The IXTEX3 kernel: style guide for code authors

The KTEX Project*
Released 2026-01-19

Contents
1 Introduction 1
2 Documentation style 1
3 Format of the code itself 2
4 Code conventions 3
5 Private and internal functions 3
5.1 Access from other modules, 4
5.2 Access to primitives 4
6 Auxiliary functions 4
7 Functions with ‘weird’ arguments 5

1 Introduction

This document is intended as a style guide for authors of code and documentation for
the BWTEX3 kernel. It covers both aspects of coding style and the formatting of the
sources. The aim of providing these guidelines is help ensure consistency of the code
and sources from different authors. Experience suggests that in the long-term this helps
with maintenance. There will of course be places where there are exceptions to these
guidelines: common sense should always be applied!

2 Documentation style

IXTEX3 source and documentation should be written using the document class 13doc in
dtx format. This class provides a number of logical mark up elements, which should be
used where possible. In the main, this is standard IXTEX practice, but there are a few
points to highlight:

o Where possible, use \cs to mark up control sequences rather than using a verbatim
environment.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

e Arguments which are given in braces should be marked using \Arg when code-level
functions are discussed, but using \marg for document functions.

e The names TEX, BTEX, etc. use the normal logical mark up followed by an empty
group ({}), with the exception of \LaTeX3, where the number should follow directly.

o Where in line verbatim text is used, it should be marked up using the |...|
construct (i.e., vertical bars delimit the verbatim text).

e In line quotes should be marked up using the \enquote function.

e Where numbers in the source have a mathematical meaning, they should be in-
cluded in math mode. Such in-line math mode material should be marked up using

$...$and not \(...\).

Line length in the source files should be under 80 characters where possible, as this
helps keep everything on the screen when editing files. In the dtx format, documentation
lines start with a %, which is usually followed by a space to leave a “comment margin” at
the start of each line.

As with code indenting (see later), nested environments and arguments should be
indented by (at least) two spaces to make the nature of the nesting clear. Thus for
example a typical arrangement for the function environment might be

\begin{function}{\seq_gclear:N, \seq_gclear:c}
uu\begin{syntax}

Luuu\cs{seq_gclear:N} \meta{sequence}

uu\end{syntax}

uuClearsall entries, from the \meta{sequence} globally.
\end{function}

The “outer” % \begin{function} should have the customary space after the % character
at the start of the line.

In general, a single function or macro environment should be used for a group of
closely-related functions, for example argument specification variants. In such cases, a
comma-separated list should be used, as shown in the preceding example.

3 Format of the code itself

The requirement for fewer than 80 characters per line applies to the code itself as well
as the surrounding documentation. A number of the general style principles for KTEX3
code apply: these are described in the following paragraph and an example is then given.

With the exception of simple runs of parameter ({#1}, #1#2, etc.), everything should
be divided up using spaces to make the code more readable. In general, these will be single
spaces, but in some places it makes more sense to align parts of the code to emphasize
similarity. (Tabs should not be used for introducing white space.)

Each conceptually-separate step in a function should be on a separate line, to make
the meaning clearer. Hence the false branch in the example uses two lines for the two
auxiliary function uses.

Within the definition, a two-space indent should be used to show each “level” of
code. Thus in the example \t1_if_empty:nTF is indented by two spaces, but the two
branches are indented by four spaces. Within the false branch, the need for multiple

lines means that an additional two-space indent should be used to show that these lines
are all part of the brace group.

The result of these lay-out conventions is code which in general looks like the exam-
ple:

\cs_new:Npn \module_foo:nn #1#2

ot

Luuu\tl_if _empty:nTF {#1}
Luouuutu\module _foo_aux:n { X #2 3}
I_H_H_H_ILII_I{

Luuuuoou\module _foo_aux:nn, {#1} {#2}
Luuuuuou\module_foo_aux:n,{ #1, #2}
I_H_I_H_II_II_I}

uut

4 Code conventions

All code-level functions should be “long” if they accept any arguments, even if it seems
“very unlikely” that a \par token will be passed. Thus \cs_new_nopar:Npn and so forth
should only be used to create interfaces at the document level (where trapping \par
tokens may be appropriate) or where comparison to other code known not to be “long”
is required (e.g. when working with mixed IXTEX 2 /expl3 situations).

The expandability of each function should be well-defined. Functions which cannot
be fully expanded must be protected. This means that expandable functions must
themselves only contain expandable material. Functions which use any non-expandable
material must be defined using \cs_new_protected:Npn or similar.

When using \cs_generate_variant:Nn, group related variants together to make
the pattern clearer. A common example is variants of a function which has an N-type
first argument:

\cs_generate_variant:Nn \foo:Nn { NV , No }
\cs_generate_variant:Nn \foo:Nn { ¢ , ¢V , co }

There may be cases where omitting braces from o-type arguments is desirable for
performance reasons. This should only be done if the argument is a single token, thus
for example

\tl_set:No \1_some_tl \1_some_other_tl

remains clear and can be used where appropriate.

5 Private and internal functions

Private functions (those starting __) should not be used between modules. The only ex-
ception is where a “family” of modules share some “internal” methods: this happens most
obviously in the kernel itself. Any internal functions or variables must be documented in
the same way as public ones.

The DocStrip method should be used for internal functions in a module. This requires
a line

%<@@=(module)>

at the start of the source (.dtx) file, with internal functions then written in the form

\cs_new_protected:Npn \Q@@_function:nn #1#2

5.1 Access from other modules

There may be cases where it is useful to use an internal function from a third-party
module (this includes cases where you are the author of both but they are not part of the
same “family”). In these cases, you should copy the definition of the internal function
to your code: this avoids relying on non-documented interfaces. At the same time, it
is strongly encouraged that you discuss your requirements with the author of the code
you need to access. The best long-term solution to these cases is for new documented
interfaces to be added to the parent module.

5.2 Access to primitives

As expl3 is still a developing system, there are places where direct access to engine
primitives is required. These are all marked as “do not use” in the code and so require
special handling. Where a programmer is sure that they need to use a primitive (for
example where the team have not yet covered access to an area) then a local copy of the
primitive should be made, for example

\cs_new_eq:NN __module_message:w \tex_message:D
% ...
\cs_new_protected:Npn __module_fancy_msg:n #1

{ __module_message:w { **x #1 *x*x } }

This approach makes it possible for the team and others to find such usage (by searching
for the :D argument type) but avoids multiple uses in general code.

At the same time, the team ask that these use cases are raised by emailing us. The
team are keen to collect use cases for areas that have not yet been addressed and to
provide new code where the required interfaces become clear.

Programmers using primitives should be ready to make updates to their code as the
team develop additional interfaces.

6 Auxiliary functions

In general, the team encourages the use of descriptive names in IXTEX3 code. Thus many
helper functions would have names which describe briefly what they do, rather than
simply indicating that they are auxiliary to some higher-level function. However, there
are places where one or more aux functions are required. Where possible, these should
be differentiated by signature

\cs_new_protected:Npn \Q@@_function:nn #1#2
{

}
\cs_new_protected:Npn \Q@_function_aux:nn #1#2

{

}
\cs_new_protected:Npn \Q@_function_aux:w #1#2 \q_stop
{

}

Where more than one auxiliary shares the same signature, the recommended naming
scheme is auxi, auxii and so on.

\cs_new_protected:Npn \Q@@_function_auxi:nn #1#2

{

3

\cs_new_protected:Npn \@@_function_auxii:nn #1#2

{

}

The use of aux_i, aux_ii, etc. is discouraged as this conflicts with the convention used
by \use_i:nn and related functions.

7 Functions with ‘weird’ arguments

When defining commands that do not follow the usual convention of accepting arguments
as single-tokens or braced-text, the w argument specifier is used to denote that the func-
tion signature cannot fully describe the syntax. Two examples from the IXTEX3 kernel
are:

\use_none_delimit_by_q_stop:w (text) \q_stop
\use_i_delimit_by_q_stop:nw {(arg)} (text) \q_stop

More complex definitions are possible if commands are to parse tokens, such as the
internal kernel command

\cs_new_protected:Npn __clist_get:wN #1 , #2 \g_stop #3
{ \tl_set:Nn #3 {#1} }

When the w specifier is being used, it is encouraged not to try and complicate the rest
of the signature too much—for example, it would be considered poor style to have a
function with a signature like \foo_bar:wnw unless there were very clear reasons of code
clarity. A signature such as :ww would certainly be discouraged.

Examining the examples above, it can be seen that there are scenarios in which it
may make logical sense for having a signature such as :wN or :nw, but when in doubt the
recommended approach is to simply use :w as a catch-all.

	Contents
	1 Introduction
	2 Documentation style
	3 Format of the code itself
	4 Code conventions
	5 Private and internal functions
	5.1 Access from other modules
	5.2 Access to primitives

	6 Auxiliary functions
	7 Functions with `weird' arguments

