std'; argument: |label={\textbf {+}}|
[Blocks] ==> item with optional

[Blocks] ==> Set item block everypar on input line 10

[Blocks] ==> ... in item block everypar on input line 10

[Blocks] ==> increment P on input line 10

[Blocks] ==> Set noop block everypar on input line 10

[Blocks] ==> blockenv common ending on input line 11

[Blocks] ==> flattened=false on input line 12
[Blocks] ==> Structure-end text-unit after displayblock on input line 12

8 New and redefined kernel command

\SimpleBlockEnv to be documented
\BlockEnv

\BlockEnvEnd
\g_block_nesting_depth_int

\legacyverbatimsetup to be documented
\legacyallttsetup

\legacylistsetup

\@setupverbinvisiblespace A counterpart definition to the kernel command \@setupverbinvisiblespace, needed
as we need to handle real space chars in verbatim.

37

\newtheorem Reimplemented to fit the template approach. \newtheoremstyle was defined by amsthm.
\newtheoremstyle

\@nthm These are no longer used (to be removed).
\@xnthm

\@ynthm

\@thm

\@xthm

\@ythm

\@othm
\@begintheorem
\@opargbegintheorem
\@endtheorem

\item The \item is redefined.
\@itemlabel

\c@maxblocklevels A counter to increase or decrease the number of supported level. If increased, one needs
to supply additional level instances.

\begin The \begin is slightly redefined to handle \@doendpe better. TODO: move to kernel

\@doendpe The original I#TEX 2¢ command is augmented to allow for tagging.
\para_end: TODO: consider name, document

para/begin The para/begin hook is enhanced to support list ends

9 The Implementation

523 (*package-start)

521 (@@=block)

525 \ProvidesPackage {latex-lab-testphase-block}

526 [\1tlabblockdate\space v\ltlabblockversion\space
527 blockenv implementation]

38

\SetKnownTemplateKeys

\SetTemplateKeys

9.1 Candidates for kernel changes

General kernel changes, also loaded by the sec and toc code.
525 \RequirePackage{latex-lab-kernel-changes}
For testing we temporarily load it here (it has to come before the definition of
\DebugBlocks0ff below:
520 \RequirePackage{latex-lab-testphase-context}

s30 \ExplSyntaxOn

9.1.1 Augmented \SetKnownTemplateKeys

A key/val list passed to \SetKnownTemplateKeys can either be empty (in which we
do not want to start up the parsing machinery) or it could be \NoValue in which we
do not want to do that either. The latter can happen, for example, with verbatim
where we define the optional argument with ={legacy-code} !'o so that people can
write \begin{verbatim}[\small] a syntax promoted by the TUGboat class.

531 \cs_set_protected:Npn \SetKnownTemplateKeys #1#2#3

532 {
An “empty” argument (or rather one that is empty after one expansion) is most likely
the case that happens most often so we test for this first.

533 \tl_if_empty:oTF {#3}

534 {

535 \tl_set_eq:NN \UnusedTemplateKeys \c_empty_tl

536 }

537 {

538 \tl_if_novalue:nTF {#3}

539 {

540 \tl_set_eq:NN \UnusedTemplateKeys \c_empty_tl
541 }

542 {

543 \keys_set_known:noN { template / #1 / #2 } {#3}
544 \UnusedTemplateKeys

545 }

546 }

547 }

(End of definition for \SetKnownTemplateKeys. This function is documented on page 77.)

Same kind of extension for \SetTemplateKeys:

ses \cs_set_protected:Npn \SetTemplateKeys #1#2#3

549 {

550 \tl_if_empty:oF {#3}

551 {

552 \tl_if_novalue:nF {#3}

553 {

554 \keys_set:no { template / #1 / #2 } {#3}
555 }

557 }
(End of definition for \SetTemplateKeys. This function is documented on page ?7.)

39

9.1.2 Tracing templates and instances

\template_debug_typeout:n I guess that tracing macro is needed in several modules, so should become public (or at
least kernel).
555 \cs_new_protected:Npn \template_debug_typeout:n { __template_debug_typeout:n }
(End of definition for \template_debug_typeout:n. This function is documented on page ??.)

9.1.3 Handling \par after the end of the list

An empty line (or a \par) after a list has semantic meaning as it defines whether then
following text is logically within the same paragraph as the list (no empty line) or whether
it starts a new paragraph and the paragraph containing the list ends at the end of the
list (empty line after the list). This is handled by I¥TEX using a legacy flag called @endpe
and set of commands inside the generic \end (calling \@doendpe) and as part of the list
environments identifying themselves as “paragraph ending environments” (by setting this
flag).

For the reimplementation of the list environments including support of tagging we
need to augment that mechanism slightly and add some kernel hook(s) to add the tagging
code if needed.

\@doendpe The original IATEX 2¢ command is augmented to allow for tagging. TODO: use sockets

for this and move to the kernel eventually.

s50 \def\@doendpe{\@endpetrue

se0 \def\par

561 {
If we are processing a $$ math display and we encounter a real \par after it, we need to
add a \parskip when tagging is done, because the one added by TEX is always canceled
by the processing in __math_tag_dollardollar_display_end: in that case. This is
signaled by the global legacy switch @domathendpe which is set to true in that case.
Once the skip is applied we set it to false. If there is no \par at all, it will be reset in
\everypar when the next paragraph starts.

562 \if@domathendpe

563 \skip_vertical:n { \tex_parskip:D }
564 \@domathendpefalse

565 \fi

566 \@restorepar

567 \clubpenalty\@clubpenalty

At this point we add the tagging code that closes an open <text-unit>, <text> tag
combination, if necessary:

568 \tag_socket_use:n {@doendpe}
The standard \par command (\par_end:) acts on @endpe and attempts to close a still
open <text-unit>s and this would be wrong if it was already closed above. So we have
to reset the switch to false first.

569 \@endpefalse

570 \everypar{}

571 \par

572 }

s3 \everypar{{\setbox\z@\lastbox}
574 \everypar{}

575 \@endpefalse

40

Not sure what is faster: testing for the status of the switch or setting it unconditionally
to false (globally), probably roughly the same, so we set it always:

576 o \if@domathendpe

577 \@domathendpefalse
578 o \fi

579}

580 }

(End of definition for \@doendpe. This function is documented on page 38.)

tagsupport/@doendpe (socket) The socket used in the \@doendpe TODO: if this goes into the kernel, the name should
probably be different.
ss1 \socket_if_exist:nF{ tagsupport/@doendpe }
582 {
583 \NewTaggingSocket {@doendpel}{0}
584 }

default (plug) If a display block ends and is followed by a blank line we have to end the enclosing
paragraph tagging structure.
ses \NewTaggingSocketPlug {@doendpe}{default}

586 {

587 \bool_if:NT \1__tag_para_bool

588 {
Given that restoring \par through the legacy I4TEX 2¢ method can take a few iterations
(for example, in case of nested lists, e.g., ...\end{itemize} \item ...\par it can hap-

pen that the socket code is called while @endpe is already handled and then we should
not attempt to close a <text-unit> structure). So we need to check for this.

589 \legacy_if:nT { @endpe }

590 {
If the display block currently ending was “flattened” (i.e., uses simplified paragraphs that
are not tagged by a combination of <text-unit> followed by <text>, but simply with a
<text>), then we don’t have to do anything, because the <text> is already closed.

501 __block_debug_typeout:n

502 { flattened= \bool_if:NTF

503 \1__tag_para_flattened_bool
504 {true}{false}

505 \on@line }

506 \bool_if:NF \1__tag_para_flattened_bool

597 {

598 \UseTaggingSocket{para/semantic/end}

599

600 __block_debug_typeout:n{Structure-end~
601 \1__tag_para_main_tag_tl\space

602 after~ displayblock \on@line }
603 }

604 }

605 }

606 }

607 }

os \AssignTaggingSocketPlug{@doendpe}{default}

41

\if@domathendpe
\@domathendpefalse
\@domathendpetrue

__block_skip_set_to_last:N
__block_skip_remove_last:

Signal that special paragraph handling after a math display is required.

600 \newif\if@domathendpe
o0 \def\@domathendpefalse{\global\let\if@domathendpe\iffalse}
611 \def\@domathendpetrue {\globalllet\if@domathendpe\iftrue}

(End of definition for \if@domathendpe, \@domathendpefalse, and \@domathendpetrue.)

There is a general bug in the para handling: when the output routine is triggered
the current setting of @endpe affects what happens in the OR. but it shouldn’t so we
need to reset its value (which is global) and set it back after the OR has finished. This is
what the following code does (final implementation should probably not involve a normal

00k):
612 \AddToHook{build/column/before}{/,

613 \if@endpe \@endpefalse \aftergroup\@endpetrue \fi
614 }

9.1.4 Other useful expl3 commands

This section collects expl3 commands that will be useful in the code here and possibly
generally.

Set a skip register to the value of an immediately preceding skip or zero if there was
none.

015 \cs_new_protected:Npn __block_skip_set_to_last:N #1 {

o6 \skip_set:Nn #1 { \tex_lastskip:D }

617 }
Remove a skip previous skip if it is directly in front (not allowed in unrestricted vertical
mode).

o5 \cs_new_eq:NN __block_skip_remove_last: \tex_unskip:D
(End of definition for __block_skip_set_to_last:N and __block_skip_remove_last:.)

_—|N0t sure this is still necessary (or even correct) after the move to \NoValue.

\g__block_debug_bool

__block_debug:n
__block_debug_typeout:n

610 \cs_generate_variant:Nn \tl_if_novalue:nTF { o }

(End of definition for \t1_if_novalue:oTF. This function is documented on page 77.)

9.2 Tracing and debugging interfaces

This follows the same convention as in other modules, but eventually that should be
iven a better implementation.

Boolean to indicate if we want to get debugging info from commands and templates
handling block displays.

o0 \bool_new:N \g__block_debug_bool
(End of definition for \g__block_debug_bool.)

Put debugging info in the code, displayed or not displayed depending on the value in
\g__block_debug_bool.

o1 \cs_new_eq:NN __block_debug:n \use_none:n

0> \cs_new_eq:NN __block_debug_typeout:n \use_none:n
(End of definition for __block_debug:n and __block_debug_typeout:n.)

42

\block_debug_on: Changing the debugging status.
\block_debug_off: 03 \cs_new_protected:Npn \block_debug_on:

__block_debug_gset: o0 o{
625 \bool_gset_true:N \g__block_debug_bool
626 __block_debug_gset:
627 }
05 \cs_new_protected:Npn \block_debug_off:
629 {
630 \bool_gset_false:N \g__block_debug_bool
631 __block_debug_gset:
632 }
033 \cs_new_protected:Npn __block_debug_gset:
634 {
635 \cs_gset_protected:Npx __block_debug:n #i#1
636 { \bool_if:NT \g__block_debug_bool {##1} }
637 \cs_gset_protected:Npx __block_debug_typeout:n ##1
638 { \bool_if:NT \g__block_debug_bool
639 { \diow_term:x { ~~J [Blocks]~ ==>~ ##1} } }
640 T

(End of definition for \block_debug_on:, \block_debug_off:, and __block_debug_gset:. These func-
tions are documented on page 36.)

\DebugBlocksOn If we are debugging blocks we also want to know about template instances, so we turn
\DebugBlocks0ff the debugging for templates as well (for now).
621 \cs_new_protected:Npn \DebugBlocksOn { \block_debug_on: \template_debug_on: }
e> \cs_new_protected:Npn \DebugBlocksOff { \block_debug_off: \template_debug_off: }
03 \DebugBlocksOff
(End of definition for \DebugBlocksOn and \DebugBlocksOff. These functions are documented on page
36.)
\DebugSwitchesOn This debugs the use of legacy switches (so perhaps better called \DebuglLegacySwitchesOn)
\DebugSwitches0ff but so far it was just a quick debugging aid while I was trying to understand. It needs
some further thoughts and is probably not necessary at all in the end.

624 \cs_new_protected:Npn \DebugSwitchesOn {
65 \AddToHookWithArguments{cmd/legacy_if_gset_false:n/before} [debug]

646 {\typeout{[Switch] ~==>~ ##1~=~false~(global)}}
07 \AddToHookWithArguments{cmd/legacy_if_gset_true:n/beforel} [debug]

648 {\typeout{[Switch] ~==>~ ##1~=~true~(global)l}}
60 \AddToHookWithArguments{cmd/legacy_if_set_false:n/beforel} [debug]

650 {\typeout{[Switch] ~==>~ ##1~=~false}}

651 \AddToHookWithArguments{cmd/legacy_if_set_true:n/before} [debug]

652 {\typeout{ [Switch] ~==>~ ##1~=~true}}

653 F

0s¢ \cs_new_protected:Npn \DebugSwitchesOff {

655 \RemoveFromHook{cmd/legacy_if_gset_false:n/before} [debug]
o6 \RemoveFromHook{cmd/legacy_if_gset_true:n/beforel} [debug]
os7 \RemoveFromHook{cmd/legacy_if_set_false:n/before}[debug]
o5 \RemoveFromHook{cmd/legacy_if_set_true:n/before}[debug]
650 F

s0 % \DebugSwitchesOn

o1 %\DebugSwitchesOff

(End of definition for \DebugSwitchesOn and \DebugSwitchesOff. These functions are documented on
page ?7.)

43

9.3 Template types and template interfaces

This section is devoted to the template interfaces, and the template code is covered later.

blockenv (type) All template types expect a first key—value argument used to tweak template parameters
list (type) at a specific point in the document for a single environment or command. The template
captionedtext (type) types blockenv, list, captionedtext, and thmstyle take three more arguments which

block (type)
item (type)

662
663
para (type)

665

666

667

668
blockenv std (templ.)

669

670

671

\NewTemplateType{blockenv}{4}
\NewTemplateType{list}{4}

\NewTemplateType{captionedtext}{4}

\NewTemplateType{thmstyle}{4}

\NewTemplateType{block}{1}
\NewTemplateType{item}{1}
\NewTemplateType{para}{1}

(
(
(
thmstyle (type) are a boolean for suppressing numbering, a possible caption, and a possible sub-caption.
(
(
(

\DeclareTemplateInterface{blockenv}{std}{4}

{

name : tokenlist ,

If not explicitly set then tag-name and tag-attr-class are set by the tagging-recipe
However, we have to default both to (empty) so that nested blocks do not inherit from
the outer level.

677

,tag-name : tokenlist =
,tag-attr-class : tokenlist =
,tagging-recipe : tokenlist = standard
,transparent-level : boolean = false
,legacy-code : tokenlist =
,block-instance : tokenlist = std-display

Paragraph instance is normally inherited so no default.

678
679
680
681

682

684

685

block std (templ.)
686
687
688
689
690
691
692
693
694
695
696

697

,para-instance : tokenlist
,inner-level-counter : tokenlist
,max-inner-levels : tokenlist = 4
,inner-instance-type : tokenlist =
,inner-instance : tokenlist =
,tagging-suppress-paras : boolean = false
,final-code : tokenlist = \ignorespaces

\DeclareTemplateInterface{block}{std}{1}

{
,begin-vspace : skip =
,begin-extra-vspace : skip =
,begin-unchained-vspace : skip =
,para-vspace : skip =
,end-vspace : skip =
,end-extra-vspace : skip =
,item-vspace : skip =
,begin-penalty : integer
,end-penalty : integer
,item-penalty : integer

\topsep

\partopsep

.5\topsep

\parskip
\KeyValue{begin-vspace}
\KeyValue{begin-extra-vspace}
\itemsep

= \UseName{@beginparpenalty}
= \UseName{@endparpenalty}
\UseName{@itempenalty}

44

698 ,left-margin : length = \leftmargin
699 ,right-margin : length = \rightmargin
700 ,para-indent : length = Opt

701 }

para std (templ.)
702 \DeclareTemplateInterface{para}{std}{1}

703 {

704 ,para-attr-class : tokenlist = justify
705 ,para-indent : length = \parindent
706 ,begin-hspace : skip = Opt

707 ,left-hspace : skip = Opt

708 ,right-hspace : skip = Opt

709 ,end-hspace : skip = \@flushglue
710 ,fixed-word-spaces : boolean = false

711 ,final-hyphen-demerits : integer = 5000

712 ,newline-cmd : function(0) = \@normalcr
713 }

list std (templ.)
714 \DeclareTemplateInterface{list}{std}{4}

715 {

716 ,counter : tokenlist =

717 ,item-label : tokenlist =

718 ,start : integer =1

719 ,resume : boolean = false

720 ,item-instance : instance{item} = basic
721 ,item-vspace : skip = \itemsep

722 ,item-penalty : integer = \UseName{@itempenaltyl}
723 ,item-indent : length = \itemindent
724 ,label-width : length = \labelwidth
725 ,label-sep : length = \labelsep

726 ,legacy-support : boolean = false

727 }

item std (templ.)
75 \DeclareTemplateInterface{item}{std}{1}

729 {

730 ,counter-label : function{1} = \arabic{#1}

731 ,counter-ref : function{1} = \KeyValue{counter-label}

732 ,label-ref : function{1} = #1

733 ,label-autoref : function{1} = item~#1

734 ,label-format : function{1} = #1

735 ,label-strut : boolean = false

736 ,label-align : choice {left,center,right,parleft} = right

737 ,label-boxed : boolean = true

738 ,next-line : boolean = false % <- review viz standalone below
739 ,text-font : tokenlist

740 ,compatibility : boolean = true

741 ,label-placement : choice {chained,unchained,standalone} = chained ,
742 }

45

captionedtext thmlike (templ.) The captionedtext thmlike template for theorem-like environments has only three
keys because it delegates most of the work to the thmstyle template specified in the key

style.
723 \DeclareTemplateInterface{captionedtext}{thmlike}{4}
a0 {
745 ,counter : tokenlist =
746 ,title : tokenlist = % <- bad name?
ur ,style : instance{thmstyle} = plain
748 }

captionedtext proof (templ.) In contrast, the captionedtext proof template implements all of the proof environ-
ment without any delegation and therefore shows several keys for customizing the layout
(similar to those seen with thmstyle std).

729 \DeclareTemplateInterface{captionedtext}{proof}{4}

750 {

751 ,title : tokenlist = Proof
752 ,punct : tokenlist = .

753 ,caption-placement : choice {chained,unchained,standalone} = unchained
754 ,before-hspace : skip = Opt

755 ,after-hspace : skip = bpt

756 ,caption-decls : tokenlist =

757 ,title-format : function{1} = #1
755 ,punct-format : function{1} = #1
750 ,body-decls : tokenlist =

760 }

thmstyle std (templ.)
761 \DeclareTemplateInterface{thmstyle}{std}{4}

762 {

763 ,numbered : boolean = true

764 ,Space ! tokenlist = \ % <- bad name?

765 ,punct : tokenlist = .

766 ,caption-placement : choice {chained,unchained,standalone} = unchained
767 ,before-hspace : skip = Opt

768 ,after-hspace : skip = 5pt

769 ,order : commalist = { title, space, number, punct, space, note }
770 ,caption-decls : tokenlist =

1 ,title-format : function{1} = #1

772 ,number-format : function{1} = #1

773 ,punct-format : function{1} = #1

774 ,note-format : function{1} = (#1)

775 ,body-decls : tokenlist =

776}

9.4 Implementation of templates
9.4.1 Some notes on the IATEX 2¢ legacy switches

IXTEX 2¢ used a number of switches to manage its list environments and everything that
was based on them.

For the reimplementation I made some notes about the original usage and how this
got changed (while keeping the names for now).

46

Some of these switches really need to keep their names, e.g., @nobreak or minipage,
because they are used all over the place. Others can probably replaced with L3 booleans
which makes things faster and cleaner, but for now I kept them too.

9.4.1.1 Original usage:

778 % Onewlist (global): signal that we are at the start of a list

70 % —=> true at the start of a list before the first item when control
781 is returned to document

72 % —> false in everypar setting the first item

73 % —> false at end of list if still true (after generating an error)

755 /% —> tests: at list start setting Onoparitemtrue and @noparlisttrue

755 /% @inlabel (global): signaling that some item label waits to be typeset

790 % —> true in \@item

71 % —> false at list end

72 % —> false 1in everypar after label has been typeset

793 % —> false in \newpage after \leavemode to typeset item label
794 (probably not needed)

796 % —> tests: at list start setting @noparitemtrue and @noparlisttrue

797 % —> tests: at list end to ensure that dangling label is typeset

795 % —> tests: in \@item to output a dangling item label by switching to hmode

790 % —> tests: in \everypar to output a dangling item label

s0 % —> tests: in \newpage to output a dangling item label before the page is ended
g1 % —> tests: in tagging hook {para/begin}{kernel}

s+ % O@noparlist (local):

805 %

s6 % —> true at start of list if already Q@inlabel=true
s07 % —> false at start of list otherwise

808 %

s0 % —> tests: in \endtrivlist. If true suppress vertical spacing after the list

g1 %
s12 % @noparitem (local):
813 %

s14 /% —> true at start of list if already @inlabel=true
sis o —> false

9.4.1.2 Repurpose:
817 %

s15 % Interpret legacy switches as follows (keeping the names for now)

819

&0 % Onewlist -> signals that we are at the start of a new block with a caption or
a1 at the start of a list block expecting an item next
82

47

83 In other words this is now really start of a block

84 with inner structure.

825 %

e6 % O@noparlist -> signals that we are on a new block with @inlabel already true, i.e.,

&7 h and this placement should happen horizontally

828 %

e20 % @inlabel -> Signals that we have at least one item or caption waiting to be typeset
830 % inside the label box

831 %

832 % @noparitem -> dropped (handled directly)

9.4.2 Implementation of blockenv templates

So far there is only one, but who knows .. — however, the majority will be vertically
oriented blocks, so we make this the std.

blockenv std (templ.)
53¢ \DeclareTemplateCode{blockenv}{std}{4}

835 {

836 name = \1__block_env_name_tl

837 ,tag-name = \1__block_tag_name_tl

838 ,tag-attr-class = \1__block_tag_class_tl

839 ,tagging-recipe = \1__block_tagging_recipe_tl

840 ,transparent-level = \1__block_transparent_level_bool
841 ,legacy-code = \1__block_legacy_code_t1l

842 ,block-instance = \1__block_block_instance_tl

843 ,para-instance = \1__block_para_instance_tl

844 ,tagging-suppress-paras = \1__tag_para_flattened_bool

845 ,inner-level-counter = \1__block_inner_level_counter_tl
846 ,max-inner-levels = \1__block_max_inner_levels_tl

847 ,inner-instance-type = \1__block_inner_instance_type_tl
848 ,inner-instance = \1__block_inner_instance_tl

849 ,final-code = \1__block_final_code_tl

850 }

851 {

s> \template_debug_typeout:n{~\space template:~ 'std;~
853 arguments:~ \exp_not:n{|#1|#2|#3|#4|}}

854 \UseHook{blockenv}

We first evaluate the key list passed from the document (if any). All known keys are
used, the remainder is stored in \UnusedTemplateKeys to be passed to any inner instances
below.

s5 \SetKnownTemplateKeys{blockenv}{std}{#1}

We need to know later if we have nested blockenvs inside a flattened environment.
Whenever we start a new blockenv we increment \1__tag_block_flattened_level_-
int if it is already different from zero. If it is zero we increment it if flattening is
requested. Thus a value of 0 means no flattening requested so far and 1 means this is
the first blockenv requesting flattening. In either case we have to make sure that the
blockenv is surrounded by a <text-unit> tag, while for any value above 1 we have to
omit the <text-unit>.

856 \int_compare:nNnTF \1__tag_block_flattened_level_int > 0O

48

857 {

858 \int_incr:N \1__tag_block_flattened_level_int

859 }

860 {

861 \bool_if:NT \1__tag_para_flattened_bool

862 {

863 \int_incr:N \1__tag_block_flattened_level_int

864 }

865 }

s \tl_if_empty:NF \1__block_inner_level_counter_tl

867 {

868 \int_compare:nNnTF \1__block_inner_level_counter_tl >

860 { \1__block_max_inner_levels_tl - 1 }
870 { \@toodeep }

871 { \int_incr:N \1__block_inner_level_counter_tl } 7% not clean "o"?
872 }

Legacy defaults are only roped in if the list level changes. For display blocks that remain
on the same level the current values are kept.

e73 \int_compare:nNnTF \g_block_nesting_depth_int >

874 { \c@maxblocklevels - 1 }
875 { \@toodeep }

876 {

877 \int_gincr:N \g_block_nesting_depth_int

If there are no legacy defaults for that level then the next line does nothing, i.e., the
current values (from the last level) become the defaults for the next.

If have a transparent level (e.g., something like a center environment) we omit setting
the legacy defaults, because that is the way IATEX 2¢ lists worked as well.

878 \bool_if:NF \1__block_transparent_level_bool

879 {

880 \use:c { @list

881 \int_to_roman:n { \g_block_nesting_depth_int } }
882 }

883 }

If we are doing tagging we load one of the available recipes for tagging, which alters
various kernel hooks to add appropriate tagging structures.

884 \UseTaggingSocket{block/recipe}{\1__block_tagging recipe_t1l}
The default for 1ist environments is that they have an empty label and are not numbered
(something that is then overwritten by the setup of a specific list). We ensure this here
even for non-lists, because we need a defined state that then can be overwritten by
the legacy setup code for the list environment in \1__block_legacy_code_t1l. This is
needed in case lists are nested as they otherwise would inherit outer values (and suddenly
an itemize would start incrementing an outer enumerate counter, etc.

ss \tl_clear:N \@itemlabel

g6 \tl_clear:N \@listctr

887 \legacy_if_set_false:n { @nmbrlist }
Then run the legacy setup code if any is given in the instance.

ss \1__block_legacy_code_tl

49

(ﬁx

Next call a block instance at the appropriate level passing it any remaining key/value from
the optional document-level argument (i.e., those now stored in \UnusedTemplateKeys).

s0 \exp_args:Nee \UseInstance{block}

890 { \1__block_block_instance_tl - \int_use:N
801 \g_block_nesting_depth_int }
892 \UnusedTemplateKeys

After this instance has been processed, any remaining unused keys are stored in
\UnusedTemplateKeys and we can make use of this data later as long as we do not
call another instance that also does unused key processing and overwrites it. But this is
what happens below, so we better save its current value for now.

203 \tl_set_eq:NN \1__block_unused_blockenv_keys_tl \UnusedTemplateKeys
After the block instance call the para and then inner (list) instance if either or both are
specified (which may not be the case).

g4 \tl_if_empty:NF \1__block_para_instance_tl

895 {
For now we don’t offer to alter instance parameters here so we pass an empty argument.

896 \exp_args:Ne \UseInstance{para}{ \1__block_para_instance_tl } {}

897 }
The inner instance may have its own levels or none depending on which the instance
name differs. Again we pass it the optional key/value list.

ss \tl_if_empty:NF \1__block_inner_instance_tl

899 {
We expand the first two arguments so that we get proper names for template type and
instance, because \UseInstance is not doing that for us in the right way.

900 \exp_args:Nee

901 \UseInstance{ \1__block_inner_instance_type_tl }

902 { \1__block_inner_instance_tl

003 \tl_if_empty:NF \1__block_inner_level_counter_tl
904 % not clean use "o"?

905 { - \int_use:N \1__block_inner_level_counter_tl }
906 }

907 \1__block_unused_blockenv_keys_tl

008 #2 % <-- \BooleanTrue or False

909 {#3 } % <-- \NoValue or content

910 {#41 } % <-- \NoValue or content

Again the instance may have processed a few keys from the so far unused keys, so we
update \1__block_unused_blockenv_keys_tl to match the new reality.

011 \tl_set_eq:NN \1__block_unused_blockenv_keys_tl \UnusedTemplateKeys

912 3
At this point, the \1__block_unused_blockenv_keys_t1l token list should either be
empty or it should contain only keys that are suitable for the item template, but right
now there is no code to test that can test the latter; it would help probably if we have
an interface for this.

) For now we handle that when the first item is encountered, but that isn’t really clean.

o3 % \tl_if_empty:NF \1__block_unused_blockenv_keys_tl

014 % {
o5 % check if only item template keys remain
916 % }

50

(decide

\BlockEnv
\SimpleBlockEnv

\g_block_nesting_depth_int

\1__block_unused_blockenv keys_t1

\1__tag block_flattened level int

\c@maxblocklevels

If this is supposed to be a transparent block environment then we have to decrement the
nesting level again so that nested environments think nothing is there.

017 \bool_if:NT \1__block_transparent_level_bool

018 { \int_gdecr:N \g_block_nesting_depth_int }
We finish off with \1__block_final_code_t1 which defaults to \ignorespaces so that
spaces between \begin{. ..} and the start of the text are ignored.

919 \1__block_final_code_tl

920 }

Might want a hook or a socket for legacy support.
921 \NewHook{blockenv}

To simplify the environment declarations later we provide two simple commands that in-
voke a blockenv instance. The matching counterpart to these commands is \BockEnvEnd
(defined below) that carries out all necessary action when a block environment ends.

922 \cs_new_protected:Npn \BlockEnv % #1#2#3#4 implicit

923 { \UseInstance{blockenv} }
This here is the most common one that hides arguments 2-4 when they aren’t needed,
e.g., in a center environment.

o2« \cs_new_protected:Npn \SimpleBlockEnv #1#2

925 { \UseInstance{blockenv}{#1}{#2} \BooleanFalse \NoValue \NoValue }
(End of definition for \BlockEnv and \SimpleBlockEnv. These functions are documented on page 37.)

IATEX 2¢ already has a counter to record the nesting depth of blocks, but we want our
own name because it isn’t really tied to “lists” any more. However, \@listdepth is really
part of the legacy interface (for example minipage alters it to point to a different counter)
so that we are stuck with using at least indirectly for now and the following line makes
this look like an L3 integer variable but internally expands to \@listdepth:
026 \cs_new_protected:Npn \g_block_nesting depth_int { \@listdepth } J a fake int
927 % for now

(End of definition for \g_block_nesting_depth_int. This function is documented on page 37.)

The token list that holds key values we haven’t yet used while we are processing the
instances in a block environment.

928 \tl_new:N \1__block_unused_blockenv_keys_tl
(End of definition for \1__block_unused_blockenv_keys_t1.)

Count the levels of nested blockenvs starting with the first that is “flattened”. The
counter is defined in lttagging.dtx, but until the next release 11/24 we set it up here too

020 \int_if_exist:NF \1__tag_block_flattened_level_int

930 {
031 \int_new:N \1__tag_block_flattened_level_int
932 }

(End of definition for \1__tag_block_flattened_level_int.)

A counter to increase or decrease the number of supported level. If increased, one needs
to supply additional level instances.

933 \newcounter{maxblocklevels}
932 \setcounter{maxblocklevels}{6}

(End of definition for \c@maxblocklevels. This function is documented on page 38.)

51

\BlockEnvEnd The code executed when a blockenv ends is 99% the same for all blockenvs (at least up

|

some redesign/ex-
tensions here?

to now). Small differences exist, though. They are accounted for first in the conditionals.
We make this a public command so that new block environments can be set up without
the need to resort to L3 layer programming.

o35 \cs_new_protected:Npn \BlockEnvEnd {

036 __block_debug_typeout:n{blockenv~ common~ ending \on@line}
If this block is not a transparent one we have to decrement the level now again, otherwise
that had happened earlier:

037 \bool_if:NF \1__block_transparent_level_bool

038 { \int_gdecr:N \g_block_nesting_depth_int }
If the @inlabel switch is true, i.e., if there is a caption or an item waiting to be placed
we move to horizontal mode to get them typeset.

020 \legacy_if:nT { @inlabel }

940 {

041 \mode_leave_vertical:

042 \legacy_if_gset_false:n { @inlabel }
943 }

If we are ending a list environment and we have not seen any \item, i.e., @newlist is
still true, we raise an error. In basic a “displayblock” scenario @newlist will always be
false, but if such an environment appears inside an outer list then \noitemerr could still
be triggered and that is undesirable (as the missing item will be detected at the wrong
point and again later, during the outer list processing). We therefore run it only if the
current environment is a list.

044 __block_if_list:T { \legacy_if:nT { @newlist } { \@noitemerr } }

945 \mode_if_horizontal:TF

946 { __block_skip_remove_last: __block_skip_remove_last: \par }

047 { \@inmatherr{\end{\@currenvir}} }
Once we are back in vertical mode we can add the appropriate closing tagging struc-
ture(s), if we are doing tagging.

948 __kernel_displayblock_end:
Resetting the @newlist switch is also only done if the current environment is a list.

o9 __block_if_list:T { \legacy_if_gset_false:n { @newlist } }
There is a possibility that the @nobreak switch is still true so we set it back just in case.

050 \legacy_if_gset_false:n { @nobreak }
What to do in terms of vertical spacing in different situations is still somewhat open to
debate, right now this is more or less implementing what IATEX 2¢ list environments have
been doing.

os1 % __block_debug_typeout:n{@noparlist =

052 \legacy_if:nTF { @noparlist }{true}{false}}

053 \legacy_if:nF { @noparlist }

954 {

955 __block_skip_set_to_last:N \1_tmpa_skip

956 \dim_compare:nNnT \1_tmpa_skip > \c_zero_dim

957 {

958 \skip_vertical:n { - \1_tmpa_skip }

959 \skip_vertical:n { \1_tmpa_skip + \parskip - \Q@outerparskip }
960 }

961 \addpenalty \@endparpenalty

962 \addvspace \1__block_topsepadd_skip

52

IMTEX 2¢ triggered the paragraph handling after a list at this point here, i.e., only if
the list didn’t start a paragraph. One can make a case for that, but it can be somewhat
surprising to the user and there is a good argument that even such a list could be followed
explanatory text that is part of the same paragraph and doesn’t start a new one.

963 % \legacy_if_gset_true:n { Qendpe }

964 }

So this is for now always done. Probably \1__block_topsepadd_skip above should be
added only if the paragraph ends here and not if it continues, so this need some further
leanup.

Finally, we have a socket that handles the \par handling after the block. Normally,
we use it with the on plug (check for a following \par) but in the case of standalone
environments we assign it the off plug.

o5 \socket_use:n {block/endpe}
966 t

(End of definition for \BlockEnvEnd. This function is documented on page 37.)

__block if list:T The following code may need some redesigning, as there is no good test for “is this
nvironment a ‘list’ that has \items”. For now this here does the trick well enough.

o7 \cs_new:Npn __block_if_list:T
968 { \tl_if_eq:NnT \1__block_block_instance_tl {std-list} }
(End of definition for __block_if_list:T.)

__kernel_displayblock_end: The kernel hook for tagging at the end of the block.

o0 \cs_new_protected:Npn __kernel_displayblock_end: {
o0 __block_debug_typeout:n{\detokenize{__kernel_displayblock_end:}}
971 }

(End of definition for __kernel_displayblock_end:.)

block/endpe (socket) This socket is responsible for the end environment \par handling. We define two plugs
for it (on and off).

o> \socket_new:nn {block/endpe} {0}

on (plug) The plugs set the legacy @endpe switch. This must always happen because block envi-
off (plug) ronments with different settings can be nested and should not inherit the setting from
the outer environment.
We can’t use \legacy_if_gset_true:n because this is now doing more than setting the
legacy switch:
o3 \socket_new_plug:nnn{block/endpe} {on} { \@endpetrue }
o072 \socket_new_plug:nnn{block/endpe} {off} { \@endpefalse }

o5 \socket_assign_plug:nn{block/endpe}{on}

9.4.3 Implementation of para templates

para std (templ.)

o7 \DeclareTemplateCode{para}{std}{1}
o7 {

978 ,para-indent = \parindent

53

__para_handle_indent:

\para_raw_noindent:

The next parameter needs integrating in the basic paragraph handling (not done yet)
nd it should therefore probably a public name like the rest.

979 ,begin-hspace \1_para_begin_skip

%0 ,left-hspace = \leftskip
st ,right-hspace = \rightskip
022 ,end-hspace = \parfillskip

ext isn’t yet implemented (and the variable name is wrong).

083 ,fixed-word-spaces = \1__par_fixed_word_spaces_bool 7 name??
984 ,final-hyphen-demerits = \finalhyphendemerits

985 ,hewline-cmd =\\

986 ,para-attr-class = \1__tag_para_attr_class_tl

987 }

988 {

o0 \template_debug_typeout:n{~\space template:~ 'std';~

990 argument:~ \exp_not:n{|#1|}}

o1 \SetTemplateKeys{para}{std}{#1}

92 \skip_set:Nn \@rightskip \rightskip
003 }

We insert \1_para_begin_skip directly in front of the indentation box. This way
it is hidden from any special setting of \everypar (whether that is used to remove
the indentation box or whether it attempts to do something with the first token(s)
of the paragraph). However, we only insert it if it differs from 0.0pt to avoid adding
\penalty 10000 \glue 0.0 all over the place.

994 \tl_const:Ne \c__zero_skip_tl { \skip_use:N \z@skip }

o5 \tl_new:N \1__para_begin_skip_tl

95 \cs_set:Npn __para_handle_indent: {
007 \tl_set:Ne \1__para_begin_skip_tl { \skip_use:N \1_para_begin_skip }
o5 \if_meaning:w \1__para_begin_skip_tl

999 \c__zero_skip_tl

1000 \else:

1001 \nobreak

1002 \tex_hskip:D \1_para_begin_skip
1003 \fi:
w0+ \box_use_drop:N \g_para_indent_box
1005 }

(End of definition for __para_handle_indent:.)

\para_raw_noindent: doesn’t call __para_handle_indent: so we have to manually
do the \1_para_begin_skip handling.

1006 \cs_set:Npn \para_raw_noindent: {

1007 \mode_if_vertical:TF

1008 {

1000 \tex_everypar:D {

1010 \tex_everypar:D { \g__para_standard_everypar_tl }

1011 \tl_set:Ne \1__para_begin_skip_tl { \skip_use:N \1_para_begin_skip }
1012 \if_meaning:w \1__para_begin_skip_t1l

1013 \c__zero_skip_tl

1014 \else B

1015 \nobreak

1016 \tex_hskip:D \1_para_begin_skip

54

1017 \fi:

1018 \the\everypar }

1019 }

1020 { \msg_error:nn { latex2e }{ raw-para } }
1021 \tex_noindent:D

1022 }

(End of definition for \para_raw_noindent:. This function is documented on page 77.)

9.4.4 Implementation of block templates

block std (templ.) In contrast to the IXTEX 2¢ implementation we do not directly use \1listparindent here
but a private register of the template. The reason is that block template instances are
also used outside of lists.

1023 \DeclareTemplateCode{block}{std}{1}

1024 {
1025 ,begin-vspace = \topsep
1026 ,begin-extra-vspace = \partopsep
1027 ,begin-unchained-vspace = \1__block_unchained_skip
1028 ,para-vspace = \parsep
_The bottom skips aren’t used yet, even if set instead as before \topsep is applied there.
1029 ,end-vspace = \1__block_botsep_skip
1030 ,end-extra-vspace = \1__block_parbotsep_skip
1031 ,item-vspace = \itemsep
1032 ,begin-penalty = \@beginparpenalty
1033 ,end-penalty = \@endparpenalty
1034 ,item-penalty = \@itempenalty
1035 ,right-margin = \rightmargin
0% ,left-margin = \leftmargin
1037 ,para-indent = \1__block_parindent_dim
1038 }
1039 {
1040 \template_debug_typeout:n{~\space template:~ 'std';~
1041 argument:~ \exp_not:o{\exp_after:wN |#1|}}
1042 \SetKnownTemplateKeys{block}{std}{#1}

The code largely follows the logic of IATEX 2¢’s trivlist implementation as far as it
applicable for the “display block” but coded using the L3 programming layer. However,
we keep most of the legacy variables (e.g., @noskipsec) if there is some chance that they
are set/used in classes or packages.

1043 \legacy_if :nTF { @noskipsec }

A @noskipsec heading is a heading that is placed in the same line as the following text
(using \everypar) but not if that text starts with a display block, so we ensure that the
heading gets typeset now.

1044 { \mode_leave_vertical: }

If no such heading is waiting we might have a block caption waiting to be typeset and
this might be requested to be set “unchained”. In that case we also have to ensure that
this gets typeset now.

The situation is slightly different though, because we want to end in vertical mode in
that case also add some special vertical space and have to properly deal with avoiding
page breaks.

1045 {

55

1046 \bool_if:NT \g__block_label_unchained_bool

1047 {

1048 __block_debug_typeout:n{Set~ captioned~ block~ everypar \on@line }
1049 \cs_set_eq:NN __block_everypar: __block_captioned_everypar_std:
1050 \legacy_if:nT { @inlabel }

1051 {

1052 \hbox_unpack_drop:N \g__block_labels_box

1053 \legacy_if_gset_false:n { @inlabel }

1054 \par

1055 \nobreak

1056 \skip_vertical:n { \1__block_unchained_skip }

1057 \legacy_if_gset_true:n { @nobreak }

1058 }

1059 }

1060 }

1061 \skip_set:Nn \1__block_topsepadd_skip { \topsep }

1062 \mode_if_vertical:TF

1063 {

1064 \skip_add:Nn \1__block_topsepadd_skip { \partopsep }

At this point it is safe to add tagging structure(s) so we have a kernel-owned hook here for
tagging. This is used to possibly start a paragraph structure (to surround the block, for
example, in case of lists) and possibly do some other preparation for tagging the block.
1065 __kernel_displayblock_beginpar_vmode:

1066 }

1067 {

If we are in horizontal mode then the displayblock has to return to vertical mode now
(after removing any immediately preceding skip or kern. But before we actually issue the
\par we execute a kernel hook in which we can add tagging code. This hook is “weird”
because by default it does nothing, but if tagging is wanted it takes an argument and
grabs the following \par in order to put tagging code before and after the \par.

1068 __block_skip_remove_last: __block_skip_remove_last:

1069 __kernel_displayblock_beginpar_hmode:w \par

1070 }

Next lines set some paragraph defaults, any of them may get overwritten if there is a
para-instance specified on the blockenv instance.

1071 \skip_zero:N \leftskip
1072 \skip_set_eq:NN \rightskip \@rightskip
1073 \skip_set_eq:NN \parfillskip \@flushglue

The next lines establish a parshape which is retained across paragraphs be executing
\para_end: within a group and thus reestablishing the parshape for the next paragraph
again. In case a list got started \par is ignored until we have seen an \item (or we have
executed \par one thousand times.

1074 \int_zero:N \par@deathcycles

1075 \@setpar

1076 {

1077 \legacy_if :nTF { @newlist }

1078 {

1079 \int_incr:N \par@deathcycles

1080 \int_compare:nNnTF \par@deathcycles > { 1000 }
1081 { \@noitemerr

1082 { \para_end: }

56

1083 }

1084 }

1085 {

1086 { \para_end: }

1087 }

1088 }

1089 \dim_set_eq:NN \parindent \1__block_parindent_dim

1090 \dim_add:Nn \linewidth { - \rightmargin - \leftmargin }
1001 \dim_add:Nn \@totalleftmargin { \leftmargin }

1092 \tex_parshape:D 1 ~ \@totalleftmargin \linewidth

This is the point where we are ready to add the tagging structure for the block, e.g., an
<L>, a <Figure> or some other structure.

1003 __kernel_displayblock_begin:

Finally, we have to output the vertical separation and penalty at the start of the block
and make corrections for a change in \parskip and some other housekeeping, unless this
block is inside a list and the list \item has not yet placed. In that case the vertical space
and penalty is suppressed. This is controlled through the legacy switches @inlabel,
minipage, and @nobreak.

Now we are back to legacy list implementation ...

1094 \skip_set_eq:NN \@outerparskip \parskip

1005 \skip_set_eq:NN \parskip \parsep

1096 %

1097 \legacy_if:nTF { @inlabel }

1098 {

1009 \legacy_if_set_true:n { @noparlist }

1100 \hbox_gset:Nn \g__block_labels_box

1101 {

1102 \skip_horizontal:n { - \leftmargin }
1103 \hbox_unpack_drop:N \g__block_labels_box
1104 \skip_horizontal:n { \leftmargin }

1105 }
1106 \legacy_if:nF { @minipage } % Why this chunk of code?

1107 {

1108 __block_skip_set_to_last:N \1__block_tmpa_skip
1100 \skip_vertical:n { - \1__block_tmpa_skip }

1110 \skip_vertical:n { \1__block_tmpa_skip +

111 \@outerparskip - \parsep }

1112 }

1113 ¥

1114 {

1115 \legacy_if_set_false:n { @noparlist }

1116 \legacy_if:nT { O@newlist } { \@noitemerr }

1117 \legacy_if :nTF { @nobreak }

1118 {

We are not resetting @nobreak here as it should also apply to the upcoming item.
1119 \addpenalty{ 10000 }

1120 \addvspace{ \skip_eval:n{\@outerparskip-\parsep} }
1121 }

1122 {

1123 \addpenalty \@beginparpenalty

57

__block captioned everypar std:

__kernel displayblock begin:

__kernel displayblock beginpar hmode:w

__kernel displayblock beginpar vmode:

1124 \addvspace { \skip_eval:n { \1__block_topsepadd_skip +
1125 \@outerparskip } }

1126 \addvspace { - \parsep }

1127 ¥

1129 }

The captioned text is typeset at the start of a paragraph using code triggered in
\everypar (by setting __block_everypar to this code here).
1130 \cs_new_protected:Npn __block_captioned_everypar_std: {

1131 __block_debug_typeout:n{...~ in~ captioned~ block~ everypar \on@line }
First set some control switches to false:

1132 \legacy_if_set_false:n { @minipage }

1133 \legacy_if_gset_false:n { Onewlist }

The @inlabel is normally true at this point, but if we also have @nobreak then the same
routine is called again at the next paragraph to reset \clubpenalty and at that point
the \g__block_labels_box has been typeset and @inlabel is false.

1134 \legacy_if:nT { @inlabel }

1135 {

Typeset the saved label (aka captioned text):

1136 \legacy_if_gset_false:n { @inlabel }

1137 \para_omit_indent:

1138 \box_use_drop:N \g__block_labels_box

1139 __kernel_list_label_after:n { \PARALABEL } % <- change
1140 % this name
1141 \penalty \c_zero_int

1142 }

If @nobreak is true we prevent a break after the first line by setting \clubpenalty.
1143 \legacy_if :nTF { @nobreak }

1144 {

1145 \legacy_if_gset_false:n { Onobreak }

1146 \int_set:Nn \clubpenalty { 10000 }

1147 }

1148 {

Otherwise we reset \clubpenalty and disable __block_everypar.
1149 \int_set_eq:NN \clubpenalty \@clubpenalty

1150 __block_debug_typeout:n{Set~ noop~ block~ everypar \on@line }
1151 \cs_set_eq:NN __block_everypar: \prg_do_nothing:
1152 }

1153 F

(End of definition for __block_captioned_everypar_std:.)

The internal kernel hooks for tagging.

1154 \cs_new_protected:Npn __kernel_displayblock_begin: {
155 __block_debug_typeout:n

1156 {\detokenize{__kernel_displayblock_begin:}}

157 }

153 \cs_new_protected:Npn __kernel_displayblock_beginpar_hmode:w {
150 __block_debug_typeout:n

1160 {\detokenize{__kernel_displayblock_beginpar_hmode:w}}

1161 F

58

\@itemlabel
\@listctr

__block evaluate_saved user keys:nn

list std (templ.)

1162 \cs_new_protected:Npn __kernel_displayblock_beginpar_vmode: {
163 __block_debug_typeout:n

1164 {\detokenize{__kernel_displayblock_beginpar_vmode:}}

1165 }

(End of definition for __kernel_displayblock_begin:, __kernel_displayblock_beginpar_hmode:w,
and __kernel_displayblock_beginpar_vmode:.)

9.4.5 Implementation of 1list templates

This 1ist is one of the template types that can be used as an inner-type in a blockenv;
the other one currently implemented is captionedtext.

Both \@itemlabel and \@listctr from the KTEX 2¢ list implementation are used (or
set) by various packages. We therefore use them too, so that these packages have a
fighting chance to work with the new tagging-aware implementation for list.

166 \tl_new:N \Q@itemlabel % should have a top-level definition

167 \tl_new:N \@listctr % should have a top-level definition

(End of definition for \@itemlabel and \@listctr. These functions are documented on page 38.)

Keys set on individual list environments may be intended to alter the behavior of the
template instance that defines the \item command. If meant to alter only a single
\item command one would specify them in the optional argument of the \item, but
if they should alter all items the right place would be the list environment. For this
reason we need to store the values and then set them inside the \item template code
using \SetKnownTemplateKeys in the appropriate context (template type and template
name). This is done in __block_evaluate_saved_user_keys:nn. The context is pro-
vided in the two arguments (because different list environments may use different \item
instances based on different templates. By default the command does nothing because
most environments do not have user key settings.

165 \cs_new_eq:NN __block_evaluate_saved_user_keys:nn \use_none:nn
Maybe something like this should become a public function, but for now this is a one-off
for the \item command and therefore coded inline and internal to the block code.

160 %\cs_new:Npn __block_save_user_keys:n #1 {
uo % \tl_if_empty:nTF {#1}

171 { \cs_set_eq:NN __block_evaluate_saved_user_keys:nn \use_none:nn }
1 % { \cs_set:Npe __block_evaluate_saved_user_keys:nn ##1##2

ERERA { \SetKnownTemplateKeys{##1}{##2}{ \exp_not:n{#1} } }

s hY

(End of definition for __block_evaluate_saved_user_keys:nn.)

This template implements numbered and unnumbered lists and can be combined with
display blocks or with inline blocks.

1175 \DeclareTemplateCode{list}{std}{4}

1176 {

1177 ,counter = \1__block_counter_tl

1178 ,item-label = \1__block_item_label_tl

1179 ,start = \1__block_counter_start_int
1180 ,resume = \1__block_resume_bool

1181 ,item-instance __block_item_instance:n
us2 ,item-vspace = \itemsep

59

183 % ,item-para-vspace = \parsep

184 ,item-penalty = \@itempenalty
1185 ,item-indent = \itemindent
1186 ,label-width = \labelwidth
s ,label-sep = \labelsep

1188 ,legacy-support \1__block_legacy_support_bool % FMi questionable

1189

-

1190
101 \template_debug_typeout:n{~\space template:~ 'std';~

1192 arguments:~ \exp_not:o{\exp_after:wN |#1|#2|#3[#4|}}
We start by looking at the user supplied keys in #1. If there aren’t any we reset
__block_evaluate_saved_user_keys:nn to do nothing. Otherwise we evaluate and set
the keys in the context of the current list template. In addition we prepare __block_-
evaluate_saved_user_keys:nn for execution in the template for \item.

1193 \tl_if_empty:oTF {#1}

1104 { \cs_set_eq:NN __block_evaluate_saved_user_keys:nn \use_none:nn }

1195 {

1196 \SetKnownTemplateKeys{list}{std}{#1}

The setup for __block_evaluate_saved_user_keys:nn is a bit tricky and has to be
done with \cs_set:Npe even though we don’t want to expand anything and therefore
use \exp_not:n inside. All this does is that any # passed in via #1 is doubled (e.g.,
from label-format=\fbox{#1} which is represented as ...\fbox{##1}). Otherwise, we
would end up with a replacement text like

\SetTemplateKeys {#1}{#2}{label-format=\fbox {#1}}
instead of
\SetTemplateKeys {#1}{#2}{label-format=\fbox {##1}}

resulting in very odd and puzzling behavior later on.

The definition of __block_evaluate_saved_user_keys:nn made here is later used
when an \item is processed and passes remaining keys to the item instance. After that
nothing should remain, so we test that and issue an error if not.

1197 \cs_set:Npe __block_evaluate_saved_user_keys:nn ##1##2
1108 { \SetKnownTemplateKeys{##1}{##2}{

1109 \exp_not:o { \UnusedTemplateKeys }

1200 }

1201 \exp_not:n {

1202 \tl_if_empty:NF \UnusedTemplateKeys

1203 {

1204 \msg_error:nnee { block } { unknown-keys }
1205 { \1__block_env_name_tl \space environment}
1206 \UnusedTemplateKeys

1207 }

1208 }

1209 }

1210 }

Has this list a counter name defined in the instance?

1211 \tl_if_empty:NTF \1__block_counter_tl
1212 {

60

If no counter name has been specified as part of the instance setup the list might still be
numbered if it is a legacy list that uses \usecounter in the second argument of the legacy
list environment. However, in that case we don’t have to do much because \usecounter
sets up \@listctr and sets it to zero so that the first item is numbered 1.

So all we do is to check if there was a start value given that differs from 1 and if so we
change the counter value to match that. This makes it possible to define a legacy 1list
in which the counter doesn’t start with 1 by explicitly setting the counter value in the
second argument of the 1ist environment but also overwriting that through a start key
setting on invocation.

1213 \int_compare:nNnF \1__block_counter_start_int = 1
1214 {

1215 \int_gset:cn{ c@ \@listctr }

1216 { \1__block_counter_start_int - 1 }

1217 ¥

1218 }

In that case we only check if we should resume a previous list (\@listctr should be set
in that case through the legacy method as well so we should be able to use it).

If a counter is set in the list instance we use that one. This should be the name of a
IXTEX counter that is already allocated externally—mno runtime check is made for this: if
it is not declared one will get “no such counter” error when the list is used.

1219 {

1220 \@nmbrlisttrue

1221 \tl_set_eq:NN \@listctr \1__block_counter_tl
1222 \bool_if:NF \1__block_resume_bool

1223 {

1224 \int_gset:cn{ c@ \@listctr }

1225 { \1__block_counter_start_int - 1 }
1226 }

1227 i

Does the current instance have an item label representation? This would be possible
whether or not we have a numbered list. If yes, then we use this for \@itemlabel,
otherwise we expect that \@itemlabel is provided from the outside, e.g., as part of the
list environment argument.

1208 \tl_if_empty:NF \1__block_item_label_tl

1229 {
1230 \tl_set_eq:NN \@itemlabel \1__block_item_label_tl
1231 }

Finally, we signal that we are at the start of a new list (which affects how the first \item
is handled and how \par commands are interpreted.

1232 \legacy_if_gset_true:n { O@newlist }

If we encounter horizontal material before the first \item we do want a \@noitemerr
straight away, because afterwards we end up with tagging structure faults whose cause
is the missing \item. So we set up __block_everypar: to test for this; when the first
\item is encountered this will get reset. This is only relevant for vertical lists, when
dealing with inline lists one would need to test for something else to identify that there
is horizontal material between the start of the list and the first \item (maybe some
\spacefactor trick could be used then, or the material is boxed first and the width is
inspected as suggested by Joseph).

1233 __block_debug_typeout:n{Set~ first~ block~ everypar \on@line }
1234 \cs_set_eq:NN __block_everypar: __block_item_everypar_first:

61

135 __block_debug_typeout:n{template:list:std~end}
1236 F
The message that is used above when we are left with keys that are unknown:

137 \msg_new:nnnn { block } { unknown-keys }
13s { Some~ keys~ specified~ on~ the~ #1~ are~ unknown. }

1239 {

1240 The~ following~ keys~ are~ unknown~ and~ their-~

1201 values~ are~ ignored:\\

1242 \space\space #2\\

1243 Perhaps~ a~ misspelling~ or~ the~ current~ template~
1244 instance~ uses~ special~ keys.

1245 }

9.4.6 Implementation of item templates

item std (templ.) The item template has one hidden key label which is not available on the template for
setting because it is only used to receive any optional data passed to the \item command.
We therefore declare it with \keys_define:nn and ensure that the optional argument
data to \item (if it is not a key/value list already) is passed to this label key.

1226 \keys_define:nn { template/item/std }

1247 { label .tl_set:N = \1__block_label_given_tl }

1245 \DeclareTemplateCode{item}{std}{1}

1249 {

1250 ,counter-label = __block_counter_label:n

1251 ,counter-ref = __block_counter_ref:n
_ 1252 ,label-ref = __block_label_ref:n

1253 ,label-autoref = __block_label_autoref:n

1254 ,label-format = __block_label_format:n

1255 ,label-strut = \1__block_label_strut_bool

1256 ,label-boxed = \1__block_label_boxed_bool

1257 ,next-line = \1__block_next_line_bool

1258 ,text-font = \1__block_text_font_tl

1259 ,compatibility = \1__block_item_compatibility_bool
_This probably needs a different implementation (and needs completing)

1260 ,label-align = {

1261 left = \tl_set:Nn \1__block_item_align_tl { \relax \hss } ,
1262 center = \tl_set:Nn \1__block_item_align_tl { \hss \hss } ,

1263 right = \tl_set:Nn \1__block_item_align_tl { \hss \relax } ,
1264 parleft = \NOT_IMPLEMENTED ,

1265 }

The keylabel-placement is implemented using two booleans (at the moment).
1266 ,label-placement = {

1267 chained = \bool_gset_false:N \g__block_label_standalone_bool
1268 \bool_gset_false:N \g__block_label_unchained_bool ,
1260 unchained = \bool_gset_false:N \g__block_label_standalone_bool
1270 \bool_gset_true:N \g__block_label_unchained_bool ,
1271 standalone = \bool_gset_true:N \g__block_label_standalone_bool
1272 \bool_gset_false:N \g__block_label_unchained_bool ,
1273 }

1274 }

62

Then typeset the label at its natural width by applying __block_make_label_box:n to
the label given or to a label constructed from the counter. If it is boxed and reasonably
short, add padding to make it at least of size \labelwidth, then add another layer of
box. This way, when we unpack it in \g__block_labels_box it correctly remains boxed
in those cases. Afterwards, in the nextline case add \newline if the label did not fit in
the allotted space.

1275 {

1276 \template_debug_typeout:n{~\space template:~ 'std';~

1277 argument:~ \exp_not:n{|#1|}}

First deal with the key—value input, which in particular may provide a value for the label
(the usual optional argument of \item). For this we set \1__block_label_given_t1 to
\c_novalue_t1 so that we can identify if an optional argument was given.

1278 \tl_set_eq:NN \1__block_label_given_tl \c_novalue_tl

First we evaluate and set any keys specified on the list environment by calling __block_-
evaluate_saved_user_keys:nn. Then we do the same with all keys specified on this
\item command (which may overwrite one or the other setting just made).

1279 __block_evaluate_saved_user_keys:nn {item}{std}
We don’t care whether all of the user keys from the list level have been applied, but those

explicitly set on the \item command should be applicable, so we generate an error if that
isn’t the case:

1280 \SetKnownTemplateKeys{item}{std}{#1}

1281 \tl_if_empty:NF \UnusedTemplateKeys

1282 {

1263 \msg_error:nnee { block } { unknown-keys }
1284 { \noexpand\item command }

1285 \UnusedTemplateKeys

1286 }
If no optional argument was given then \1__block_label_given_tl is still equal to
\c_novalue_t1l and so we can distinguish that from \item[].

1287 \tl_if_novalue:oTF \1__block_label_given_tl
1288 {

The rest of the code for this template needs work and is both incomplete and partly
wrong.

1289 \tl_if_blank:oF \@listctr { \@kernel@refstepcounter \@listctr }
1200 \bool_if:NTF \1__block_item_compatibility_bool % not sure that
1201 % conditional

1202 % makes sense

1203 { __block_make_label_box:n { \MakeLinkTarget[\@listctr]{}%
1204 \@itemlabel } } % TODO ?

1205 { __block_make_label_box:n { \MakeLinkTarget[\@listctr]{}%
1206 __block_counter_label:n { \@listctr } } }
1297 }

1298 {

1299 __block_debug_typeout:n{item~ with~ optionall}

1300 __block_make_label_box:n {

1301 \MakeLinkTarget [\1__block_env_name_t1]{}

1302 \1__block_label_given_tl

1303 }

63

1310

1311

1312

1313

1314

1315

1316

1317

1318

\bool_if:nT
{
\1__block_label_boxed_bool
TODO: is \linewidth correct?
&& \dim_compare_p:n
{ \box_wd:N \1__block_one_label_box <= \linewidth }
}
{
\dim_compare:nNnT
{ \box_wd:N \1__block_one_label_box } < \labelwidth
{
\hbox_set_to_wd:Nnn \1__block_one_label_box { \labelwidth }
{
\exp_after:wN \use_i:nn \1__block_item_align_tl

FMi: ITEX 2¢ keeps the label boxed inside (not unboxed). This means that the content
stays rigid and does not vary based on glue setting in the line with the label. There are
cases where we do want the unboxed version (I think enumitem offers that in some cases
too) but it should probably not the default.

1319 %

1320 %

1322
1323

1324

TODO: customize?
\hbox_unpack_drop:N \1__block_one_label_box
\box_use_drop:N \1__block_one_label_box

\exp_after:wN \use_ii:nn \1__block_item_align_tl
}
}

Add another box level to the label box:

1325

1326

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

\hbox_set:Nn \1__block_one_label_box
{ \box_use_drop:N \1__block_one_label_box }
}
\dim_compare:nNnTF { \box_wd:N \1__block_one_label_box } > \labelwidth
{ \bool_set_true:N \1__block_long_label_bool }
{ \bool_set_false:N \1__block_long_label_bool }
\hbox_gset:Nn \g__block_labels_box
{
\hbox_unpack_drop:N \g__block_labels_box
\skip_horizontal:n { \itemindent - \labelsep - \labelwidth }
\hbox_unpack_drop:N \1__block_one_label_box
\skip_horizontal:n { \labelsep }
\bool_if:NT \1__block_next_line_bool
{ \bool_if:NT \1__block_long_label_bool { \nobreak \hfil \break } }
% version of \newline inside an hbox that will be unpacked
}
% TODO??? FMi what's that?
% \skip_set_eq:NN \parsep \1__block_item_parsep_skip

The next setting is for compatibility: The list template sets \1istparindent to zero and
otherwise doesn’t use it any more. However, in the second argument of a legacy list
environment the user may have set it explicitly to some other value and whatever value it
had was then used for \parindent within the list. Now we use its value only if it differs
from zero but otherwise use whatever the template instances specify. This gives 99.9%
compatibility for legacy documents. 100% for definitions using the list environment
and a setting inside, but if the user used \listparindent within the document, e.g.,

64

g_ block label standalone bool

g__block label unchained bool

\1__block_item_align_tl

\1__block_one_label_box
\g__block_labels_box

\1__block_long_label_bool

__block_make_label_box:n
__block_label_format:e

inside a verse environment there there is one case in which the setting is ignored, i.e.,
when it was set back to zero. That’s a rather unlikely scenario, but it is not impossible.
However, I couldn’t think of an approach that circumvents such boundary cases.

1343 \dim_compare:nNnF \listparindent = {Opt}
1344 { \dim_set_eq:NN \parindent \listparindent }

Placing the list label(s) is done when the paragraph for the \item is started, which exe-
cutes __block_everypar: inside para/begin. By default this command does nothing,
now we change it to attach the pending label or labels.

1345 __block_debug_typeout:n{Set~ item~ block~ everypar \on@line }

1346 \cs_set_eq:NN __block_everypar: __block_item_everypar_std:

1347 }

The two booleans for implementing label-placement and below caption-placement.
126 \bool_new:N \g__block_label_standalone_bool % tmp until replaced

1240 \bool_new:N \g__block_label_unchained_bool % tmp until replaced

(End of definition for g__block_label_standalone_bool and g__block_label_unchained_bool.)

1350 \tl_new:N \1__block_item_align_tl
(End of definition for \1__block_item_align_t1.)

Each label is typeset in \1__block_one_label_box to be measured. Once this is ready, it
is put (boxed or unboxed) in \g__block_labels_box, together with any pending labels
(for the case where a list begins just after \item). This is an analogue of I4TEX 2¢’s
\@labels, but it is always unboxed before use, to support both boxed and unboxed
labels.

1351 \box_new:N \1__block_one_label_box

1352 \box_new:N \g__block_labels_box

(End of definition for \1__block_one_label_box and \g__block_labels_box.)

Track whether the \1__block_one_label_box is larger than \labelwidth.
1353 \bool_new:N \1__block_long_label_bool
(End of definition for \1__block_long_label_bool.)

Make one label, wrapped in __block_label_format:n, with an appropriate \strut
and possibly \makelabel in compatibility mode (used for the 1ist environment).

1351 \cs_new_protected:Npn __block_make_label_box:n #1

1355 {
1356 \hbox_set:Nn \1__block_one_label_box
1357 {

If we do tagging then the contents of this box may need to be wrapped into a structure,
e.g., <Lbl>.

1358 \tag_socket_use:nnn {block/list/label}{}
1359 {

65

__block_everypar:

__block_item_everypar_std:
__block_iten everypar first

1360 __block_label_format:n

1361 {

1362 \bool_if:NT \1__block_label_strut_bool { \strut }
1363 \bool_if:NTF \1__block_legacy_support_bool
1364 \makelabel

1365 \use:n

1366 {#1}

1367 }

And what gets opened also needs closing:

1368 }

1369 }

1370 }

(End of definition for __block_make_label_box:n and __block_label_format:e.)

block/list/label (socket) A tagging socket to tag the label. It takes two arguments so that it can transparently

pass the label content. Declaration is in 1ttagging.dtx.

1571 \NewTaggingSocketPlug{block/list/label}{default}

1372 {

1373 %

1374 % FMi: this needs a different logic to decide when to make the label
1375 % an artifact (after cleaning up the \item code), therefore
1376 % disabled for now

1377 % \tl_if_empty:oTF \@itemlabel

1378 % {

1379 % \tag_mc_begin:n {artifact}

1380 % }

1381 % {

1382 \tagstructbegin{tag=\UseStructureName{block/list/labell}}
1383 \tagmcbegin{tag=\UseStructureName{block/list/label}}

1384 % }

1385 #2

1386 \tagmcend % end mc-\UseStructureName{block/list/label} or artifact
1387 % FMi: unconditionally for now

1388 % \tl_if_empty:oF \@itemlabel

1389 \tagstructend 7 end label

1390 \tagstructbegin{tag=\UseStructureName{block/list/body}}

1391 }

1302 \AssignTaggingSocketPlug{block/list/label}{default}

The __block_everypar: command is executed as part of para/begin but most of the
time does nothing, i.e., it has the following default definition outside of lists (and most
of the time within lists).

1303 \cs_new_eq:NN __block_everypar: \prg_do_nothing:
1304 \AddToHook{para/begin}[items]{__block_everypar:}

Note that we have to make sure that the above code is executed after the hook chunk
from tagpdf because the latter uses @inlabel to make a decision.
By the end of the day both should probably move into the kernel hook instead.

130 \DeclareHookRule{para/begin}{items}{after}{tagpdf}

66

\1__block_tmpa_skip

\1__block_topsepadd_skip
\1__block_effective_top_skip

What follows is the version that resets various legacy booleans and puts the label box in
the right place and finally resets itself to do nothing next time. __block_everypar: is
set to this by the item template so that the next paragraph start runs the code below.

1306 \cs_new_protected:Npn __block_item_everypar_std: {

1307 __block_debug_typeout:n{...~ in~ item~ block~ everypar \on@line }
1398 \legacy_if_set_false:n { @minipage }

1309 \legacy_if_gset_false:n { @newlist }

1400 \legacy_if:nT { @inlabel }

1401 {

1402 \legacy_if_gset_false:n { Q@inlabel }

1403 \box_if_empty:NT \g_para_indent_box { \kern - \itemindent }
1404 \para_omit_indent:

1405 \box_use_drop:N \g__block_labels_box

After the labels are placed we start a paragraph structure (if appropriate). This is
handled in the following kernel hook:

1406 __kernel_list_label_after:n {LI-}

1407 \penalty \c_zero_int

1408 ¥

1409 \legacy_if :nTF { @nobreak }

1410 {

1411 \legacy_if_gset_false:n { @nobreak }

1412 \int_set:Nn \clubpenalty { 10000 }

1413 T

1414 {

1415 \int_set_eq:NN \clubpenalty \@clubpenalty

Once the label(s) are typeset and we are past any special @nobreak handling we reset
__block_everypar: to do nothing.

1416 __block_debug_typeout:n{Set~ noop~ block~ everypar \on@line }
1417 \cs_set_eq:NN __block_everypar: \prg_do_nothing:

1418 }

1419 }

This is the definition of __block_everypar: before the first \item is encountered.

120 \cs_new_protected:Npn __block_item_everypar_first: {

w1 __block_debug_typeout:n{...~ in~ first~ block~ everypar \on@line }
12 \legacy_if:nT { @newlist } { \@noitemerr }
1423 }

(End of definition for __block_everypar:, __block_item_everypar_std:, and __block_item_-
everypar_first:.)

124 \skip_new:N \1__block_tmpa_skip
(End of definition for \1__block_tmpa_skip.)

Variables equivalent to IWTEX 2¢’s \@topsepadd and \@topsep. Roughly equal to a mix-
ture of topsep, partopsep, and various parskip at different nesting levels in lists. The
code is really elaborate when @inlabel is true.

125 \skip_new:N \1__block_topsepadd_skip

126 \skip_new:N \1__block_effective_top_skip

(End of definition for \1__block_topsepadd_skip and \1__block_effective_top_skip.)

67

\item Here we already have all the building blocks. Complain in math mode. Distin-
guish between first item (do necessary tagging) and later items __block_inter_-
item: to cleanly close what’s before, then call __block_item_instance:n (which calls
\UseInstance{item}{({instance)}) to prepare the upcoming item: it will be actually in-
serted only once some later material triggers \everypar.

127 \AddToHook{begindocument/before}[./legacy-lists]{
1222 \RenewDocumentCommand{\item}{ ={labell}o }

1429 {

1430 \@inmatherr \item

TODO: Check if test for being outside of a list is sensible
1431 \cs_if_free:NTF __block_item_instance:n

1432 {

1433 \@latex@error{Lonely~\string\item--perhaps~a~missing~
1434 list~environment}\@ehc

1435 }

1436 {

1437 \legacy_if :nTF { O@newlist }

1438 {

1439 __kernel_list_item_begin:

The first item of a list also has to change the @newlist switch.

1440 \legacy_if_gset_false:n { @newlist }

1441 }

1442 { __block_inter_item: }

To avoid unnecessary key/val processing we make a quick check if there was an optional
argument.

1443 \tl_if_novalue:nTF {#1} % avoids reparsing label={}

1444 { __block_item_instance:n { } }

1445 { __block_item_instance:n {#1} }

The item instance puts the item label into \g__block_label_standalone_bool ready to
be placed later. To make that happen we need to signal that by setting the legacy switch
@inlabel to true. However, if this is a label that should be always placed “standalone”

we instead typeset it immediately and ensure that there is no page break after it.
1446 \bool_if:NTF \g__block_label_standalone_bool

1447 {

1448 \bool_gset_false:N \g__block_label_standalone_bool

1449 \leavevmode

1450 \box_use_drop:N \g__block_labels_box

1451 \par

1452 \legacy_if_gset_true:n { @nobreak } % do not break after
1453 % a standalone item
1454 }

1455 {

1456 \legacy_if_gset_true:n { @inlabel }

1457 }

1458 \ignorespaces

1459 ¥

1460 }

1461 F

(End of definition for \item. This function is documented on page 38.)

68

__block_inter_item: Between items. If the previous item had no content then we need to trigger \everypar.
Otherwise we simply close the previous item with \par after removing some horizontal
space. Between items, there is a penalty and some space.

s> \cs_new_protected:Npn __block_inter_item: {

ues \legacy_if:nT { @inlabel }

1464 { \indent \par } % case of \item\item

\par may have a strange definition and may not get us back to vertical mode in one go,
so we better not treat the next line as an else case to the above conditional (for now).

1465 \mode_if_horizontal:T { __block_skip_remove_last:
1466 __block_skip_remove_last: \par }

End any Ll-tag, then start the next LI-tag (if doing tagging):

7 __kernel_list_item_end:
1468 __kernel_list_item_begin:

ueo \addpenalty \@itempenalty

uo \addvspace \itemsep

1w

(End of definition for __block_inter_item:.)

__kernel_list_item_begin:

__kernel list_item_end: 12 \cs_new_eq:NN __kernel_list_item_begin: \prg_do_nothing:

173 \cs_new_eq:NN __kernel_list_item_end: \prg_do_nothing:

(End of definition for __kernel_list_item_begin: and __kernel_list_item_end:.)

9.4.7 Implementation of captionedtext and thmstyle templates

captionedtext thmlike (templ.) The template for typical theorem-like environments is rather trivial, just setting keys
and then passing used keys and the arguments to a thmstyle instance to do the real
work.
172 \DeclareTemplateCode{captionedtext}{thmlike}{4}
1475 {
1476 ,counter \1__block_counter_tl
1477 ,title = \1__block_title_tl
1478 ,style \1__block_style:nnnn
1479 }
1480 {

Some debugging info as usual (showing the arguments that are passed):

ust \template_debug_typeout:n{~\space template:~ 'thmlike';~
1482 arguments:~ \exp_not:o{\exp_after:wN [#1|#2|#3|#4]|}}

Then we check if there are any keys passed to the instance from the outside.
uss \SetKnownTemplateKeys{captionedtext}{thmlike}{#1}

Finally, we apply the style which is just an instance of type thmstyle:

ues \1__block_style:nnnn \UnusedTemplateKeys {#2} {#3} {#4}

1485 }

\theoremstyle All that the \theoremstyle declaration does is saving its argument so that it can be
\1__block_thmstyle_tl used in \newtheorem.

uss \cs_new_protected:Npn \theoremstyle #1{ \tl_set:Nn \1__block_thmstyle_tl {#1} }
1uer \tl_new:N \1__block_thmstyle_tl

69

And the default is plain:

uss \theoremstyle{plain}

(End of definition for \theoremstyle and \1__block_thmstyle_t1. This function is documented on page
?7.)

thmstyle std (fempl.) The thmstyle implements the theorem-like environment and assumes that the fixed part
of the caption is already stored in \1__block_title_t1l. The reason for this separation
into two templates is that typically the same design is used for different theorem-like
environments only differing in this fixed string.

ugo \DeclareTemplateCode{thmstyle}{std}{4}

1490 {

1491 ,humbered = \1__block_numbered_bool

1492 ,space = \1__block_space_tl

1493 ,punct = \1__block_punct_tl

1494 ,caption-placement = {

1495 chained = \bool_gset_false:N \g__block_label_standalone_bool
1496 \bool_gset_false:N \g__block_label_unchained_bool
1497 ,unchained = \bool_gset_false:N \g__block_label_standalone_bool
1498 \bool_gset_true:N \g__block_label_unchained_bool
1499 ,standalone = \bool_gset_true:N \g__block_label_standalone_bool
1500 \bool_gset_false:N \g__block_label_unchained_bool
1501 }

1502 ,before-hspace = \1__block_caption_before_skip

1503 ,after-hspace = \1__block_caption_after_skip

1504 ,order = \1__block_order_clist

1505 ,caption-decls = \1__block_caption_decls_tl

1506 stitle-format = __block_title_format:n

1507 ,number-format __block_number_format:n
1508 ,punct-format __block_punct_format:n
1500 ,note-format = __block_note_format:n
1510 ,body-decls \1__block_body_decls_tl
1511 }

1512 {

Some tracing:

1513 \template_debug_typeout:n{~\space template:~ 'std';~
1514 arguments:~ \exp_not:o{\exp_after:wN [#1|#2|#3|#4]|}}

Applying any user keys:
1515 \SetKnownTemplateKeys{thmstyle}{std}{#1}

Since this is the last template that gets applied for theorem-like environments, all keys
should make sense, so if something is left over we better generate an error:

116 \tl_if_empty:NF \UnusedTemplateKeys

1517 {

1518 \msg_error:nnee { block } { unknown-keys }

1519 { \1__block_env_name_tl \space environment}
1520 \UnusedTemplateKeys

1521 }

In case there is a dangling \item we can either join that with the caption or we can
output the item first. For now we provide no customization for this, but it could be
made customizable.

1522 % \legacy_if:nT { @inlabel } { \indent \par }

70

Determine if we do numbering;:

1523 \bool_lazy_or:nnT

1524 { \tl_if_empty_p:N \1__block_counter_tl }

1525 { #2 }

1526 { \bool_set_false:N \1__block_numbered_bool }

Save any note for later use (\#3 might contain \NoValue):

1527 \tl_set:Nn \1__block_note_tl {#3}

If we use numbering then we need a link target and increment the counter.
1528 \bool_if:NTF \1__block_numbered_bool

1529 {

1530 \@kernel@refstepcounter{ \1__block_counter_tl }

1531 \MakeLinkTarget{ \1__block_counter_tl }

1532 }

1533 {

1534 \MakeLinkTarget [theorem-1like]{}

1535 }

Add the caption into \g__block_labels_box:

1536 \hbox_gset:Nn \g__block_labels_box

1537 {

1538 \box_use_drop:N \g__block_labels_box % <- does nothing if
1539 % there is no dangling label

Now apply the declarations that are for the whole caption.

1540 \1__block_caption_decls_tl

Then we apply the tagging socket for the caption to the complete content:
1541 \tag_socket_use:nnn {captionedtext/caption} {}

1542 {

1543 \skip_horizontal:n { \1__block_caption_before_skip }

For flexibility, the inner structure is given as a clist stored in \1__block_order_clist.
We loop through it and call a processing function for each item in this clist. Everything
happens in a group

1544 \clist_map_inline:Nn \1__block_order_clist

1545 { \group_begin:

1546 \use:c { __block_do_##1: }

1547 \group_end:

1548 3

1549 \skip_horizontal:n { \1__block_caption_after_skip }
1550 }

1551 ¥

If the title should be standalone we immediately push it out:
1552 \bool_if:NTF \g__block_label_standalone_bool

1553 {

1554 \bool_gset_true:N \g__block_label_standalone_bool
1555 \para_omit_indent:

1556 \box_use_drop:N \g__block_labels_box

1557 \par

1558 }

71

Otherwise we signal that we are at the start and have a label dangling. The name
@newlist is a bit unfortunate, but for now we keep this name.

1559 {

1560 \legacy_if_gset_true:n { @newlist }

1561 \legacy_if_gset_true:n { @inlabel }

1562 }

Do not break after the first line:

1563 \legacy_if_gset_true:n { @nobreak }

Then set up a special everypar to handle the dangling caption:

1564 __block_debug_typeout:n{Set~ captioned~ block~ everypar \on@line }
1565 \cs_set_eq:NN __block_everypar: __block_captioned_everypar_std:

Finally, set up any declarations for the body of the environment:
1566 \1__block_body_decls_tl

167 __block_debug_typeout:n{template:thmstyle:std~end}
1568 }

-/captionedtext/caption (socket)

1560 \NewTaggingSocket{captionedtext/caption}{2}

1570 \NewTaggingSocketPlug{captionedtext/caption}{kernel}
1571
1572 \tag_struct_begin:n{tag=\UseStructureName{block/theorem-like/caption}}

1573 #2
1574 \tag_struct_end:
1575 }

157 \AssignTaggingSocketPlug{captionedtext/caption}{kernel}

Here are the functions that are called when the corresponding name appears in the
caption clist.

__block_do_title: Handle the title:
1577 \cs_new_protected:Npn __block_do_title: {
Check if there is a title.
1s7s \tl_if_empty:NTF \1__block_title_tl
If the title is empty we drop accumulated but not yet typeset spaces:

1579 { __block_drop_spaces: }

Otherwise we typeset the title, first inserting space (or spaces) that have been waiting.
1580 { \tag_socket_use:nnn {mc} {}{

1581 __block_insert_spaces:

The title may have its own formatting:

1582 __block_title_format:n \1__block_title_tl }
1583 }
1584 }

(End of definition for __block_do_title:.)

72

__block_do_note: Formatting of a note (if present) uses the same structure.
1555 \cs_new_protected:Npn __block_do_note: {

1586 \tl_if_novalue:oTF \1__block_note_tl

1587 { __block_drop_spaces: }

1588 { \tag_socket_use:nnn {mc} {} {

1589 __block_insert_spaces:

1500 __block_note_format:n \1__block_note_tl }
1501 }

1500 F

(End of definition for __block_do_note:.)

__block_do_number: The number (if present) has a similar formatting but it uses an Lbl structure:

1503 \cs_new_protected:Npn __block_do_number: {
1504 \bool_if:NTF \1__block_numbered_bool

1595 { \tag_socket_use:nnn {struct-mc} {tag=\UseStructureName{block/theorem-like/label}}
1506 { __block_insert_spaces:

1507 __block_number_format:n {

1508 \use:c{ the \1__block_counter_tl } }

1599 ¥

1600 }

1601 { __block_drop_spaces: }

1602 F

(End of definition for __block_do_number:.)

__block_do_punct: The punctuation is handled slightly differently. It unconditionally drops any dangling
spaces whether or not it is empty:
1603 \cs_new_protected:Npn __block_do_punct: {
1o+ __block_drop_spaces:
1605 \tl_if_empty:NF \1__block_punct_tl

1606 { \tag_socket_use:nnn {mc} {}{

1607 __block_punct_format:n \1__block_punct_tl }
1608 }

1600

(End of definition for __block_do_punct:.)

__block_do_space: What’s still missing is what space should do. It simply adds a \1__block_space_-
__block_insert_spaces: tl to the \g__block_collected_spaces_tl tokenlist. This way the clist can contain

__block_drop_spaces: space,space,... to indicate multiple spaces. The storage tokenlist is global as the
\g_block collected spaces t1 functions are executed inside their own group, but the collected space is used outside of
that group.

1610 \cs_new_protected:Npn __block_do_space: {

1611 \tl_gput_right:Nn \g__block_collected_spaces_tl \1__block_space_tl

1612 }

So __block_insert_spaces: is trivial, all we have to do is to insert the collected space
and then clear the tokenlist

1613 \cs_new_protected:Npn __block_insert_spaces: {

1614 \g__block_collected_spaces_tl

1615 \tl_gclear:N \g__block_collected_spaces_tl

1616 F

73

Even simpler is __block_drop_spaces:

1617 \cs_new_protected:Npn __block_drop_spaces: {
1618 \tl_gclear:N \g__block_collected_spaces_tl
1619 }

What remains is to declare the tokenlist.

1620 \t1l_new:N \g__block_collected_spaces_tl
(End of definition for __block_do_space: and others.)

captionedtext proof (templ.) In case of the templates for proofs we do everything in a single template.
1621 \DeclareTemplateCode{captionedtext}{proof}{4}

1622 {

1623 ,title = \1__block_title_t1

1624 ,punct = \1__block_punct_tl

125 ,caption-placement = {

1626 chained = \bool_gset_false:N \g__block_label_standalone_bool
1627 \bool_gset_false:N \g__block_label_unchained_bool
1628 ,unchained = \bool_gset_false:N \g__block_label_standalone_bool
1629 \bool_gset_true:N \g__block_label_unchained_bool
1630 ,standalone = \bool_gset_true:N \g__block_label_standalone_bool
1631 \bool_gset_false:N \g__block_label_unchained_bool
1632 }

1633 ,before-hspace = \1__block_caption_before_skip

1634 ,after-hspace = \1__block_caption_after_skip

1635 ,caption-decls = \1__block_caption_decls_tl

1636 ,title-format __block_title_format:n

1637 ,punct-format = __block_punct_format:n
1638 ,body-decls = \1__block_body_decls_tl
1639 }
1640 {

Display the template’s arguments when tracing:

16s1 \template_debug_typeout:n{~\space template:~ 'proof';-~
1642 arguments:~ \exp_not:o{\exp_after:wN |#1|#2|#3|#4]|}}

Evaluate document-level key settings. As all given keys should be handled we use
\SetTemplateKeys to raise an error if one or more are not recognized:
16s3 \SetTemplateKeys{captionedtext}{proof}{#1}

By default the title is defined by the proof instance, but if the user provides an op-
tional argument that optional argument overwrites the title (in contrast to theorem-like
environments that use the optional argument to provide an additional note):

1644 \IfNoValueF {#3} { \tl_set:Nn \1__block_title_tl {#3} }

Now we prepare typesetting the title by placing it in the \g__block_labels_box:

16s5 \hbox_gset:Nn \g__block_labels_box

1646 {

1647 \box_use_drop:N \g__block_labels_box % <- does nothing if there
1648 A is no dangling label

1649 \1__block_caption_decls_tl

1650 \tag_socket_use:nnn {captionedtext/caption} {}

1651 {

1652 \skip_horizontal:n { \1__block_caption_before_skip }

74

__block_do_title: and __block_do_punct: unnecessarily call __block_drop_-
spaces: but otherwise they do well, so ...

1653 \group_begin: __block_do_title: \group_end:

1654 \group_begin: __block_do_punct: \group_end:

1655 \skip_horizontal:n { \1__block_caption_after_skip }
1656 ¥

1657 }

The remaining code is identical to the one in thmstyle std; for documentation see there:
1658 \bool_if:NTF \g__block_label_standalone_bool

1659 {

1660 \bool_gset_true:N \g__block_label_standalone_bool
1661 \para_omit_indent:

1662 \box_use_drop:N \g__block_labels_box

1663 \par

1664 }

1665 {

1666 \legacy_if_gset_true:n { @newlist }

1667 \legacy_if_gset_true:n { Q@inlabel }

1668 }

1660 \legacy_if_gset_true:n { @nobreak }

w670 __block_debug_typeout:n{Set~ captioned~ block~ everypar \on@line }
w671 \cs_set_eq:NN __block_everypar: __block_captioned_everypar_std:
1672 \1__block_body_decls_tl

1673 __block_debug_typeout:n{template:captionedtext:proof~end}
1674 }

9.5 Tagging support commands

In this section we provide code to the various kernel hooks to support the tagging of
different displayblock environments.

__block_beginpar_vmode: When a block starts out in vertical mode, i.e., is not yet part of a paragraph, we have
to start a paragraph structure. However, this is not the case if we are already flattening
paragraphs, thus in this case we do nothing. We also do nothing if @endpe is currently
true, because that means we are right now just after the end of a blockenv and in the
process of looking if we have to end the current <text-unit>, i.e., it is already open.
The command is mapped to __kernel_displayblock_beginpar_vmode: in various tag-
ging recipes. It is also used in the math code!

1675 \cs_set:Npn __block_beginpar_vmode: {
w676 __block_debug_typeout:n

1677 { @endpe = \legacy_if:nTF { @endpe }{true}{false} \on@line }
1675 \legacy_if:nTF { Qendpe }

1679 {

1680 \legacy_if_gset_false:n { Qendpe }

1681 }

We test for <2 because the first flattened environment has to surround itself with a
<text-unit>. Only any inner ones then have to avoid adding another <text-unit>.

1682 {

1683 \int_compare:nNnT \1__tag_block_flattened_level_int < 2

1684 {

0]

__block_beginpar_hmode:N

'block/startpara/direct (socket)

default (plug)

1685 \UseTaggingSocket{para/semantic/begin}
1686 { __tag_para_main_store_struct: }
1687 }

1688 ¥

1689 }

(End of definition for __block_beginpar_vmode:.)

If the block is already part of a part of a paragraph, i.e., when it has some text directly
in front, then the first thing to do is to return to vertical mode. However, that should
be done without inserting a paragraph end tag, so before calling \par to do its normal
work, we disable paragraph tagging and restarting afterwards again. The argument to
this config point simply gobbles the \par following it in the code above (which is used
when there is no tagging going on.

The command is mapped to __kernel_displayblock_beginpar_hmode:w in various
tagging recipes.

1600 \cs_set:Npn __block_beginpar_hmode:N #1

1691 {

1602 \tag_mc_end:

1693 __tag_gincr_para_end_int:

1694 __block_debug_typeout:n{increment~ /P \on®@line }
1695 \bool_if:NT \1__tag_para_show_bool

1696 { \tag_mc_begin:n{artifact}

1607 \rlap{\color_select:n{red}\tiny\ \int_use:N\g__tag_para_end_int}
1698 \tag_mc_end:

1699 }

1700 \tag_struct_end:

1701 \tagpdfparaOff \par \tagpdfparaOn

1702 }

(End of definition for __block_beginpar_hmode:N.)

Paragraph tagging is mainly done using the paragraph hooks. The code is in
lttagging.dtx.

A tagging socket to start a paragraph structure. It takes an argument (which is only
used in debugging) that should be gobbled if tagging is not active. Not yet in lttagging
(name and function should be reviewed).

This is a similar code to the one used in the para/begin hook but without testing @endpe.
This is not needed in the standalone case and wrong inside lists.
This code is used in various places and should be a dummy if tagging is not active.

1703 \socket_if_exist:nF {tagsupport/block/startpara/direct}

1os {
1705 \NewTaggingSocket {block/startpara/direct}{1}
1706 }

1707 \NewTaggingSocketPlug{block/startpara/direct}{default}
wos {

1700 \bool_if:NF \1__tag_para_flattened_bool

1710 {

76

1711 \UseTaggingSocket{para/semantic/begin}

1712 { __tag_para_main_store_struct: }

1713 }

1714 __tag_gincr_para_begin_int:

1715 __block_debug_typeout:n{increment~ P \on@line }
1716 \tag_struct_begin:n

1717 {

1718 tag=\1__tag_para_tag_tl

1719 ,attribute-class=\1__tag_para_attr_class_tl
1720 T

1721 __tag_check_para_begin_show:nn {green}{#1}

1722 \tag_mc_begin:n {}

1723}

1724 \AssignTaggingSocketPlug{block/startpara/direct}{default}

The para/end hook code is in lttagging. Currently we still need to remove the tagpdf
chunk to avoid that the socket is added twice. We add empty chunks to avoid warning
messages from code parts trying to remove the chunks.

1725 \AddToHook{para/end} [tagpdf]{}
1726 \RemoveFromHook{para/end} [tagpdf]
1727 \AddToHook{para/end}{}

1726 \def \PARALABEL{NP-}

»ort/kernel/endpe/vmode (socket) A tagging socket which ends a structure. Used in \begin and \para_end:. Not yet in
Ittagging (name and function should be reviewed).

1720 \socket_if_exist:nF {tagsupport/kernel/endpe/vmode}
1730 {

1731 \NewTaggingSocket {kernel/endpe/vmode}{0}

1732}

default (plug)
1733 \NewTaggingSocketPlug{kernel/endpe/vmode}{default}

1734 {

1735 \if@endpe \ifvmode

1736 \bool_if:NT \1__tag_para_bool

1737 {

1738 \bool_if:NF \1__tag_para_flattened_bool

1739 {

1740 \UseTaggingSocket{para/semantic/end}{}
1741 }

\@endpefalse is needed by \para_end:, see test tagging-0097.
1742 \@endpefalse

1743 }

1744 \fi \fi

1745}

1746 \AssignTaggingSocketPlug{kernel/endpe/vmode}{default}

\para_end: If we see a \par in vmode and a <text-unit> is still open we need to close that. For
this we check if a request for @endpe was made (but the \par redefinition got lost due
to (bad?) coding).

1727 \cs_set_protected:Npn \para_end: {

7

1725 \scan_stop:
1720 \mode_if_horizontal:TF {

1750 \mode_if_inner:F {

1751 \tex_unskip:D

1752 \hook_use:n{para/end}

1753 \@kernel@after@para®end

1754 \mode_if_horizontal:TF {

1755 \if_int_compare:w 11 = \tex_lastnodetype:D
1756 \tex_hskip:D \c_zero_dim

1757 \fi:

1758 \tex_par:D

1759 \hook_use:n{para/after}

1760 \@kernel@after@para@after

1761 3

1762 { \msg_error:nnnn { hooks }{ para-mode }{end}{horizontall} }
1763 }

1764 3

1765 {

TODO 2025-07-01. This is not exactly as before, this doesn’t insert an \endpefalse
when tagging is active. Check if this a problem.

1766 \UseTaggingSocket{kernel/endpe/vmodel}’
1767 \tex_par:D

1768 }

1769 }

Now reset INTEX 2¢ functions to use the changed \para_end: [TODO: Need to check if
\@@par is ever used in a way that the vimodetagging hook is needed.]

1770 \cs_set_eq:NN \par \para_end:

1771 \cs_set_eq:NN \@@par \para_end:

1772 \cs_set_eq:NN \endgraf \para_end:

(End of definition for \para_end:. This function is documented on page 38.)

\begin We need to do a little more than canceling @endpe now.

1773 \protected\def\begin#1{J,
1774 \UseHook{env/#1/beforel}’
1775 \@ifundefined{#1}/

1776 {\def\reserved@a{\@latex@error{Environment~#1~undefined}\@eha}}/,
1777 {\def\reserved@a{\def\@currenvir{#1}J,

1778 \edef\@currenvline{\on@line}V,

1779 \Q@execute@begin@hook{#1}/,

1780 \csname #1\endcsnamel}}’

17s1 \@ignorefalse

1722 \begingroup

1783 \UseTaggingSocket{kernel/endpe/vmode}’,
1784 \reserved@a}

(End of definition for \begin. This function is documented on page 38.)

__kernel list_label after:n If starting the text-unit/text tags got delayed because of a pending label we have to do

it after the label got typeset. TODO: it should do nothing without tagging that’s why
there is a test, this should be better hidden in a tagging socket, but it is not quite clear
how to do this.

1755 \cs_new_protected:Npn __kernel_list_label_after:n #1 {
1786 \bool_lazy_and:nnT { \tag_if_active_p: } {\1__tag_para_bool }

78

1788 \tag_socket_use:nn {block/startpara/direct} { #1 }
1789 }

1790 }

(End of definition for __kernel_list_label_after:n.)

__block_inner_begin: Start a block that has an inner structure if it isn’t also a list. This command is tagging
specific, it is mapped to __kernel_displayblock_begin: in some tagging recipes.
1791 \cs_new_protected:Npn __block_inner_begin: {
1792 \tagstructbegin{tag=\1__block_tag_inner_tag_tl}
1793 }
(End of definition for __block_inner_begin:.)

__block_inner_end: End a block (which isn’t also a list). This command is tagging specific, it is mapped to
__kernel_displayblock_end: in some tagging recipes.
1794 \cs_new_protected:Npn __block_inner_end: {
1795 __block_debug_typeout:n{block-end \on@line}
196 \legacy_if:nT { @endpe }

1797 {

1798 \UseTaggingSocket{para/semantic/end}

1799 { __block_debug_typeout:n{close~ /text-unit \on@line}}
1800 }

w1 \tagstructend % end inner structure

1802 }

(End of definition for __block_inner_end:.)

9.5.1 List tags

103 \tl_new:N \1__tag_L_tag_tl

10+ \tl_set:Nn \1__tag_ L_tag_tl {L}

1805

106 \tl_new:N\1__tag_L_attr_class_tl

107 \tl_set:Nn \1__tag L_attr_class_tl {list}

1505 \tagpdfsetup

1809 {

1810 ,role/new-attribute = {itemize}

1811 {/0 /List /ListNumbering/Unordered}
1812 ,role/new-attribute = {enumerate}

1813 {/0 /List /ListNumbering/Ordered}

1814 ,role/new-attribute = {description}

1815 {/0 /List /ListNumbering/Description}

Initially, we had /None for the basic list environment, but that is not allowed in
PDF/UA-2 if the list contains any Lbl tags. So now we default to Unordered.

1816 ,role/new-attribute = {list}{/0 /List /ListNumbering/Unordered}
1817 }

__block_list_begin: Startalist ..This command is tagging specific, it is mapped to __kernel_displayblock_-
begin: in a tagging recipe.
115 \cs_set:Npn __block_list_begin: {
110 \tagstructbegin
1820 {
1821 tag=\1__tag_L_tag_tl

79

1822 ,attribute-class=\1__tag_L_attr_class_tl
1823 }

1824 }

(End of definition for __block_list_begin:.)

__block_list_item_begin: Start tagging a list item. This command is tagging specific, it is mapped to __kernel -
list_item_begin: in a tagging recipe.
1825 \cs_set:Npn __block_list_item_begin: {
126 \tagstructbegin{tag=\UseStructureName{block/list/item}}
187 }
(End of definition for __block_list_item_begin:.)

__block_list_item_end: When a list item ends we have to close <itembody> and but also a <text> in the
special case that the item material ends in a list (identifiable via @endpe). This command
is tagging specific. This command is copied to __kernel_list_item_end: in the list
recipe.

126 \cs_set:Npn __block_list_item_end: {
1820 \legacy_if:nT { Qendpe }

1830 {

1831 \UseTaggingSocket{para/semantic/end}{}

1832 % __block_debug_typeout:n{Structure-end~ P~ at~ item-end \on@line }
1833 }

132 \tagstructend \tagstructend 7 end \UseStructureName{block/list/body}, LI
1835 F

(End of definition for __block_list_item_end:.)

__block_list_end: Finally, at the list end we have to close the open <itembody>, , <L>, and possibly a
<text> if the last item ends with a list. However, if the user forgot to add an \item then
there will be no and <itembody> open, so we check for the status of @newlist. The
corresponding no-item error was generated earlier outside the tagging code.

One could argue that it doesn’t matter if the tagging is wrong after a \@noitemerr was
issued. However, there is one case where it isn’t an error: In the thebibliography
environment (which is internally a list) it is often the case that documents start out with
an empty environment, not containing any \bibitems. For that reason \@noitemerr is
redefined inside that environment to only produce a warning; hence we have to produce
correct tag structures in that case. This command is tagging specific. This command is
copied to __kernel_displayblock_end: in the list recipe.

183 \cs_new_protected:Npn __block_list_end: {

If @newlist is true (i.e., when we have an error or warning situation) there is not much

to close.

1837 \legacy_if:nF { @newlist }

1838 {

1839 \legacy_if:nT { Qendpe }

1840 {

1841 \UseTaggingSocket{para/semantic/end}

1842 {__block_debug_typeout:n{Structure-end~ text-unit~ at~ list-end \on@line }}
1843 }

1844 \tagstructend\tagstructend 7% end \UseStructureName{block/list/body}, LI
1845 }

16 \tagstructend % end L

1847 }

80

(End of definition for __block_list_end:.)

End of tagging related declarations.

9.5.2 Tagging recipes

-agsupport/block/recipe (socket) A tagging socket to call the tagging recipe. Declared in lttagging.

s \socket_if_exist:nF {tagsupport/block/recipe}
1849 {

1850 \NewTaggingSocket{block/recipe}{1}

1851

default (plug)
152 \NewTaggingSocketPlug{block/recipe}{default}

w53 o
1854 \use:c { __block_recipe_#1: }
1855 }

156 \AssignTaggingSocketPlug{block/recipe}{default}

__block_recipe_basic: The basic recipe simply ensures that the block is inside a <text-unit> structure and
if necessary starts one. When the block ends and is followed by a blank line the <text-
unit> structure is closed too, otherwise it remains open and further text starts with just
a <text> structure.
There is otherwise no inner structure so __kernel_displayblock_begin: and __kernel -
displayblock_end: do nothing—blockenvs with inner structure use the standard or
list recipe instead.
157 \cs_new_protected:Npn __block_recipe_basic: {
15 \cs_set_eq:NN __kernel_displayblock_beginpar_hmode:w

1859 __block_beginpar_hmode:N
1860 \cs_set_eq:NN __kernel_displayblock_beginpar_vmode:

1861 __block_beginpar_vmode:
12 \let __kernel_displayblock_begin: \prg_do_nothing:

1863 \let __kernel_displayblock_end: \prg_do_nothing:

End environment \par handling:

16+ \socket_assign_plug:nn{block/endpe}{on}
1865

(End of definition for __block_recipe_basic:.)

__block_recipe_standalone:
The standalone recipe produces a block that ensures that a previous <text-unit> ends
and that after the block a new <text-unit> starts.

1866 \cs_new_protected:Npn __block_recipe_standalone: {
1867 \cs_set_eq:NN __kernel_displayblock_beginpar_hmode:w

1868 \prg_do_nothing:
1869 \cs_set_eq:NN __kernel_displayblock_beginpar_vmode:
1870 \prg_do_nothing:

1871 \cs_set_eq:NN __kernel_displayblock_begin: __block_inner_begin:
1872 \cs_set_eq:NN __kernel_displayblock_end: __block_inner_end:

End environment \par handling:
173 \socket_assign_plug:nn{block/endpe}{off}

81

__block_recipe_standard:

\1__block_tag_inner_tag_tl

__block_recipe_list:

174 \tl_if_empty:NTF \1__block_tag_name_tl

1675 { \tl_set:Nn \1__block_tag_inner_tag_tl {Sect} }
1876 { \tl_set_eq:NN \1__block_tag_inner_tag_tl \1__block_tag_name_tl }
1877 }

(End of definition for __block_recipe_standalone:.)
The standard recipe does the following:

o surround the block with a <text-unit> structure if not already in a <text-unit>.
In the latter case end the MC and the <text> but leave the <text-unit> open.

If we are producing flattened paragraphs, just close any <text> but do not open a
<text-unit>.

o Then open an new (inner) structure (by default <Div> but typically the one specified
on the instance).

o At the end of the block close the inner structure (<Div> or explicit one) but leave
the <text-unit> open to be either continued or closed due to a following \par.

1573 \cs_new_protected:Npn __block_recipe_standard:

1879 {

150 \cs_set_eq:NN __kernel_displayblock_beginpar_hmode:w

1881 __block_beginpar_hmode:N
1882 \cs_set_eq:NN __kernel_displayblock_beginpar_vmode:

1883 __block_beginpar_vmode:

132 \cs_set_eq:NN __kernel_displayblock_begin: __block_inner_begin:
1ses \cs_set_eq:NN __kernel_displayblock_end: __block_inner_end:

End environment \par handling:

156 \socket_assign_plug:nn{block/endpe}{on}

1887 \tl_if_empty:NTF \1__block_tag_name_tl

1888 { \tl_set:Nn \1__block_tag_inner_tag_tl {Div} }
1889 { \tl_set_eq:NN \1__block_tag_inner_tag_tl \1__block_tag_name_tl }
1890 }

(End of definition for __block_recipe_standard:.)

The tag name that is used if the block has an inner structure.
101 \tl_new:N \1__block_tag_inner_tag_tl
(End of definition for \1__block_tag_inner_tag_tl.)

The 1ist recipe does the following.

o It opens a <text-unit>-structure or keeps the current one open (only closing the
MC).

o It then starts a new structure role-mapped to L-structure and arranges for handling
list items, e.g., Li, itemlabel and itembody structures.

e At the end it closes open list structures as needed but keeps the <text-unit>-
structure open to continue the paragraph after the list, if necessary.

82

\legacyverbatimsetup

1502 \cs_new_protected:Npn __block_recipe_list:

1893 {

1894 \cs_set_eq:NN __kernel_displayblock_beginpar_hmode:w

1895 __block_beginpar_hmode:N
106 \cs_set_eq:NN __kernel_displayblock_beginpar_vmode:

1807 __block_beginpar_vmode:
1898 \cs_set_eq:NN __kernel_displayblock_begin: __block_list_begin:

100 \cs_set_eq:NN __kernel_displayblock_end: __block_list_end:

The next two lines could be done globally, because they are only called if we do have
\items, i.e., if we are in a list. It is therefore also not necessary to reset them in other
recipes (right now—this may change if we get more templates (like inline lists)).

1900 \cs_set_eq:NN __kernel_list_item_begin: __block_list_item_begin:
ot \cs_set_eq:NN __kernel_list_item_end: __block_list_item_end:

End environment \par handling:
102 \socket_assign_plug:nn{block/endpe}{on}

Handle the tag name and attribute classes using the key values from the current list
instance.

1003 \tl_if_empty:NTF \1__block_tag_name_tl

1004 { \tl_set:Nn \1__tag_L_tag_tl {L} }

1905 { \tl_set_eq:NN \1__tag_L_tag_tl \1__block_tag_name_tl }

105 \tl_if_empty:NTF \1__block_tag_class_tl

1007 { \tl_set:Nn \1__tag_L_attr_class_tl {} }

1908 { \tl_set_eq:NN \1__tag_L_attr_class_tl \1__block_tag_class_tl }
1909 }

(End of definition for __block_recipe_list:.)

w0 (/package-start)

10 Support code for document-level block
environments

10.1 Verbatim-like environments
10.1.1 Helper commands for verbatim and verbatim*

This code is called as part of the final-code of the blockenv instance and sets up
the special conventions needed for verbatim environments. We pass one argument to
differentiate between visible and invisible spaces.

This code resembles the IXTEX 2 verbatim implementation with a slight twist: in
IATEX 2¢ each code line was a paragraph using \leftskip=\@totalleftmargin. This
was possible because the whole environment was implemented as a trivlist. As this is
no longer the case setting \leftskip would alter the layout of a surrounding list. So
instead we need to make sure that the paragraph end is executed in a group so that any
parshape setup is preserved.

w11 (xpackage-finish)

1912 <@@=>

1013 \def\legacyverbatimsetup #1 {%

114 \language\l@nohyphenation
015 \@tempswafalse

83

i \def\par{/,

1017 \if@tempswa

1018 \leavevmode \null {\@@par}\penalty\interlinepenalty
1019 \else

1920 \@tempswatrue

1021 \ifhmode{\@@par}\penalty\interlinepenalty\fi

1922 \fi

Do something at the very beginning of each verbatim line:

1023 \UseSocket{verbatim/startlinel}y,

1924 }%

1925 \let\do\@makeother \dospecials

126 \obeylines \verbatim@font \@noligs

1027 \everypar \expandafter{\the\everypar \unpenaltyl}

- . \freHChSPaCing

1020 \AssignStructureRole {para/textblockl},
1930 {\UseStructureName{block/verbatim/codelinel}}’

If the argument is neither visible nor invisible nothing will happen—tough.

1031 \use:c { @setupverb #1 space }
12 \@vobeyspaces
1933 }

(End of definition for \legacyverbatimsetup. This function is documented on page 37.)

verbatim/startline (socket) A socket that is executed at the start of each verbatim line, to be used, for example, to
check for %, when the doc package is active.

193¢ \NewSocket{verbatim/startline}{0}

\@setupverbinvisiblespace In the pdfTEX engine we need to use \pdffakespace chars for the invisible spaces. In
luatex we do not want this as it would lead to doubling the number of real space chars.
In dvi-mode we do not want that either: with pdftex it would error, with xetex it does
nothing.
1935 (@@=block)
1036 \newcommand\@setupverbinvisiblespace{}
1037 \bool_lazy_or:nnF
1033 { \sys_if_engine_luatex_p: }
w030 { \sys_if_output_dvi_p: }

1940 {

1041 \renewcommand\@setupverbinvisiblespace

1042 {\def\@xobeysp{\nobreakspace\pdffakespace}}
1943 }

(End of definition for \@setupverbinvisiblespace. This function is documented on page 37.)

The command \@setupverbvisiblespace is already defined in the kernel.

10.1.2 Helper commands for alltt and alltt*

\legacyallttsetup The alltt environment also needssome special setup. We can reuse \legacyverbatimsetup
but we have to take out \, {, and } from \dospecials as they should remain available
with their normal catcodes and adjust ' inside math. This is lifted straight from the
original package code.

1944 <@@=>
1945 \ExplSyntax0ff

84

\g@remfrom@specials

\legacylistsetup

106 \def\legacyallttsetup #1{%
1047 \let\org@prime~%
1025 \everymath\expandafter{\the\everymath

1049 \catcode \'=12 \let~\org@primel}y,
w50 \everydisplay\expandafter{\the\everydisplay
1051 \catcode \'=12 \let~\org@prime},

This alters \dospecials:

152 \let\org@dospecials\dospecials
1053 \g@remfrom@specials{\\}/
wss \g@remfrom@specials{\{}/
105 \g@remfrom@specials{\}}%

Then call \legacyverbatimsetup:
156 \legacyverbatimsetup {#1}/
And afterwards restore \dospecials:

1057 \let\dospecials\org@dospecials
1958 }

Copied from alltt.

19

so \def\g@remfrom@specials#1{}

w60 \def\@new@specials{}%

e \def\@remove##1{Y

1962 \ifx##1#1\else

1963 \g@addto@macro\@new@specials{\do ##1}\fi}%
106 \let\do\@remove\dospecials

965 \let\dospecials\@new@specials

1966 }

1957 \ExplSyntax0On
1968 <@@=block>

(End of definition for \legacyallttsetup and \g@remfrom@specials. These functions are documented
on page 37.)

10.1.3 Helper command for legacy list environment

And here is the extra code for use in the list instance setup in the key legacy-code:
1060 \cs_new_protected:Npn \legacylistsetup {

Reset values to defaults:

1970 \dim_zero:N \listparindent
1071 \dim_zero:N \rightmargin
1072 \dim_zero:N \itemindent

By default a 1ist environment is not numbered, but this happens already in the block
template.

1973 % \tl_set:Nn \@listctr {}

174 % \legacy_if_set_false:n { @nmbrlist } % needed if lists are nested

By default there is a simple definition for \makelabel. It can be overwritten in the
second mandatory argument to the list environment (stored in \1__block_legacy_-
env_params_t1) and is used if the instance sets the compatibility key to true.

1975 \let\makelabel\@mklab % TODO: customize

85

\1__block_legacy_env_params_tl

\newtheorem

|

undefined the old in-
ternal commands?

Now we use the argument with parameter settings to update some or all of the above
defaults (this holds whatever was put into the second argument to the 1ist environment):
1976 \1__block_legacy_env_params_tl

As we don’t know much about this list we can only make a guess about the nature of
the list and the setting of the tag name (default 1ist role-mapped to <L>) and any tag
attributes may have to be overwritten in the optional key/value argument. But we do
have some hints to play with.

1077 \legacy_if:nTF { @nmbrlist }

1078 { \tl_set:Nn \1__tag_L_attr_class_tl {enumerate} } 7% numbered list
1079 { \tl_if_empty:NTF \@itemlabel

1980 { \tl_set:Nn \1__tag_L_attr_class_tl {list} } % no label

1081 { \tl_set:Nn \1__tag_L_attr_class_tl {itemize} } % unnumbered,
1082 % unordered
1983 }

1984 }

(End of definition for \legacylistsetup. This function is documented on page 37.)

The token list in which the declarations from the second argument of 1ist are temporarily
stored. This is then used in \legacylistsetup.

1085 \t1l_new:N\1__block_legacy_env_params_tl
(End of definition for \1__block_legacy_env_params_tl.)

10.2 Theorem-like environments

Theorem-like environments are defined in IATEX with the help of \newtheorem declara-
tions. Internally they used a list with a single item. Using lists was convenient back then,
but in a tagged document you end up with a strange structure. We therefore alter the
mechanism.

10.2.1 Declarations for theorem-like environments

We reimplement the extended amsthm version of the declaration which also supports a
star form indicating that this theorem-like environment should not be numbered.

1055 \RenewDocumentCommand \newtheorem { s m o m o } {

Is the environment definable at all? If not there is not much point in continuing.

w7 \expandafter\@ifdefinable\csname #2\endcsname

1988 {

If a star was given then there is no need to set up a counter for this environment.
Otherwise we do what I¥TEX2e did, except that we do all the variations in one go, rather
than using \@ynthm, \@xnthm, and \@othm.

1989 \IfBooleanF #1
1990 {
1991 \IfNoValueTF {#3}

If there was no counter to use (#2) then we set up a counter with the same name as the
environment (#2).

1992 {
1993 \@definecounter {#2}

86

If there was no “counter within” the counter representation is simple, otherwise we build
it up from the two counters:

1994 \IfNoValueTF {#5}

1995 { % Qynthm

1996 \tl_gset:ce { the #2 }
1997 {

1098 \@thmcounter{#2}
1999 }

2000 }

2001 { 9% ©xnthm

2002 \@newctr{#2} [#5]

2003 \tl_gset:ce { the #2 }
2004 {

2005 \expandafter\noexpand\csname the#5\endcsname
2006 \@thmcountersep
2007 \@thmcounter{#2}
2008 }

2009 }

2010 }

2011 { % @othm

If we should reuse an existing counter (#3 was given) we check that this counter actually
exists and if so use it:

2012 \@ifundefined{c@#3}

2013 { \@nocounterr{#3} }

2014 {

2015 \newcounteralias{#2}{#3}
2016 }

2017 }

2018 }

With the counter defined we are ready to declare the environments. There is a slight
complication though: the “theorem-like” environments have an optional argument which
contains a possible note, but now we also want to use the first optional argument to
hold a key/value list with parameter settings. We therefore define this argument via
={note}o so that a simple note, if given is assigned to a note key. Further processing is
then delegated to the command \ParseLaTeXeTheoremlike which, after sorting out the
argument situation, eventually calls \BlockEnv.

2019 \NewDocumentEnvironment{#2}{ ={note}o }
2020 { \ParseLaTeXeTheoremlike {#2} \BooleanFalse {##1} }
2021 { \BlockEnvEnd }

The starred form of the environment suppresses the number so we pass it \BooleanTrue,
otherwise it is identical to the previous definition.

2022 \NewDocumentEnvironment{#2*}{ ={note}o }
2023 { \ParseLaTeXeTheoremlike {#2} \BooleanTrue {##1} }
2024 { \BlockEnvEnd }

Now it is about time to provide all necessary template instances. They depend on the
\theoremstyle specified by the user and possibly by a \swapnumbers declaration. We
start by checking the requested \theoremstyle (if none was given then plain is the
default and if it is an unknown name we also revert to plain after issuing a warning).

2025 \IfInstanceExistsF{thmstyle}{\1__block_thmstyle_tl}
2026 { \@latex@warning{Unknown~ theoremstyle~

87

2027 '\1__block_thmstyle_tl'~ using~ 'plain'}

2028 \theoremstyle {plain}

2029 }

So now we know that \1__block_thmstyle_t1 holds a valid style. What we don’t know
is whether or not there are special block instances that go with that style (it might be

a style that reuses the thm-(style)block-... instances).

2030 \IfInstanceExistsTF{block} { thm- \1__block_thmstyle_tl -1 }

2031 { __block_debug_typeout:n{...~ style~ \1__block_thmstyle_tl\space exists } }
2032 { __block_debug_typeout:n{...~ style~ \1__block_thmstyle_tl\space

2033 does~ not ~exist;~ 'plain'~ used } }

So here is the blockenv instance for the new “theorem-like” environment. It uses a
captionedtext instance for the inner-instance which we also have to declare.

2034 \DeclareInstance{blockenv}{#2}{std}

2035 {

2036 name = theorem-like

2037 ,tag-name = \UseStructureName{block/theorem-like}
2038 ,tag-attr-class =

2039 ,tagging-recipe = standalone

2040 ,inner-level-counter =

2041 ,transparent-level = true

2042 ,legacy-code =

What block instance to use is determined by checking if a special one exists or whether
we should use plain:

2043 ,block-instance:e = thm-

2044 \IfInstanceExistsTF{block}

2045 {thm- \1__block_thmstyle_tl -1}

2046 { \1__block_thmstyle_tl } { plain }
2047 ,inner-instance-type = captionedtext

2048 ,inner-instance = #2

By default the body text is justified, but perhaps we should not set anything here and
(decide) use whatever is current.

2049 ,para-instance = justify

2050 }

The captionedtext instance is simple: the counter, if present, is either argument #2
or #3; the title receives argument #4, and the style to use is stored in \1__block_-
thmstyle_tl. If \swapnumbers was requested we use a style variant with the suffix -swap

appended.

2051 \DeclareInstance{captionedtext}{#2}{thmlike}

2052 {

The counter to use is either none or #2 based on the arguments given:

2053 ,counter:e = \IfBooleanF #1 { #2 }

2054 ,title = #4

2085 ,style:e = \1__block_thmstyle_tl

2056 \bool_if:NT \1__block_swap_number_bool {-swap}
2057 }

We already know that the style \1__block_thmstyle_tl exists, since we have tested
that earlier, but we don’t know if that is also true for the -swap variant. So we have to
check that and declare it if necessary.

2058 \bool_if:NT \1__block_swap_number_bool {

88

2059 \IfInstanceExistsF{thmstyle}{\1__block_thmstyle_tl -swap}
2060 {

If it doesn’t exist we first make a copy of the base instance.

2061 \DeclareInstanceCopy{thmstyle}

2062 {\1__block_thmstyle_tl -swap}

2063 {\1__block_thmstyle_tl}

Then we retrieve the value of the order key from that instance which is a clist.
2064 \clist_set:Ne \1__block_order_clist

2065 { \InstanceValue { thmstyle }

2066 { \1__block_thmstyle_tl }

2067 { order }

2068 }

Then we step through this clist and build a new one in \1__block_tmp_clist with the
title and number swapped. That is done under the assumption that both actually exist
in the clist which would be the case if the instance was declared with \newtheoremstyle,
i.e., for legacy setups.

2069 \clist_clear:N \1__block_tmp_clist

2070 \clist_map_inline:Nn \1__block_order_clist
2071 {

2072 \clist_put_right:Ne \1__block_tmp_clist {
2073 \str_case:nnF {##1}

2074 { {title} {number}

2075 {number} {title} }

2076 {##1}

2077 }

2078 }

Once that is done we put the new value for order in the new instance.
2079 \EditInstance {thmstyle}{\1__block_thmstyle_tl -swap}
2080 { order:e = \1__block_tmp_clist }

2081 ¥

2082 }

2083 }

2084 }

(End of definition for \newtheorem.)

\ParseLaTeXeTheoremlike The arguments to \ParseLaTeXeTheoremlike are as follows:
#1: instance name to use (of type “blockenv”)
#2: unnumbered? boolean normally provided by using the star form of the environment

#3: key/val for layout adjustments settings provided in the optional argument of the
“theorem-like” environment. If a note to the theorem was given in that argument,
then it has been turned into note...=

To be able to pick up the note, if provided, we make the following declaration:
2055 \keys_define:nn {blockenv} {

2086 , note .tl_set:N = \1__block_note_tl

2087, note .groups:n = { interface }

2088 }

89

2050 \cs_new_protected:Npn \ParseLaTeXeTheoremlike #1 #2 #3 {

2090 %

2001 % __block_debug_typeout:n{Parse~#1.~ Arguments~ found:~ \IfBooleanT{#2}{x*}
2002 % \IfValueT{#3}{[\exp_not:n{#3}]1}}

2003 %

Normally, no note is provided, so that’s the starting point:
2000 \tl_set:Nn \1__block_note_tl { \NoValue }

Then we check #3 if it contains a key/val list containing note. This then sets \1__block_-
note_t1l and puts all other key/vals in \1__block_instance_keys_t1l. Otherwise the
complete key/val list ends up there.

2005 \IfNoValueTF { #3 }

2096 { \tl_clear:N \1__block_instance_keys_tl }
2007 { \keys_set_groups:nnnN {blockenv} {interface} { #3 }
2008 \1__block_instance_keys_tl ¥

We are now ready to invoke the blockenv instance for #1 but we need to expand some
of the values first, hence the \use:e.

2009 \use:e {

2100 \exp_not:N \BlockEnv { #1 }

2101 { \exp_not:o \1__block_instance_keys_tl }
2102 { #2 }

2103 { \exp_not:o \1__block_note_tl }

2104 T

We don’t have any use for the last argument (the sub-caption) in the standard setup, so
we pass \NoValue.

2105 \NoValue

2106 }

(End of definition for \ParseLaTeXeTheoremlike. This function is documented on page 77.)

\swapnumbers Beside declaring theorem-like environments with \newtheorem and \theoremstyle, the
amsthm package also introduced \swapnumbers to swap title and number in all environ-
ments (because that is a common requirement). The new implementation supports this
approach as well.
It is implemented with a boolean \1__block_swap_number_bool which is toggled by
\swapnumbers.
2107 \bool_new:N \1__block_swap_number_bool
2108 \cs_new_protected:Npn \swapnumbers { \bool_set_inverse:N \1__block_swap_number_bool }

(End of definition for \swapnumbers. This function is documented on page 77.)

\newtheoremstyle The \newtheoremstyle declaration was originally provided in the amsthm package. It
has 9 mandatory arguments that sets some aspects of theorem styles. We map those to
the template mechanism and generate thmstyle instances from them.
\newtheoremstyle has a bunch of argument conventions that haven’t been fully imple-
mented yet, e.g., #8 can be a blank (meaning normal word space or \newline) or a skip.
(extend) Those should eventually also be covered.

2100 \cs_set_protected:Npn \newtheoremstyle #1#2#3#4#5#6#7#8#9 {

90

First we build a thmstyle instance:

2110 \DeclareInstance{thmstyle}{#1}{std}{

2111 ,caption-decls = {#4}

2112 ,before-hspace:e = \tl_if_empty:nTF{#5}{0pt}{#5}

2113 ,body-decls = {#6}

2114 ,punct = {#7}

This setting doesn’t cover all syntax possibilities.

2115 ,after-hspace:e = \tl_if_empty:nTF{#8}{0pt}

2116 {\tl_if_blank:nTF{#8}{3. 3pt}{#8}}
2117 }

If #2 or #3 are not empty we also have to set up a block instance to account for the fact
that special vertical spacing is requested:
aus \tl_if_empty:nF { #2#3 }

2119 {

2120 \DeclareInstance{block}{thm-#1-1}{std}{

2121 ,begin-vspace:e = \tl_if_empty:nTF{#2}{0pt}{#2}
2122 ,end-vspace:e = \tl_if_empty:nTF{#3}{0pt}{#3}
2123 ,left-margin = Opt

2124 ,para-indent = \parindent

2125 ,para-vspace = \parskip

2126 ¥

As elsewhere we provide two levels.

2127 \DeclareInstanceCopy{block}{thm-#1-2}{thm-#1-1}
2128 i

More complicated is argument #9. If not empty it can contain \thmname, \thmnumber,
and/or \thmnote to define the layout of the theorem caption. All the spacing has to
be given inside the arguments of these commands which means that this doesn’t work
together with \swapnumbers, but this is the way amsthm was defined. If the instances are
manually defined then it is easy to make them work with and without a \swapnumbers
declaration. So basically, this here is good for a subset of cases and for backwards
compatibility with amsthm.

The approach used doesn’t cover all circumstances, e.g., if the argument contains low-
level programming on top of the interface commands that the translation below will fail,
but most existing code should work and the rest would need a replacement using instances
that are directly set up.

220 \tl_if_empty:oF { \exp_not:n{#9} }

2130 {

Give special definitions for the commands and then expand #9 and use the result to edit
the instance we defined earlier.

2131 \cs_set:Npn \thmname ##1 {title-format={{\exp_not:n{##1}}},}
2132 \cs_set:Npn \thmnumber ##1 {number-format={{\exp_not:n{##1}}},}
2133 \cs_set:Npn \thmnote ##1 {note-format={{\exp_not:n{##1}}},}
2134 \cs_set:Npn __block_tmp:w ##1##2##3 {

2135 \exp_args:Nnne \EditInstance{thmstyle}{#1}{#9}}

2136 __block_tmp:w {##1} {##1} {##1}

We then also use the commands to deduce a suitable order and put that into the instance
as well.

2137 \cs_set:Npn \thmname ##1 {title,}
2138 \cs_set:Npn \thmnumber ##1 {number,}

91

2139 \cs_set:Npn \thmnote ##1 {punct,note}

2140 \cs_set:Npn __block_tmp:wh##1##2##3 {

2141 \exp_args:Nnne \EditInstance{thmstyle}{#1}{order={#9}}}
2142 __block_tmp:w {##1} {##1} {##1}

2143 }

If block tracing is turned on we show the final result:
2us __block_debug:n { \ShowInstanceValues{thmstyle}{#1} }
o145}

(End of definition for \newtheoremstyle. This function is documented on page 38.)

10.2.2 Supporting QED in proofs

The amsthm package contains some elaborate code to support placing a QED symbol
into the proof (by default at the end, but alternatively manually placed with \qedhere).
This code is simply lifted and not adjusted in any way for now (and therefore also not
documented—see the amsthm package for documentation for now).

2146 \ExplSynt ax0ff
27 \def\math@qedhere{’,

2148 \@ifundefined{\@currenvir Qqed}{%

2149 \ged@warning\quad\hbox{\qedsymbol}/,

2150 Y%

2151 \@xp\aftergroup\csname\@currenvir Qqed\endcsname
2152 Y%

2153 }

2154 \def\displaymath@qed{’

2155 \relax

2156 \ifmmode

2157 \ifinner \aftergroup\linebox@qed

2158 \else

2159 \eqno

2160 \let\egno\relax \let\leqno\relax \let\veqno\relax
2161 \hbox{\gedsymbol}

2162 \fi

2163 \else

2164 \aftergroup\linebox@qged

2165 \fi

2166 }

2167 \expandafter\let\csname equation*@ged\endcsname\displaymath@qed
215 \def\equation@qed{’

2160 \iftagsleft@

2170 \hbox{}%
2171 \gdef\alt@tag{’

2172 \rlap{\hbox to\displaywidth{\hfil\qedsymbol}}%
2173 \global\let\alt@tag\@empty

2174 }%

2175 \else

2176 \gdef\alt@tag{’

2177 \globalllet\alt@tag\@empty

2178 \vtop{\ialign{\hfil####\cr

2179 \tagform@\theequation\cr
2180 \gedsymbol\cr}}%

2181 \setbox\z@

2182 Y%

92

2183 \fi

2184 }

2185 \def\qged@tag{%

2186 \global\tag@true \nonumber

2187 &\omit\setboxz@h {\strut@ \gedsymboll}\tagsleft@false

2188 \place@tag@gather

2189 \kern-\tabskip

2190 \ifst@rred \else \global\@egnswtrue \fi \globalladvance\row@\@ne \cr
2191 }

2100 \def\split@qed{’,

2103 \def\endsplit{\crcr\egroup \egroup \ctagsplit@false \rendsplit@
2104 \aftergroup\align@qed

2195 A

2196 }

2197 \def\align@qed{%

2198 \ifmeasuring@ \tag*{\gedsymboll},

2199 \else \let\math@cr__block@\ged@tag

2200 \fi

2201 ¥

202 \expandafter\let\csname align*@qed\endcsname\align@qged
203 \expandafter\let\csname gather*@qed\endcsname\align@qed
2204 %

205 \def\math@qedhere{\quad\hbox{\gedsymboll}}%

2206 %

207 \DeclareRobustCommand{\qed}{%

2208 \ifmmode \mathqed

2209 \else

2210 \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
211 \quad\hbox{\gedsymbol}/

2212 \fi

2213 %

214 \let\QED@stack\@empty
215 \let\ged@elt\relax
216 \newcommand{\pushQED}[1]{%

2217 \toks@{\qed@elt{#1}}\@temptokena\expandafter{\QED@stack}/,

2218 \xdef\QED@stack{\the\toks@\the\@temptokenaly,

2219 }%

2220 \newcommand{\popQED}{%

2221 \begingroup\let\qed@elt\popQED@elt \QED@stack\relax\relax\endgroup
2222 %

223 \def\popQED@elt#1#2\relax{#1\gdef\QED@stack{#2}}/

200 \newcommand{\qgedhere}{%

2225 \begingroup \let\mathqed\math@gedhere

2226 \let\ged@elt\setQED@elt \QED@stack\relax\relax \endgroup

2227 Y%

208 \def\setQEDQelt#1#2\relax{%

2229 \ifmeasuring@

2230 \else \iffirstchoice@ \gdef\QED@stack{\qed@elt{}#2}\fi
2231 \fi

2232 #19%

23 Yh

23 \def\ged@warning{/
2235 \PackageWarning{amsthm}{The \@nx\qedhere command may not work
2236 correctly herel,

93

2237 %
23 \newcommand{\mathqed}{\quad\hbox{\gedsymbol}}
23 \DeclareRobustCommand{\qed}{%

2240 \ifmmode \mathqed

2241 \else

2242 \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
2243 \quad\hbox{\gedsymbol}%

2244 \fi

2245 }

246 \newcommand{\openbox}{\leavevmode

2247 \hbox to.77778em{,

2248 \hfil\vrule

2249 \vbox to.675em{\hrule width.6em\vfil\hrule}}
2250 \vrule\hfil}}

251 \providecommand{\gedsymbol}{\openbox}
25 \ExplSyntaxOn

11 Support for other packages and classes

11.1 Replacement for alltt

The tools package alltt by Leslie Lamport has been completely implemented using the
template approach and is therefore no longer necessary. In fact it has also been extended
by providing allttx*.

253 \declare@file@substitution{alltt.sty}{null.tex}

11.2 Replacement for amsthm

The amsthm package is basically supported out of the box (though there are currently
still a few limitation with \newtheoremstyle and perhaps also in other places). So this
here is a bit premature, but for now we disable loading amsthm and wait to see how far
this gets us. We may have to provide a bit more for better compatibility.

251 \declare@file@substitution{amsthm.sty}{null.tex}

11.3 Support for amsart and amsbook classes

Unfortunately, the amsart class contains a full implementation of amsthm inside the class
(why ever) and they use \newcommand, sigh.
Thus, to make the new code work with this class we have to hide some definitions,
load the class and only afterwards restore our own versions.
So first save some of the problematical definitions under some other names:
255 \let \amsnewtheorem \newtheorem
25 \let \amsnewtheoremstyle \newtheoremstyle
257 \let \amstheoremstyle \theoremstyle
255 \let \amsproof \proof
25 \let \amsendproof \endproof
Then undefine them just before the class gets loaded (quite a handful):
260 \AddToHook{class/amsart/before} [block]{
261 \let \newtheoremstyle \relax
262 \let \theoremstyle \relax

94

263 \let \proof \relax
260 \let \endproof \relax

265 \let \pushQED \relax
266 \let \popQED \relax
267 \let \gedhere \relax
265 \let \mathqged \relax
260 \let \openbox \relax
2270 }

Same for amsbook and amsproc:

2271 \AddToHook{class/amsbook/before} [block]{
2272 \let \newtheoremstyle \relax
273 \let \theoremstyle \relax

274 \let \proof \relax
275 \let \endproof \relax
276 \let \pushQED \relax
277 \let \popQED \relax

2278 \let \qedhere \relax
279 \let \mathqged \relax
2:0 \let \openbox \relax

281 }

2s2 \AddToHook{class/amsproc/before} [block]{
253 \let \newtheoremstyle \relax
281 \let \theoremstyle \relax

285 \let \proof \relax
28 \let \endproof \relax
257 \let \pushQED \relax
285 \let \popQED \relax

230 \let \gedhere \relax
20 \let \mathqed \relax
201 \let \openbox \relax
2292 }

And once the class is loaded restore our versions again. Note that we don’t have to
restored all the QED-related commands as ours are identical to those defined by the
AMS.

2203 \AddToHook{class/amsart/after}[block]{

204 \let \newtheorem \amsnewtheorem

205 \let \newtheoremstyle \amsnewtheoremstyle
206 \let \theoremstyle \amstheoremstyle

2207 \let \proof \amsproof

205 \let \endproof \amsendproof
2299 }

200 \AddToHook{class/amsbook/after} [block]{
2301 \let \newtheorem \amsnewtheorem

232 \let \newtheoremstyle \amsnewtheoremstyle
2303 \let \theoremstyle \amstheoremstyle
2304 \let \proof \amsproof

2305 \let \endproof \amsendproof

2306 }

2307 \AddToHook{class/amsproc/after}[block]{
238 \let \newtheorem \amsnewtheorem
2300 \let \newtheoremstyle \amsnewtheoremstyle

95

(decide)

(decide)

doc (plug)

2310 \let \theoremstyle \amstheoremstyle
1 \let \proof \amsproof

232 \let \endproof \amsendproof

0313

11.4 Support for the enumitem interfaces

The current implementation incorporates most features of enumitem. The plan is that
the enumitem interfaces are either natively available or are emulated and mapped to new
interfaces, so that documents using enumitem work seamlessly.

Most (or even all of the enumitem keys have gotten new names, so there the task is
to map old names to new names. One question to decide here is which (if any) of the
original keys should remain natively available even if enumitem is not loaded, and which
should only be supported if the document explicitly loads enumitem, i.e., support them
only for compatibility with old documents. Providing the full set by default means one
ends up with a fairly inconsistent interface, but not providing some of them may result
in people unnecessarily loading enumitem in new documents just to get at, say, nosep.

The enumitem package also provides declarations to build out new lists and ad-
just the layout of existing list using commands like \newlist or \setlist. With the
new implementation this is normally done differently, e.g., defining instances and simple
document level commands via \SimpleBlockEnv, etc. However, we probably also want a
declaration such as \newlist (same name?) to provide a simple way to make this happen
in the document preamble in one go.

I'm less sure about \setlist at least as far as its optional argument is concerned
(even though we have to support it in an emulation.

We put the code that emulates enumitem in a separate file to be loaded instead of
the original package, but eventually some of the code from there has to move back to the
kernel to be always present.

2314 %\declare@file@substitution{enumitem.sty}{latex-lab-enumitem.sty}

But for now we simply disable enumitem loading and unconditionally load our replacement
into the kernel for ease of testing. In the end we have to decide which parts of the interface
(if any) we provide out of the box and which parts are only available if the document
requests enumitem.

2315 \declare@file@substitution{enumitem.sty}{null}
2316 \RequirePackage{latex-lab-enumitem}

11.5 Support for the doc package

When the doc package is loaded it wants to remove a % sign from the start of each verbatim
line. For this it uses \check@percent which we stick into the verbatim/startline
socket.

2317 \NewSocketPlug {verbatim/startline}{doc}{ \check@percent }
2315 \AddToHook{package/doc/after}{

230 \AssignSocketPlug{verbatim/startline}{doc}

2320 }

221 (/package-finish)

96

(xlatex-lab)

(/latex-lab)

Index

23 \ProvidesFile{block-latex-lab-testphase.ltx}

[\1tlabblockdate\space v\ltlabblockversion\space
blockenv implementation]

»26 \RequirePackage{latex-lab-testphase-block}

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

1949, 1951
©0 commands:

\1_0@_legacy_env_params_tl ..328
985, 1241, 1242, 1953

N

N 1954

N} 1955

NG e 369, 764, 1697
A

\addpenalty 961, 1119, 1123, 1469

\AddToHook 50, 94, 138, 155, 237, 325, 337,
612, 1394, 1427, 1725, 1727, 2260,
2271, 2282, 2293, 2300, 2307, 2318

\AddToHookWithArguments 645, 647, 649, 651

\addvspace 962, 1120, 1124, 1126, 1470
\advance 2190
\aftergroup 613, 2151, 2157, 2164, 2194
alltt (env.) 160
alltt* (env.) 160

\amsendproof 2259,2298,2305,2515
\amsnewtheorem 2255, 2294, 2301, 2308
\amsnewtheoremstyle 2256, 2295, 2302, 2309

\amsproof 2258, 2297, 2304, 2311
\amstheoremstyle .. 2257, 2296, 2303, 2310
\arabic, 730
\AssignSocketPlug 2319
\AssignStructureRole 1929

\AssignTaggingSocketPlug
608, 1392, 1576, 1724, 1746, 1856

B
\begin 38, 77, 1773
\begingroup 1782, 2221, 2225
\bfseries 322, 374
block (type) ... 662

block commands:
\block_debug_off:
\block_debug_on:

36, 623, 628, 642
36, 623, 623, 641

97

\g_block_nesting_depth_int
37, 873, 877, 881, 891, 918, 926, 938

block internal commands:

__block_beginpar_hmode:N
....... 1690, 1690, 1859, 1881, 1895

__block_beginpar_vmode:
....... 1675, 1675, 1861, 1883, 1897

\1__block_block_instance_tl

842, 890, 968

\1__block_body_decls_tl
1510, 1566, 1638, 1672
\1__block_botsep_skip 1029
\1__block_caption_after_skip ...
........... 1503, 1549, 1634, 1655
\1__block_caption_before_skip ..
........... 1502, 1543, 1633, 1652
\1__block_caption_decls_tl .
1505, 1540, 1635, 1649
__block_captioned_everypar_std:
....... 1049, 1130, 1130, 1565, 1671
\g__block_collected_spaces_tl ..

...................... 73, 1610
__block_counter_label:n . 1250, 1296
__block_counter_ref:n 1251

\1__block_counter_start_int
........... 1179, 1213, 1216, 1225
\1__block_counter_tl . 1177, 1211,
1221, 1476, 1524, 1530, 1531, 1598
__block_debug:n 621, 621, 635, 2144
\g__block_debug_bool
42, 620, 625, 630, 636, 638
__block_debug_gset: 623, 626, 631, 633
__block_debug_typeout:n
........ 591, 600, 621, 622, 637,
936, 951, 970, 1048, 1131, 1150,
1155, 1159, 1163, 1233, 1235, 1299
1345, 1397, 1416, 1421, 1564, 1567
1670, 1673, 1676, 1694, 1715, 1795
1799, 1832, 1842, 2031, 2032, 2091
_block_do_note: 1585, 1585

__block_do_number: 1593, 1593
__block_do_punct: 75, 1603, 1603, 1654

__block_do_space: 1610, 1610
__block_do_title: 75, 1577, 1577, 1653
__block_drop_spaces: 74,

75, 1579, 1587, 1601, 1604, 1610, 1617
\1__block_effective_top_skip .. 1425
\1__block_env_name_tl
836, 1205, 1301, 1519
__block_evaluate_saved_user_-

keys:nn 59, 60, 63, 1168
1168, 1171, 1172, 1194, 1197, 1279
__block_everypar 58

__block_everypar:
61, 65-67, 1049, 1151, 1234, 1346,
1393, 1393, 1394, 1417, 1565, 1671
\1__block_final_code_tl . 51, 849, 919
__block_if_list:TF 944, 949, 967, 967
__block_inner_begin:
1791, 1791, 1871, 1884
__block_inner_end:
1794, 1794, 1872, 1885
\1__block_inner_instance_tl
848, 898, 902
\1__block_inner_instance_type_tl
847, 901
\1__block_inner_level_counter_tl
845, 866, 868, 871, 903, 905
__block_insert_spaces:
73, 1581, 1589, 1596, 1610, 1613
\1__block_instance_keys_tl ..
90, 2096, 2098, 2101
__block_inter_item:
68, 1442, 1462, 1462
\1__block_item_align_tl
1261, 1262, 1263, 1318, 1322, 1350
\1__block_item_compatibility_-
bool 1259, 1290
__block_item_everypar_first:
1234, 1393, 1420
__block_item_everypar_std:
1346, 1393, 1396
__block_item_instance:n
68, 1181, 1431, 1444, 1445
\1__block_item_label_t1l
1178, 1228, 1230
\1__block_item_parsep_skip 1342
__block_label_autoref:n 1253
\1__block_label_boxed_bool 1256, 1307
__block_label_format:n
65, 1254, 1354, 1360
\1__block_label_given_tl
63, 1247, 1278, 1287, 1302
__block_label_ref:n 1252

98

\g__block_label_standalone_bool
..... 68, 1267, 1269, 1271, 1348,
1446, 1448, 1495, 1497, 1499, 1552
1554, 1626, 1628, 1630, 1658, 1660

g__block_label_standalone_bool 1348

\1__block_label_strut_bool 1255, 1362

\g__block_label_unchained_bool .

. 1046, 1268, 1270, 1272, 1349,

1496, 1498, 1500, 1627, 1629, 1631
g__block_label_unchained_bool . 1348
\g__block_labels_box 58,

63, 65, 71, 74, 1052, 1100, 1103,

1138, 1331, 1333, 1351, 1405, 1450

1536, 1538, 1556, 1645, 1647, 1662
\1__block_legacy_code_tl 49, 841, 888
\1__block_legacy_env_params_tl .
85, 1976, 1985
\1__block_legacy_support_bool ..
1188,
1818,
1836,

1363
1898
1899

__block_list_begin: 1818,
__block_list_end: 1836,

__block_list_item_begin:
................ 1825,
__block_list_item_end:
................ 1828,

\1__block_long_label_bool
........... 1329, 1330,
__block_make_label_box:n
63, 1293, 1295, 1300, 1354,

\1__block_max_inner_levels_tl ..

1900
1901

1338, 1353

1354

...................... 846, 869
\1__block_next_line_bool . 1257, 1337
__block_note_format:n ... 1509, 1590

\1__block_note_tl
90, 1527, 1586, 1590, 2086, 2094, 2103
. 1507, 1597

__block_number_format:n
\1__block_numbered_bool
........... 1491, 1526, 1528, 1594
\1__block_one_label_box
. 65,1310, 1314, 1316, 1320, 1321,
1325, 1326, 1328, 1335, 1351, 1356
\1__block_order_clist
........ 71, 1504, 1544, 2064, 2070
\1__block_para_instance_tl ..
843, 894, 896

\1__block_parbotsep_skip 1030
\1__block_parindent_dim .. 1037, 1089

__block_punct_format:n
1508, 1607, 1637

\1__block_punct_tl
1493, 1605, 1607, 1624
. 1857, 1857
. 1892, 1892

__block_recipe_basic:
__block_recipe_list:

__block_recipe_standalone:
.................... 1866, 1866
__block_recipe_standard: 1878, 1878
\1__block_resume_bool 1180, 1222
__block_save_user_keys:n 1169

__block_skip_remove_last:

615, 618, 946, 1068, 1465, 1466

__block_skip_set_to_last:N
.............. 615, 615, 955, 1108

\1__block_space_tl 73, 1492, 1611

\1__block_swap_number_bool .

90, 2056, 2058, 2107, 2108

\1__block_tag_class_tl 838, 1906, 1908

\1__block_tag_inner_tag_tl
1792, 1875, 1876, 1888, 1889, 1891
\1__block_tag_name_tl

837, 1874, 1876, 1887, 1889, 1903, 1905
\1__block_tagging_recipe_tl 839, 884
\1__block_text_font_tl 1258
\1__block_thmstyle_tl

88, 1486, 2025,
2027, 2030, 2031, 2032, 2045, 2046,
2055, 2059, 2062, 2063, 2066, 2079

__block_title_format:n

1506, 1582, 1636

\1__block_title_tl

70, 1477, 1578, 1582, 1623, 1644
__block_tmp:w . 2134, 2136, 2140, 2142
\1__block_tmp_clist

89, 2069, 2072, 2080

\1__block_tmpa_skip
1108, 1109, 1110, 1424
\1__block_topsepadd_skip
53,962, 1061, 1064, 1124, 1425
\1__block_transparent_level_bool

840, 878, 917, 937
\1__block_unchained_skip . 1027, 1056
\1__block_unused_blockenv_keys_-

tl ... 50, 893, 907, 911, 913, 928
block proof-1 (instance) 447
block proof-2 (instance) 447
block quotation-1 (instance) 131
block quotation-2 (instance) 131
block quotation-3 (instance) 131
block quotation-4 (instance) 131
block quotation-5 (instance) 131
block quotation-6 (instance) 131
block quote-1 (instance) 124
block quote-2 (instance) 124
block quote-3 (instance) 124
block quote-4 (instance) 124
block quote-5 (instance) 124
block quote-6 (instance) 124
block std (template) 686, 1023

block std-display-1 (instance) 31
block std-display-2 (instance) 31
block std-display-3 (instance) 31
block std-display-4 (instance) 31
block std-display-5 (instance) 31
block std-display-6 (instance) 31
block std-list-1 (instance) 287
block std-list-2 (instance) 287
block std-list-3 (instance) 287
block std-list-4 (instance) 287
block std-list-5 (instance) 287
block std-list-6 (instance) 287
block thm-legacy2e-1 (instance) 411
block thm-legacy2e-2 (instance) 411
block thm-plain-1 (instance) 394
block thm-plain-2 (instance) 394
block thm-remark-1 (instance) 402
block thm-remark-2 (instance) 402
block verbatim-1 (instance) 227
block verbatim-2 (instance) 227
block verbatim-3 (instance) 227
block verbatim-4 (instance) 227
block verbatim-5 (instance) 227
block verbatim-6 (instance) 227
block/endpe (socket) 972
block/list/label (socket) 1371
\BlockEnv 15
\BlockEnv 15, 37, 87, 922, 2100
blockenv (hook) 921
blockenv (type) 662
blockenv alltt (instance) 197
blockenv alltt* (instance) 212
blockenv center (instance) 58
blockenv description (instance) 274
blockenv displayblock (instance) 6
blockenv displayblockflattened (in-
StAnCe) 23
blockenv enumerate (instance) 260
blockenv flushleft (instance) 72
blockenv flushright (instance) 90
blockenv itemize (instance) 245
blockenv list (instance) 348
blockenv proof (instance) 422
blockenv quotation (instance) 100
blockenv quote (instance) 112
blockenv std (template) 669, 834
blockenv verbatim (instance) 165
blockenv verbatim* (instance) 181
blockenv verse (instance) 142
\BlockEnvEnd 15
\BlockEnvEnd 15, 37, 3, 5, 52, 54, 56,

96, 98, 140, 157, 159, 161, 163, 239,
241, 243, 335, 346, 421, 935, 2021, 2024
\BockEnvEnd 51

99

bool commands:

\bool_gset_false:N 630, 1267
1268, 1269, 1272, 1448, 1495, 1496
1497, 1500, 1626, 1627, 1628, 1631

\bool_gset_true:N 625, 1270, 1271,
1498, 1499, 1554, 1629, 1630, 1660

\bool_if:NTF 587, 592,
596, 636, 638, 861, 878, 917, 937,
1046, 1222, 1290, 1337, 1338, 1362
1363, 1446, 1528, 1552, 1594, 1658

1695, 1709, 1736, 1738, 2056, 2058
\bool _if:nTF 1305
\bool_lazy_and:nnTF 1786
\bool_lazy_or:nnTF 1523, 1937

\bool_new:N 620, 1348, 1349, 1353, 2107

\bool_set_false:N 1330, 1526

\bool_set_inverse:N 2108

\bool_set_true:N 1329
\BooleanFalse 14, 925, 2020
\BooleanTrue 14, 87, 420, 908, 2023
box commands:

\box_if_empty:NTF 1403

\box_new:N 1351, 1352

\box_use_drop:N
1004, 1138, 1321, 1326,

1405, 1450, 1538, 1556, 1647, 1662

\box_wd:N 1310, 1314, 1328

\break 1338
C

captionedtext (type) 662

captionedtext proof (instance) 436

captionedtext proof (template) . 749, 1621

captionedtext thmlike (template) 743, 1474

\catcode 1949, 1951
center (env.) 50
\centering 506
clist commands:
\clist_clear:N 2069
\clist_map_inline:Nn 1544, 2070
\clist_put_right:Nn 2072
\clist_set:Nn 2064

\clubpenalty &8, 567, 1146, 1149, 1412, 1415
color commands:

\color_select:n 1697
\er ... 2178, 2179, 2180, 2190
\NCTCT . it 2193
cs commands:

\cs_generate_variant:Nn 619

\cs_gset_protected:Npx 635, 637

\cs_if_free:NTF 1431

\cs_new:Npn 967, 1169

\cs_new_eq:NN
618, 621, 622, 1168, 1393, 1472, 1473

\cs_new_protected:Npn
558, 615, 623, 628,
633, 641, 642, 644, 654, 922, 924,
926, 935, 969, 1130, 1154, 1158,
1162, 1354, 1396, 1420, 1462, 1486
1577, 1585, 1593, 1603, 1610, 1613
1617, 1785, 1791, 1794, 1836, 1857

1866, 1878, 1892, 1969, 2089, 2108
\cs_set:Npe 60, 1172, 1197
\cs_set:Npn 996, 1006, 1675

1690, 1818, 1825, 1828, 2131, 2132
2133, 2134, 2137, 2138, 2139, 2140
\cs_set_eq:NN

343, 1049, 1151, 1171, 1194,

1234, 1346, 1417, 1565, 1671, 1770

1771, 1772, 1858, 1860, 1867, 1869

1871, 1872, 1880, 1882, 1884, 1885
1894, 1896, 1898, 1899, 1900, 1901
\cs_set_protected:Npn
531, 548, 1747, 2109

\csname 1780,
1987, 2005, 2151, 2167, 2202, 2203

D
\DebugBlocksOff 36, 39, 641
\DebugBlocksOn 36, 641
\DebuglegacySwitchesOn 43
\DebugSwitchesOff 644
\DebugSwitchesOn 644
\DebugTemplatesOff 36
\DebugTemplatesOn 36

\DeclareDocumentEnvironment
18, 95, 97, 139, 242
\DeclareHookRule 1395
\DeclarelInstance 6, 23, 31, 58, 72, 100,
112, 124, 131, 142, 165, 181, 197,
212, 227, 245, 260, 274, 287, 305,
306, 307, 308, 309, 311, 313, 315,
317, 318, 320, 348, 361, 365, 394,
402, 411, 422, 436, 447, 455, 466,
477, 488, 511, 2034, 2051, 2110, 2120
\DeclareInstanceCopy
45, 46, 47, 48, 49, 86, 90,
126, 127, 128, 129, 130, 133, 134,
135, 136, 137, 232, 233, 234, 235,
236, 300, 301, 302, 303, 304, 381,
387, 392, 401, 410, 417, 454, 2061, 2127
\DeclareRobustCommand
506, 507, 508, 509, 2207, 2239
\DeclareTemplateCode 834,
976, 1023, 1175, 1248, 1474, 1489, 1621
\DeclareTemplateInterface
669, 686, 702, 714, 728, 743, 749, 761

100

559, 560,
610, 611, 1728, 1773, 1776, 1777,
1913, 1916, 1942, 1946, 1959, 1960
1961, 2147, 2154, 2168, 2185, 2192,
2193, 2197, 2205, 2223, 2228, 2234

default (plug) . 585, 1371, 1707, 1733, 1852

description (env.) 237

\detokenize 970, 1156, 1160, 1164
dim commands:
\dim_add:Nn 1090, 1091

\dim_compare :nNnTF

956, 1313, 1328, 1343

\dim_compare_p:n 1309
\dim_set_eq:NN 1089, 1344
\dim_zero:N . 341, 342, 1970, 1971, 1972
\c_zero_dim 956, 1756
displayblock (env.) 2
displayblockflattened (env.) 2
\displaywidth 2172
\do 1925, 1963, 1964
doc (plug) 2317
\dospecials

84, 85, 1925, 1952, 1957, 1964, 1965
dospecials commands:

\dospecials: 85
E
Nedef i 1778
\EditInstance 87,
91, 382, 388, 393, 2079, 2135, 2141
\egroup 2193
\else 1919, 1962, 2158, 2163

2175, 2190, 2199, 2209, 2230, 2241
else commands:

\else: 1000, 1014
Nend, 947
\endcsname 1780,

1987, 2005, 2151, 2167, 2202, 2203
\endgraf 1772
\endgroup 2221, 2226
\endproof 2259

2264, 2275, 2286, 2298, 2305, 2312
\endsplit 2193
\endtrivlist 809
enumerate (env.) 237
environments:

alltt ... 160

alltt* 160

center 50

description 237

displayblock 2

displayblockflattened 2

enumerate 237

flushleft 50

flushright 50
itemize, 237
list ... o 325
proof 418
quotation 94
quote 94
trivlist 337
verbatim 155
verbatim* 155
VETSE .t vvt et 138
\eqno . .. 2159, 2160
\everydisplay 1950
\everymath 1948
\everypar 40, 54,

55, 58, 570, 573, 574, 799, 1018, 1927
exp commands:

\exp_after:wN 1041,
1192, 1318, 1322, 1482, 1514, 1642
\exp_args:Ne 896
\exp_args:Nee 889, 900
\exp_args:Nnne 2135, 2141
\exp_not:N 2100
\exp_nmot:n 60,

853, 990, 1041, 1173, 1192, 1199,

1201, 1277, 1482, 1514, 1642, 2092

2101, 2103, 2129, 2131, 2132, 2133
\expandafter 1927, 1948, 1950,

1987, 2005, 2167, 2202, 2203, 2217
\ExplSyntax0ff 1945, 2146
\ExplSyntaxOn 530, 1967, 2252

565, 578, 613, 1744,
1921, 1922, 1963, 2162, 2165, 2183
2190, 2200, 2212, 2230, 2231, 2244
fi commands:

\fi: . 1003, 1017, 1757
\finalhyphendemerits 984
flushleft (env.) 50
flushright (env.) 50
\frenchspacing 1928

G
\gdef 2171, 2176, 2223, 2230
\global ... 610, 611, 2173, 2177, 2186, 2190

group commands:
\group_begin:
\group_end:

1545, 1653, 1654
1547, 1653, 1654

H
\hbox 2149, 2161, 2170, 2172, 2205
2210, 2211, 2238, 2242, 2243, 2247
hbox commands:

\hbox_gset:Nn .. 1100, 1331, 1536, 1645

\hbox_set:Nn
\hbox_set_to_wd:Nnn
\hbox_unpack_drop:N

\hfil
\hfill
hook commands:

\hook_use:n
Hooks:

blockenv

para/begin
\hrule
\hss

\ialign
if commands:
\if _int_compare:w
\if _meaning:w
\IfBooleanF
\IfBooleanT
\iffalse
\ifhmode
\ifinner
\IfInstanceExistsF
\IfInstanceExistsTF .
\ifmmode
\IfNoValueF
\IfNoValueTF
\iftrue
\IfValueT
\ifvmode
\ifx
\ignorespaces
\indent
instances:
block proof-1
block
block
block
block
block

quotation-1
quotation-2
quotation-3
quotation-4
block quotation-5
block quotation-6
block quote-1
block
block quote-3
block quote-4
block quote-5
block quote-6
block std-display-1
block std-display-2
block std-display-3
block std-display-4

1316

1052, 1103, 1320, 1333, 1335
1338, 2172, 2178, 2248, 2250

2210, 2242

....... 1752, 1759

1755
998, 1012
1989, 2053
2091

2025, 2059
2030, 2044
2156, 2208, 2240
1644
1991, 1994, 2095

1962
21, 684, 1458
1464, 1522

447
131
131
131
131
131
131
124
124
124
124
124
124

............ 31
31
31

102

block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
block
capti
item

item

list

list

list

list

list

list

list

list

list

list

para

para

para

para

std-display-5 31
std-display-6 31
std-list-1 287
std-list-2 287
std-1list-3 287
std-list-4 287
std-1list-5 287
std-1list-6 287
thm-legacy2e-1 411
thm-legacy2e-2 411
thm-plain-1 394
thm-plain-2 394
thm-remark-1 402
thm-remark-2 402
verbatim-1 227
verbatim-2 227
verbatim-3 227
verbatim-4 227
verbatim-5 227
verbatim-6 227
env alltt 197
env allttx 212
env center 58
env description 274
env displayblock 6
env displayblockflattened 23
env enumerate 260
env flushleft 72
env flushright 90
env itemize 245
env list 348
env proof 422
env quotation 100
env quote 112
env verbatim 165
env verbatimx 181
enV Verse 142
onedtext proof 436
basic 318
description 318
description 317
enumerate-1 309
enumerate-2 309
enumerate-3 309
enumerate-4 309
itemize-1 305
itemize-2 305
itemize-3 305
itemize-4 305
legacy 361
center 466
justify L. 455
raggedleft 488
raggedright 477

para verse 511
thmstyle definition 387
thmstyle legacy2e 392
thmstyle plain 365
thmstyle remark 381
\InstanceValue 2065

int commands:
\int_compare:nNnTF
856, 868, 873, 1080, 1213, 1683

\int_gdecr:N 918, 938

\int_gincr:N 877

\int_gset:Nn 1215, 1224

\int_if_exist:NTF 929

\int_incr:N 858, 863, 871, 1079

\int_new:N 931

\int_set:Nn 1146, 1412

\int_set_eq:NN 1149, 1415

\int_to_roman:n 881

\int_use:N 890, 905, 1697

\int_zero:N 1074

\c_zero_int 1141, 1407
\interlinepenalty 1918, 1921
iow commands:

\iow_term:n 639
item (type) 662
\item 10,

38, 60, 63, 70, 1284, 1375, 1427, 1464
item basic (instance) 318
item description (instance) 318
item std (template) 728, 1246
\itemindent 723, 1185, 1334, 1403, 1972
itemize (env.) 237

\itemsep 38, 293, 694, 721, 1031, 1182, 1470

\itshape 379, 384, 442
J

\justifying 506
K

\kern 1403, 2189

kernel (plug) 1570

kernel internal commands:
__kernel_displayblock_begin:
79, 81, 1093
1154, 1154, 1862, 1871, 1884, 1898
__kernel_displayblock_beginpar_-
hmode:w 76, 1069,
1154, 1158, 1858, 1867, 1880, 1894
__kernel_displayblock_beginpar_-
vmode: 75, 1065,
1154, 1162, 1860, 1869, 1882, 1896
__kernel_displayblock_end:
79-81,
948, 969, 969, 1863, 1872, 1885, 1899

__kernel_list_item_begin: .

80, 1439, 1468, 1472, 1472, 1900
__kernel_list_item_end:
80, 1467, 1472, 1473, 1901
__kernel_list_label_after:n ...
1139, 1406, 1785, 1785

keys commands:
\keys_define:nn

\keys_set:nn 554
\keys_set_groups:nnnN 2097
\keys_set_known:nnN 543

\KeyValue 36,
37, 125, 132, 291, 292, 692, 693, 731

L
| internal commands:

\1__block_style:nnnn 1478, 1484
\labelenumi 310
\labelenumii 312
\labelenumiii 314
\labelenumiv 316
\labelitemi 305
\labelitemii 306
\labelitemiii 307
\labelitemiv 308
\labelsep 725, 1187, 1334, 1336
\labelwidth

342, 724, 1186, 1314, 1316, 1328, 1334
\language 1914
\lastbox 573
\leavemode 793
\leavevmode 1449, 1918, 2210, 2242, 2246
\leftmargin 296

341, 698, 1036, 1090, 1091, 1102, 1104
\leftskipo...... 980, 1071
legacy commands:

\legacy_if:nTF 589, 939, 944,

952, 953, 1043, 1050, 1077, 1097,
1106, 1116, 1117, 1134, 1143, 1400,
1409, 1422, 1437, 1463, 1522, 1677
1678, 1796, 1829, 1837, 1839, 1977
\legacy_if_gset_false:n
.. 942, 949, 950, 1053, 1133, 1136
1145, 1399, 1402, 1411, 1440, 1680
\legacy_if_gset_true:n
. 58,963, 1057, 1232, 1452, 1456
1560, 1561, 1563, 1666, 1667, 1669
\legacy_if_set_false:n
887, 1115, 1132, 1398, 1974
\legacy_if_set_true:n 1099
\legacyallttsetup 37, 210, 225, 1944
\legacylistsetup 26, 37, 86, 355, 1969
\legacyverbatimsetup
37, 84, 85, 178, 194, 1911, 1956

103

610, 611, 1862, 1863, 1925, 1947
1949, 1951, 1952, 1957, 1964
1975, 2160, 2167, 2173, 2177, 2199
2202, 2203, 2214, 2215, 2221, 2225,
2226, 2255, 2256, 2257, 2258, 2259
2261, 2262, 2263, 2264, 2265, 2266
2267, 2268, 2269, 2272, 2273, 2274,
2275, 2276, 2277, 2278, 2279, 2280
2283, 2284, 2285, 2286, 2287, 2288
2289, 2290, 2291, 2294, 2295, 2296
2297, 2298, 2301, 2302, 2303, 2304,
2305, 2308, 2309, 2310, 2311, 2312

\linewidth 1090, 1092, 1308, 1310
list (env.) 325
list (bype) v 662
\List .o 339
list description (instance) 317
list enumerate-1 (instance) 309
list enumerate-2 (instance) 309
list enumerate-3 (instance) 309
list enumerate-4 (instance) 309
list itemize-1 (instance) 305
list itemize-2 (instance) 305
list itemize-3 (instance) 305
list itemize-4 (instance) 305
list legacy (instance) 361
list std (template) 714, 1175
\listparindent 7, 1343, 1344, 1970
\ltlabblockdate 526, 2324
\ltlabblockversion 526, 2324
M
\makelabel 343, 1364, 1975

\MakeLinkTarget 1293, 1295, 1301, 1531, 1534
math internal commands:
__math_tag_dollardollar_-

display_end: 40
math@cr internal commands:
\math@cr__block@ 2199

\mathged 2208,
2225, 2238, 2240, 2268, 2279, 2290
mode commands:
\mode_if_horizontal:TF
945, 1465, 1749, 1754

\mode_if_inner:TF 1750

\mode_if_vertical:TF 1007, 1062

\mode_leave_vertical: 941, 1044
msg commands:

\msg_error:nn 1020

\msg_error:nnnn 1204, 1283, 1518, 1762

\msg_new:nnnn 1237

\newcommand

94, 1936, 2216, 2220, 2224, 2238, 2246
\newcounter 933
\newcounteralias 2015

\NewDocumentEnvironment

2, 4, 160, 162, 418, 2019, 2022

\NewHOOKc.ioiiinnon .. 921
\newif 609
\newline 90, 1339
\newlist 96
\newpage 793, 800
\NewSocket 1934
\NewSocketPlug 2317
\NewTaggingSocket

........ 583, 1569, 1705, 1731, 1850

\NewTaggingSocketPlug

585, 1371, 1570, 1707, 1733, 1852

\NewTemplateType

. 662, 663, 664, 665, 666, 667, 668
\newtheorem 27-29,

38, 69, 90, 1986, 2255, 2294, 2301, 2308
\newtheoremstyle 14,
27, 28, 38, 89, 90, 94, 2109, 2256,

2261, 2272, 2283, 2295, 2302, 2309
\nobreak

71, 1001, 1015, 1055, 1338, 2210, 2242
\nobreakspace 1942
\noexpand 1284, 2005
\nonumber 2186
\normalfont 322, 385, 390, 445
NOT commands:

\NOT_IMPLEMENTED 1264
\NoValue 4—6, 13, 14,

39, 42, 71, 90, 909, 910, 925, 2094, 2105
\Novalueuouiiiennnn... 14
\null ... 1918

o
\obeyedline 20, 157, 159
\obeylines 1926
off (plug) 53, 53, 973
NOmit . oot 2187
on (plug) 53, 53, 973
\openbox 2246, 2251, 2269, 2280, 2291
P
\PackageWarning 2235
\par 17, 40, 560, 571,
946, 1054, 1069, 1451, 1464, 1466,
1522, 1557, 1663, 1701, 1770, 1916

par commands:
\par_end:

104

par internal commands:

\1__par_fixed_word_spaces_bool 983
para (type) ..o 662
para center (instance) 466

para commands:
\1_para_begin_skip
54,979, 997, 1002, 1011, 1016
. 38, 56, 77, 78, 1082,
1771, 1772
1004, 1403

\para_end:
1086, 1747, 1747, 1770,
\g_para_indent_box
\para_omit_indent:
1137, 1404, 1555, 1661
\para_raw_noindent: ... 54, 1006, 1006
para internal commands:
\1__para_begin_skip_t1l
995, 997, 998, 1011, 1012
. 54,994, 996

__para_handle_indent:

\g__para_standard_everypar_tl . 1010
para justify (instance) 455
para raggedleft (instance) 488
para raggedright (instance) 477
para std (template) 702, 976
para verse (instance) 511
para/begin (hook) 65, 66
para/begin 38
\PARALABEL 1139, 1728
\parfillskip 982, 1073
\parindent 398, 407, 414,

451, 458, 705, 978, 1089, 1344, 2124
\ParseLaTeXeTheoremlike
. 30, 87, 89, 420, 2020, 2023, 2085

\pParsep 290, 1028,
1095, 1111, 1120, 1126, 1183, 1342
\parskip 9, 40, 35, 399, 408,

415, 452, 691, 959, 1094, 1095, 2125

\partopsep 34, 289, 689, 1026, 1064
\pdffakespace 1942
\penalty 1141, 1407, 1918, 1921, 2210, 2242
\phantom 2170
Plugs:
default 585, 1371, 1707, 1733, 1852
dOC . .t 2317
kernel 1570
off ... 53, 53, 973
o3 53, 58, 973
\popQED ... 30, 421, 2220, 2266, 2277, 2288

prg commands:
\prg_do_nothing: 1151, 1393, 1417

1472, 1473, 1862, 1863, 1868, 1870

proof (env.) ... 418
\proof 2258,

2263, 2274, 2285, 2297, 2304, 2311

\protected 1773

\providecommand

\ProvidesFile 2323
\ProvidesPackage 525
\pushQED 30, 419, 2216, 2265, 2276, 2287
Q
\ged ... 419, 2207, 2239
\qedhere .. 92, 2224, 2235, 2267, 2278, 2289
\gedsymbol
2149, 2161, 2170, 2172, 2180, 2187,
2198, 2205, 2211, 2238, 2243, 2251
\quad ... 2149, 2170, 2205, 2211, 2238, 2243
quotation (env.) 94
quote (ENV.) ... 94
R
\raggedleft 506
\raggedright 506

\relax 1261, 1263, 2155, 2160, 2215, 2221,
2223, 2226, 2228, 2261, 2262, 2263
2264, 2265, 2266, 2267, 2268, 2269
2272, 2273, 2274, 2275, 2276, 2277
2278, 2279, 2280, 2283, 2284, 2285
2286, 2287, 2288, 2289, 2290, 2291

\RemoveFromHook .. 655, 656, 657, 658, 1726
\renewcommand 1941
\RenewDocumentCommand 1428, 1986
\RenewDocumentEnvironment 18,

51, 53, 55, 156, 158, 238, 240, 326, 338
\RequirePackage 528, 529, 2316, 2326
\rightmargin 42, 297, 699, 1035, 1090, 1971

\rightskip 981, 992, 1072
\rlap . ..o 1697, 2172
S

scan commands:

\scan_stop: 1748
\setbox 573, 2181
\setcounter 30, 934

\SetKnownTemplateKeys
39, 531, 855, 1042,

1173, 1196, 1198, 1280, 1483, 1515
\setlist 96
\SetTemplateKeys 39, 74, 548, 991, 1643
\ShowInstanceValues 2144
\SimpleBlockEnv 14
\SimpleBlockEnv 14, 26, 37, 96,

3, 5, 52, 54, 56, 96, 98, 140, 157,
159, 161, 163, 239, 241, 243, 333, 922
skip commands:

\skip_add:Nn 1064
\skip_eval:n 1120, 1124
\skip_horizontal:n 1102, 1104,
1334, 1336, 1543, 1549, 1652, 1655
\skip_new:N 1424, 1425, 1426

\skip_set:Nn
\skip_set_eq:NN
1072, 1073, 1094, 1095, 1342
994, 997, 1011

\skip_use:N
\skip_vertical:n
563, 958, 959, 1056, 1109, 1110
1071

955, 956, 958, 959

\skip_zero:N

\1_tmpa_skip
socket commands:

\socket_assign_plug:nn
975, 1864, 1873, 1886, 1902
\socket_if_exist:nTF
581, 1703, 1729, 1848

\socket_new:nn 972
\socket_new_plug:nnn 973, 974
\socket_use:n 965
Sockets:
block/endpe 972
block/list/label 1371
tagsupport/@doendpe 581
tagsupport/block/recipe 1848
tagsupport/block/startpara/direct
......................... 1703
tagsupport/captionedtext/caption
......................... 1569
tagsupport/kernel/endpe/vmode . 1729
verbatim/startline 96, 1934

526, 601, 852, 989,
1040, 1191, 1205, 1242, 1276, 1481,

\space

1513, 1519, 1641, 2031, 2032, 2324

str commands:
\str_case:nnTF 2073
\string 1433
\strut, 1362

\swapnumbers 14, 27, 28, §7, 88, 90, 91, 2107
sys commands:

\sys_if_engine_luatex_p: 1938
\sys_if_output_dvi_p: 1939
T
\tabskip 2189
\tag .o 2198
tag commands:
\tag_if_active_p: 1786
\tag_mc_begin:n 1379, 1696, 1722
\tag_mc_end: 1692, 1698
\tag_socket_use:n 568
\tag_socket_use:nn 1788
\tag_socket_use:nnn 1358
1541, 1580, 1588, 1595, 1606, 1650
\tag_struct_begin:n 1572, 1716
\tag_struct_end: 1574, 1700

tag internal commands:
\1__tag_block_flattened_level -
int 48, 856, 858, 863, 929, 1683
__tag_check_para_begin_show:nn 1721
__tag_gincr_para_begin_int: 1714
__tag_gincr_para_end_int: 1693
\1__tag_L_attr_class_t1l 1806, 1807,
1822, 1907, 1908, 1978, 1980, 1981
\1l__tag L_tag_tl
1803, 1804, 1821, 1904, 1905

\1__tag_para_attr_class_tl 986, 1719
\1__tag_para_bool 587, 1736, 1786
\g__tag_para_end_int 1697

\1__tag_para_flattened_bool
593, 596, 844, 861, 1709, 1738
__tag_para_main_store_struct:

.................... 1686, 1712
\1__tag_para_main_tag_tl 601
\1__tag_para_show_bool 1695
\1__tag_para_tag_tl 1718

\tagmcbegin 1383
\tagmcend 1386
\tagpdfparaOff 1701
\tagpdfparaOn 1701
\tagpdfsetup 499, 1808

\tagstructbegin 1382, 1390, 1792, 1819, 1826

\tagstructend 1389, 1801, 1834, 1844, 1846
tagsupport/@doendpe (socket) 581
tagsupport/block/recipe (socket) 1848
tagsupport/block/startpara/direct
(socket) 1703
tagsupport/captionedtext/caption
(socket) 1569
tagsupport/kernel/endpe/vmode (socket)
......................... 1729
template commands:
\template_debug_off: 642
\template_debug on: 641

\template_debug_typeout:n
558, 558, 852,

989, 1040, 1191, 1276, 1481, 1513, 1641
template internal commands:

__template_debug_typeout:n 558
template types:
block 662
blockenv 662
captionedtext 662
item ... 662
1isSt .o v 662
PATA « ot 662
thmstyle 662
templates:
block std 686, 1023
blockenv std 669, 834

106

captionedtext proof 749, 1621

captionedtext thmlike 743, 1474
item std 728, 1246
list std 714, 1175
para std 702, 976
thmstyle std 761, 1489
TEX and KWTEX 2¢ commands:
\@Gpar 78, 1771, 1918, 1921
\@beginparpenalty 9, 1032, 1123
\@begintheorem 38
\@centercr 475, 486, 497, 520
\@clubpenalty 567, 1149, 1415
\Q@currenvir 947, 1777, 2148, 2151
\@currenvline 1778
\@definecounter 1993
\@doendpe 38, 40, 41, 559
\@domathendpefalse . 564, 577, 609
\@domathendpetrue 609
\@ehac......... 1776
\@ehc, 1434
\@empty 2173, 2177, 2214
\@endparpenalty 9, 961, 1033
\Q@endpefalse 77, 569, 575, 613, 974, 1742
\@endpetrue 559, 613, 973
\@endtheorem 38
\@enumdepth 23, 270
\@egnswtrue 2190
\@execute@beginChook 1779
\@flushglue 10,
462, 471, 472, 483, 493, 518, 709, 1073
\@ifdefinable 1987
\@ifundefined 1775, 2012, 2148
\@ignorefalse 1781
\@inmatherr 947, 1430
\@item 790, 798
\@itemdepth 23, 251
\@itemlabel 38, 59, 61, 330

885, 1166, 1230, 1294, 1377, 1388, 1979

\@itempenalty 9, 1034, 1184, 1469
\@kernel@after@para@after 1760
\@kernel@after@para@end 1753
\@kernel@refstepcounter .. 1289, 1530
\@labels 65
\@latex@error 1433, 1776
\@latex@warning 2026
\@list... 8
\@listctr

59, 61, 886, 1166, 1215, 1221,
1224, 1289, 1293, 1295, 1296, 1973

\@listdepth 8, 51, 926
\@listi 7, 8
\@listii 7,8
\@listvi 8
\@makeother 1925

\@mklab 1975
\@ne 2190
\@new@specials 1960, 1963, 1965
\@newctr 2002
\@nmbrlisttrue 1220
\@nocounterr 2013
\@noitemerr 61, 80, 944, 1081, 1116, 1422
\@noligs 1926
\@normalcr 10, 464, 712
\@nthm 38
\NODX .. 2235
\@opargbegintheorem 38
\@othm 38, 86
\Q@outerparskip
........ 959, 1094, 1111, 1120, 1125
\@remove 1961, 1964
\@restorepar 566
\@rightskip 992, 1072
\@setpar 1075
\@setupverbinvisiblespace 37, 1935
\@setupverbvisiblespace 84
\@sxverbatim 21, 195
\@tempswafalse 1915
\@tempswatrue 1920
\@temptokena 2217, 2218
\ethm 38
\@thmcounter 1998, 2007
\@thmcountersep 2006
\@toodeep 870, 875
\@topsep ... 67
\@topsepadd 67
\@totalleftmargin 83, 1091, 1092
\@vobeyspaces 1932
\@xnthm 38, 86
\@xobeysp 1942
NOXD 2151
\@xthm 38
\@xverbatim 179
\@ynthm 38, 86
\@ythm 38
\endpefalse 78
\align@qged . 2194, 2197, 2202, 2203
\alt@tag 2171, 2173, 2176, 2177
\arabic, 11
\begin 38
\bibitem 80
\c@maxblocklevels 38, 874, 933
\check@percent 96, 2317
\ctagsplit@false 2193

\declare@file@substitution .
........... 2253, 2254, 2314, 2315

\displaymath@ged 2154, 2167
Nend 40
\equation@ged 2168

\everypar
\g@addto@macro
\g@remfrom@specials
1953, 1954, 1955, 1959

\if@domathendpe 562, 576, 609
\if@endpe 613, 1735
\if@tempswa 1917
\iffirstchoice@ 2230
\ifmeasuring@ 2198, 2229
\ifst@rred 2190
\iftagsleft@ 2169
\ignorespaces 8, 51
\item 15,

38, 52, 53, 56, 57, 59-63, 65, 67, 80, 83
\itemsep 9
\1l@nohyphenation 1914
\labelsepooueu... 11
\labelwidth 11, 63, 65
\leftmargin 9
\leftskip 83
\legacylistsetup 25
\linebox@qed 2157, 2164
\list ... 26
\list(romannumeral) 16, 24
\listparindent 55, 64
\makelabel 11, 27, 65, 85
\math@gedhere 2147, 2205, 2225
\newline 63
\newtheorem 86
\noitemerr 52
\on@line 595, 602, 936

1048, 1131, 1150, 1233, 1345, 1397,
1416, 1421, 1564, 1670, 1677, 1694,

1715, 1778, 1795, 1799, 1832, 1842
\org@dospecials 1952, 1957
\org@prime 1947, 1949, 1951
\par ... 36,

40, 41, 53, 56, 61, 69, 76, 77, 81-83

\par@deathcycles 1074, 1079, 1080
\parindent 10, 29, 64
\parskip 9, 29, 57
\partopsep 9
\pdffakespace 21, 84
\place@tag@gather 2188
\popQED@elt 2221, 2223
\qed@elt 2215, 2217, 2221, 2226, 2230
\QED@stack 2214,
2217, 2218, 2221, 2223, 2226, 2230
\ged@tag 2185, 2199
\qged@warning 2149, 2234
\rendsplit@ 2193
\reserved@a 1776, 1777, 1784
\rightmargin 9
\row@ 2190

\setboxz@h 2187
\SetKnownTemplateKeys 59
\setQED@elt 2226, 2228
\spacefactor 61
\split@ged 2192
\strut, 11, 65
\strut@ 2187
\tag@true 2186
\tagform@ 2179
\tagsleft@false 2187
\toks@ 2217, 2218
\topsep 9
\UseInstance 68
\verbatim@font 1926
\NZ@ 573, 2181
\Z@SKip

460, 461, 473, 482, 484, 494, 495, 994
tex commands:

\tex_everypar:D 1009, 1010
\tex_hskip:D 1002, 1016, 1756
\tex_lastnodetype:D 1755
\tex_lastskip:D 616
\tex_noindent:D 1021
\tex_par:D 1758, 1767
\tex_parshape:D 1092
\tex_parskip:D 563
\tex_unskip:D 618, 1751
\the 1018, 1927, 1948, 1950, 2218
\theequation 2179
\theoremstyle 217,
28, 69, 87, 90, 1486, 2028, 2257,
2262, 2273, 2284, 2296, 2303, 2310
\thmname 91, 2131, 2137
\thmnote 91, 2133, 2139
\thmnumber 91, 2132, 2138
thmstyle (type) 662
\thmstyle 29
thmstyle definition (instance) 387
thmstyle legacy2e (instance) 392
thmstyle plain (instance) 365
thmstyle remark (instance) 381
thmstyle std (template) 761, 1489
\tiny 1697
tl commands:
\c_empty_t1l 535, 540
\c_novalue_tl 63, 1278
\tl_clear:N 885, 886, 2096
\tl_const:Nn 994
\tl_gclear:N 1615, 1618
\tl_gput_right:Nn 1611
\tl_gset:Nn 1996, 2003
\tl_if_blank:nTF 1289, 2116

\tl_if_empty:NTF
866, 894, 898, 903, 913,

1202, 1211, 1228, 1281, 1516, 1578,

1605, 1874, 1887, 1903, 1906, 1979
\tl_if_empty:nTF

. 533, 550, 1170, 1193, 1377, 1388

2112, 2115, 2118, 2121, 2122, 2129
\tl_if_empty_p:N 1524
\tl_if_eq:NnTF 968

\tl_if_novalue:nTF
538, 552, 619, 619, 1287, 1443, 1586
\tl_new:N 928, 995, 1166, 1167, 1350
1487, 1620, 1803, 1806, 1891, 1985
\tl_set:Nn 328, 330, 997
1011, 1261, 1262, 1263, 1486, 1527
1644, 1804, 1807, 1875, 1888, 1904,
1907, 1973, 1978, 1980, 1981, 2094
\tl_set_eq:NN
....... 535, 540, 893, 911, 1221,
1230, 1278, 1876, 1889, 1905, 1908
tl internal commands:
\c__zero_skip_tl 994, 999, 1013
\topsep 59, 33, 288, 404, 688, 690, 1025, 1061
trivlist (env.) 337

\typeout 646, 648, 650, 652
U
\unpenalty 1927
\unskip 2210, 2242
\UnusedTemplateKeys 48, 50, 535,
540, 544, 892, 893, 911, 1199, 1202,
1206, 1281, 1285, 1484, 1516, 1520
use commands:
\use:N 880, 1546, 1598, 1854, 1931

90, 343, 1365, 2099

.................. 1318

\use_ii:nn 1322

\use_none:n 621, 622

\use_none:nn 1168, 1171, 1194

\usecounter 61

\UseHook 854, 1774
\UseInstance 50, 506,

507, 508, 509, 889, 896, 901, 923, 925
\UseName 39, 40, 294, 295, 695, 696, 697, 722
\UseSocket 1923
\UseStructureName 103, 115, 145, 168

184, 200, 215, 248, 263, 277, 351,

425, 1382, 1383, 1386, 1390, 1572,

1595, 1826, 1834, 1844, 1930, 2037
\UseTaggingSocket 598, 884, 1685, 1711,
1740, 1766, 1783, 1798, 1831, 1841
A%
\vbox 2249
\Vegno 2160
verbatim (env.) 155
verbatim* (env.) 155
verbatim/startline (socket) 96, 1934
verse (NV.) 138
\vfil ..o 2249
\vrule 2248, 2250
\VEOD © v 2178
X
\xdef 2218

109

	Contents
	1 Introduction
	2 Template types and templates for blocks and lists
	2.1 Template types
	2.1.1 The template type `blockenv'
	2.1.2 The template type `block'
	2.1.3 The template type `para'
	2.1.4 The template type `list'
	2.1.5 The template type `captionedtext'
	2.1.6 The template type `item'
	2.1.7 The template type `thmstyle'

	2.2 Templates
	2.2.1 The blockenv template `std'
	2.2.2 The block template `std'
	2.2.3 The para template `std'
	2.2.4 The list template `std'
	2.2.5 The item template `std'
	2.2.6 The captionedtext template `thmlike'
	2.2.7 The captionedtext template `proof'
	2.2.8 The thmstyle template `std'

	3 Declaring standard display block environments and their instances
	3.1 The display and displayflattened environments
	3.1.1 Their blockenv instances
	3.1.2 Their block instances

	3.2 The center, flushleft, and flushright environments
	3.2.1 Their blockenv instances
	3.2.2 Their block instances
	3.2.3 Their para instances

	3.3 The quote and quotation environments
	3.3.1 Their blockenv instances
	3.3.2 Their block instances

	3.4 The verse environment
	3.4.1 Their blockenv instances

	3.5 The verbatim, verbatim* and alltt environments
	3.5.1 Their blockenv instances
	3.5.2 Their block instances

	3.6 The trivlist environment
	3.7 The standard lists: itemize, enumerate, and description
	3.7.1 Their blockenv instances
	3.7.2 Their block instances
	3.7.3 Their list instances
	3.7.4 Their item instances

	3.8 The legacy list and trivlist environments
	3.8.1 Its blockenv instance
	3.8.2 Its list instance

	3.9 Theorem-like environments declared through \newtheorem
	3.9.1 The blockenv instances they use
	3.9.2 The captionedtext instances they use
	3.9.3 The thmstyle instances they use
	3.9.4 The block instances they use

	3.10 The proof environment (from amsthm)
	3.10.1 Block instances for the proofs

	4 Declaring para instances
	5 Advice on adjusting the layout of standard block environments
	6 Tagging support
	6.1 Paragraph tags
	6.1.1 Tagging recipes

	7 Tracing and debugging
	8 New and redefined kernel command
	9 The Implementation
	9.1 Candidates for kernel changes
	9.1.1 Augmented \SetKnownTemplateKeys
	9.1.2 Tracing templates and instances
	9.1.3 Handling \par after the end of the list
	9.1.4 Other useful expl3 commands

	9.2 Tracing and debugging interfaces
	9.3 Template types and template interfaces
	9.4 Implementation of templates
	9.4.1 Some notes on the LaTeX2ε legacy switches
	9.4.1.1 Original usage:
	9.4.1.2 Repurpose:

	9.4.2 Implementation of blockenv templates
	9.4.3 Implementation of para templates
	9.4.4 Implementation of block templates
	9.4.5 Implementation of list templates
	9.4.6 Implementation of item templates
	9.4.7 Implementation of captionedtext and thmstyle templates

	9.5 Tagging support commands
	9.5.1 List tags
	9.5.2 Tagging recipes

	10 Support code for document-level block environments
	10.1 Verbatim-like environments
	10.1.1 Helper commands for verbatim and verbatim*
	10.1.2 Helper commands for alltt and alltt*
	10.1.3 Helper command for legacy list environment

	10.2 Theorem-like environments
	10.2.1 Declarations for theorem-like environments
	10.2.2 Supporting QED in proofs

	11 Support for other packages and classes
	11.1 Replacement for alltt
	11.2 Replacement for amsthm
	11.3 Support for amsart and amsbook classes
	11.4 Support for the enumitem interfaces
	11.5 Support for the doc package

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

