Code

Version 26.1
2026/01/18

Javier Bezos
Current maintainer

Johannes L. Braams
Original author

Babel

Localization and
internationalization

Unicode
TEX
LuaTgX
PdfTEX
XeTEX

Contents

1 Identification and loading of required files

2 locale directory

3 Tools
3.1
3.2
3.3
34
3.5
3.6

Afew coredefinitions e
KTEX: babel.sty(start) o i i

base.
key=value options

and other generaloption

Post-process some Optionsol
Plain: babel.def (start) i i i e e

4 babel.sty and babel.def (common)
Selecting thelanguage

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

Errors.
More on selection
Shorttags.

Compatibility with languagedef

Hooks

Setting up languagefiles L o L.

Shorthands

Language attributes
Support for saving and redefining macros

French spacing . .
Hyphens

Multiencoding Strings« « « v oo e e e

Tailor captions . .

Making glyphs available L.
4.15.1 Quotationmarks Lo Lo

4.15.2 Letters .

4.15.3 Shorthands for quotationmarks
4154 Umlautsandtremas

Layout
Load engine specifi

CIMACIOS v v vt vttt e e e e e e e e e e

Creating and modifying languages
Mainloopin‘provide’. o oo o
Processingkeysinini
French spacing (again)
Handle language system e

Numerals
Casing.
Getting info

BCP47related commands i it e e e e

5 Adjusting the Babel behavior
Crossreferencing macros. v v v v v i ittt

5.1
5.2
5.3
5.4

5.5
5.6
5.7
5.8

Other packages .
54.1 ifthen .
5.4.2 varioref
5.4.3 hhline .
Encoding and fonts
Basic bidi support

Local Language Configuration

Language options

w

o o W

10
10
12
13

13
15
23
24
25
25
26
27
29
38
40
41
42
44
48
49
49
51
52
52
54
54
54
62
66
72
73
74
75
76
77

78
80
83
84
85
85
86
86
87
89
92
92

10

11

12

13

14

15

The kernel of Babel

Error messages

Loading hyphenation patterns
luatex + xetex: common stuff

Hooks for XeTeX and LuaTeX

101 XeTeX . o v v o e e e e e e
10.2 Supportforinterchar
103 Layout e
104 8-DhitTeX v i i e e e e e e
10.5 LuaTeX o o e e e e e
10.6 Southeast AsiansCripts ittt
10.7 CJKlinebreaking e
10.8 Arabicjustification
10.9 Commonstuff
10.10 Automatic fonts and ids switching
1011 Bidi . . . o e e
10.12 Layout e e e e e e e e
10.13 Lua:transforms
10.14 Lua: Auto bidi with basicand basic-r.

Data for CJK
The ‘nil’ language

Calendars

13.1 Islamic e e
13.2 Hebrew e e e e e
13.3 Persian i e e e e e e e e
134 Copticand Ethiopic
135 Julian oo
13.6 Buddhist e e

Support for Plain TgX (plain.def)

14.1 Notrenaming hyphen.tex
14.2 Emulating some ETgX features,
14.3 Generaltools
144 Encodingrelatedmacros

Acknowledgements

96

96

100

104

107
107
109
111
113
113
120
121
123
128
128
135
137
147
157

168

168

169
170
171
175
176
176
177

178
178
179
179
183

186

The babel package is being developed incrementally, which means parts of the code are under
development and therefore incomplete. Only documented features are considered complete. In other
words, use babel in real documents only as documented (except, of course, if you want to explore
and test them).

1. Identification and loading of required files

The babel package after unpacking consists of the following files:

babel.sty is the ITgX package, which set options and load language styles.

babel.def isloaded by Plain.

switch.def defines macros to set and switch languages (it loads part babel. def).

plain.def is not used, and just loads babel.def, for compatibility.

hyphen.cfg is the file to be used when generating the formats to load hyphenation patterns.

There some additional tex, def and lua files.

The babel installer extends docstrip with a few “pseudo-guards” to set “variables” used at
installation time. They are used with <@name@> at the appropriate places in the source code and
defined with either ((name=value)), or with a series of lines between ((*name)) and ((/name)). The
latter is cumulative (e.g., with More package options). That brings a little bit of literate programming.
The guards <-name> and <+name> have been redefined, too. See babel. ins for further details.

2. locale directory

A required component of babel is a set of ini files with basic definitions for about 300 languages.
They are distributed as a separate zip file, not packed as dtx. Many of them are essentially finished
(except bugs and mistakes, of course). Some of them are still incomplete (but they will be usable), and
there are some omissions (e.g., there are no geographic areas in Spanish). Not all include LICR
variants.

babel-*.1ini files contain the actual data; babel-*. tex files are basically proxies to the
corresponding ini files.

See Keys in ini files in the the babel site.

3. Tools

1 ((version=26.1))
2 ((date=2026/01/18))

Do not use the following macros in 1df files. They may change in the future. This applies
mainly to those recently added for replacing, trimming and looping. The older ones, like
\bbleafterfi, will not change. We define some bhasic macros which just make the code cleaner.
\bbl@add is now used internally instead of \addto because of the unpredictable behavior of the
latter. Used in babel.def and in babel. sty, which means in EIgX is executed twice, but we need
them when defining options and babel.def cannot be load until options have been defined. This
does not hurt, but should be fixed somehow.

3 ((xBasic macros)) =

4\bbl@trace{Basic macros}
5\def\bbl@stripslash{\expandafter\@gobble\string}

6 \def\bbl@add#1#2{%

7 \bbl@ifunset{\bbl@stripslash#1}%

8 {\def#1{#2}}%

9 {\expandafter\def\expandafter#l\expandafter{#1#2}}}

10 \def\bbl@xin@{\@expandtwoargs\in@}

11 \def\bbl@carg#l#2{\expandafter#l\csname#2\endcsname}%

12 \def\bbl@ncarg#1#2#3{\expandafter#l\expandafter#2\csname#3\endcsname}%

13 \def\bbl@ccarg#1#2#3{%

14 \expandafter#l\csname#2\expandafter\endcsname\csname#3\endcsname}%

15 \def\bbl@csarg#1#2{\expandafter#1l\csname bbl@#2\endcsname}%

16 \def\bbl@cs#1{\csname bbl@#l\endcsname}

17 \def\bbl@cl#1{\csname bbl@#1@\languagename\endcsname}

18 \def\bbl@loop#1#2#3{\bbl@@loop#1{#3}#2,\@nnil, }

19 \def\bbl@loopx#1#2{\expandafter\bbl@loop\expandafter#l\expandafter{#2}}

https://latex3.github.io/babel/guides/keys-in-ini-files.html

20 \def\bble@loop#1#2#3, {%

21 \ifx\@nnil#3\relax\else

22 \def#1{#3}#2\bbl@afterfi\bbl@@loop#1{#2}%

23 \fi}

24\def\bbl@for#1#2#3{\bbl@loopx#1{#2} {\ifx#1\@empty\else#3\fi}}

\bbl@add@list This internal macro adds its second argument to a comma separated list in its first
argument. When the list is not defined yet (or empty), it will be initiated. It presumes expandable
character strings.

25 \def\bbl@add@list#1#2{%
26 \edef#1{%
27 \bbl@ifunset{\bbl@stripslash#1}%

28 {}%
29 {\ifx#1\@empty\else#1,\fi}%
30 #2}}

\bbl@afterelse

\bbl@afterfi Because the code that is used in the handling of active characters may need to look
ahead, we take extra care to ‘throw’ it over the \else and \ fi parts of an \if-statement'. These
macros will break if another \if...\fi statement appears in one of the arguments and it is not
enclosed in braces.

31\long\def\bbl@afterelse#l\else#2\fi{\fi#1}
32\long\def\bbl@afterfi#1\fi{\fi#1}

\bbl@exp Now, just syntactical sugar, but it makes partial expansion of some code a lot more simple
and readable. Here \\ stands for \noexpand, \({..) for \noexpand applied to a built macro name
(which does not define the macro if undefined to \relax, because it is created locally), and \ [. .] for
one-level expansion (where . . is the macro name without the backslash). The result may be followed
by extra arguments, if necessary.

33 \def\bblEexp#1{%

34 \begingroup

35 \let\\\noexpand

36 \let\<\bbl@exp@en

37 \let\[\bbl@exp@ue

38 \edef\bbl@exp@aux{\endgroup#1}%

39 \bbl@exp@aux}

40 \def\bbl@exp@en#1>{\expandafter\noexpand\csname#1l\endcsname}%

41 \def\bbl@exp@ue#1]{%

42 \unexpanded\expandafter\expandafter\expandafter{\csname#l\endcsname}}%

\bbl@trim The following piece of code is stolen (with some changes) from keyval, by David Carlisle. It
defines two macros: \bbl@trim and \bbl@trim@def. The first one strips the leading and trailing
spaces from the second argument and then applies the first argument (a macro, \toks@ and the like).
The second one, as its name suggests, defines the first argument as the stripped second argument.

43\def\bbl@tempa#1{%

44 \long\def\bbl@trim##1##2{%

45 \futurelet\bbl@trim@a\bbl@trim@c##2\@nil\@nil#1\@nil\relax{##1}}%
46 \def\bbl@trim@c{%

47 \ifx\bbl@trim@a\@sptoken

48 \expandafter\bbl@trim@b

49 \else

50 \expandafter\bbl@trim@b\expandafter#1%
51 \fi}%

52 \long\def\bbl@trimeb#1l##1 \@nil{\bbl@trim@i##1}}
53 \bbl@tempa{ }

54 \long\def\bbl@trim@i#l\@nil#2\relax#3{#3{#1}}

55 \long\def\bbl@trimadef#1{\bbl@trim{\def#1}}

IThis code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion Power Lemma” by
Sonja Maus.

\bbl@ifunset To check if a macro is defined, we create a new macro, which does the same as
\@ifundefined. However, in an e-tex engine, it is based on \ifcsname, which is more efficient, and
does not waste memory. Defined inside a group, to avoid \ifcsname being implicitly set to \relax by
the \csname test.

56 \begingroup
57 \gdef\bbl@ifunset#1{%

58 \expandafter\ifx\csname#1l\endcsname\relax

59 \expandafter\@firstoftwo

60 \else

61 \expandafter\@secondoftwo

62 \fi}

63 \bbl@ifunset{ifcsname}%

64 {}%

65 {\gdef\bbl@ifunset#1{%

66 \ifcsname#1l\endcsname

67 \expandafter\ifx\csname#1l\endcsname\relax
68 \bbl@afterelse\expandafter\@firstoftwo
69 \else

70 \bbl@afterfi\expandafter\@secondoftwo
71 \fi

72 \else

73 \expandafter\@firstoftwo

74 \fi}}

75 \endgroup

\bbl@ifblank A tool from url, by Donald Arseneau, which tests if a string is empty or space. The
companion macros tests if a macro is defined with some ‘real’ value, i.e., not \ relax and not empty,

76 \def\bbl@ifblank#1{%

77 \bbl@ifblank@i#l\@nil\@nil\@secondoftwo\@firstoftwo\@nil}

78 \long\def\bbl@ifblank@i#1#2\@nil#3#4#5\@nil{#4}

79 \def\bbl@ifset#1#2#3{%

80 \bbl@ifunset{#1}{#3}{\bbl@exp{\\\bbl@ifblank{\@nameuse{#1}}}{#3}{#2}}}

For each element in the comma separated <key>=<value> list, execute <code> with #1 and #2 as the
key and the value of current item (trimmed). In addition, the item is passed verbatim as #3. With the
<key> alone, it passes \@empty as value (i.e., the macro thus named, not an empty argument, which is
what you get with <key>= and no value).

81 \def\bbl@forkv#1#2{%

82 \def\bbl@kvcmd##1##2##3{#2}%

83 \bbl@kvnext#1l,\@nil,}

84 \def\bbl@kvnext#1, {%

85 \ifx\@nil#l\relax\else

86 \bbl@ifblank{#1}{}{\bbl@forkv@eg#l=\@empty=\@nil{#1}}%
87 \expandafter\bbl@kvnext

88 \fi}

89 \def\bbl@forkv@eq#1=#2=#3\@ni1#4{%

90 \bbl@trim@def\bbl@forkv@a{#1}%

91 \bbl@trim{\expandafter\bbl@kvcmd\expandafter{\bbl@forkv@a}}{#2}{#4}}

A for loop. Each item (trimmed) is #1. It cannot be nested (it’s doable, but we don’t need it).

92 \def\bbl@vforeach#1#2{%

93 \def\bbl@forcmd##1{#2}%

94 \bbl@fornext#1,\@nil,}

95 \def\bbl@fornext#1, {%

96 \ifx\@nil#l\relax\else

97 \bbl@ifblank{#1}{}{\bbl@trim\bbl@forcmd{#1}}%

98 \expandafter\bbl@fornext

99 \fi}

100 \def\bbl@foreach#1{\expandafter\bbl@vforeach\expandafter{#1}}

Some code should be executed once. The first argument is a flag.

101 \global\let\bbl@done\@empty

102 \def\bbl@once#1#2{%
103 \bbl@xin@{,#1,}{,\bbl@done, }%
104 \ifin@\else

105 #2%

106 \xdef\bbl@done{\bbl@done, #1, }%

107 \fi}

108 % \end{macrode}

109 %

110% \macro{\bbl@replace}

111%

112% Returns implicitly |\toks@| with the modified string.
113%

114% \begin{macrocode}

115 \def\bbl@replace#1#2#3{% in #1 -> repl #2 by #3
116 \toks@{}%

117 \def\bbl@replace@aux##1#2##2#2{%

118 \ifx\bbl@nil##2%

=

119 \toks@\expandafter{\the\toks@##1}%
120 \else

121 \toks@\expandafter{\the\toks@##1#3}%
122 \bbl@afterfi

123 \bbl@replace@aux##2#2%

124 \fi}%

125 \expandafter\bbl@replace@aux#1#2\bbl@nil#2%
126 \edef#l{\the\toks@}}

An extension to the previous macro. It takes into account the parameters, and it is string based (i.e.,
if you replace elax by ho, then \relax becomes \rho). No checking is done at all, because it is not a
general purpose macro, and it is used by babel only when it works (an example where it does not
work is in \bb1l@TG@@date, and also fails if there are macros with spaces, because they are
retokenized). It may change! (or even merged with \bbl@replace; I'm not sure checking the
replacement is really necessary or just paranoia).

127 \ifx\detokenize\@undefined\else % Unused macros if old Plain TeX
128 \bbl@exp{\def\\\bbl@parsedef##1l\detokenize{macro:}}#2->#3\relax{%
129 \def\bbl@tempa{#1}%

130 \def\bbl@tempb{#2}%

131 \def\bbl@tempe{#3}}

132 \def\bbl@sreplace#1#2#3{%

133 \begingroup

134 \expandafter\bbl@parsedef\meaning#1l\relax

135 \def\bbl@tempc{#2}%

136 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%
137 \def\bbl@tempd{#3}%

138 \edef\bbl@tempd{\expandafter\strip@prefix\meaning\bbl@tempd}s%
139 \bbl@xin@{\bbl@tempc}{\bbl@tempe}% If not in macro, do nothing
140 \ifin@

141 \bbl@exp{\\\bbl@replace\\\bbl@tempe{\bbl@tempc}{\bbl@tempd}}%
142 \def\bbl@tempc{% Expanded an executed below as 'uplevel'
143 \\\makeatletter % "internal" macros with @ are assumed
144 \\\scantokens{%

145 \bbl@tempa\\\@namedef{\bbl@stripslash#1}\bbl@tempb{\bbl@tempe}%
146 \noexpand\noexpand}%

147 \catcode64=\the\catcode64\relax}% Restore @

148 \else

149 \let\bbl@tempc\@empty % Not \relax

150 \fi

151 \bbl@exp{% For the 'uplevel' assignments

152 \endgroup

153 \bbl@tempc}} % empty or expand to set #1 with changes

154\ fi

Two further tools. \bbl@ifsamestring first expand its arguments and then compare their
expansion (sanitized, so that the catcodes do not matter). \bbl@engine takes the following values: 0
is pdfTEX, 1 is luatex, and 2 is xetex. You may use the latter it in your language style if you want.

155 \def\bbl@ifsamestring#1#2{%

156 \begingroup

157 \protected@edef\bbl@tempb{#1}%

158 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%
159 \protected@edef\bbl@tempc{#2}%

160 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%
161 \ifx\bbl@tempb\bbl@tempc

162 \aftergroup\@firstoftwo
163 \else

164 \aftergroup\@secondoftwo
165 \fi

166 \endgroup}

167 \chardef\bbl@engine=%

168 \ifx\directlua\@undefined

169 \ifx\XeTeXinputencoding\@undefined

170 \z@
171 \else
172 \tw@
173 \fi

174 \else

175 \@ne
176 \fi

A somewhat hackish tool (hence its name) to avoid spurious spaces in some contexts.

177 \def\bbl@bsphack{%

178 \ifhmode

179 \hskip\z@skip

180 \def\bbl@esphack{\loop\ifdim\lastskip>\z@\unskip\repeat\unskip}%
181 \else

182 \let\bbl@esphack\@empty

183 \fi}

Another hackish tool, to apply case changes inside a protected macros. It’s based on the internal
\let’s made by \MakeUppercase and \MakeLowercase between things like \oe and \OE.

184 \def\bbl@cased{%
185 \ifx\oe\OE

186 \expandafter\in@\expandafter

187 {\expandafter\OE\expandafter}\expandafter{\oe}%
188 \ifin@

189 \bbl@afterelse\expandafter\MakeUppercase

190 \else

191 \bbl@afterfi\expandafter\MakeLowercase

192 \fi

193 \else

194 \expandafter\@firstofone

195 \fi}

The following adds some code to \extras. .. both before and after; while avoiding doing it twice.
It’s somewhat convoluted, to deal with #’s. Used to deal with alph, Alph and frenchspacing when
there are already changes (with \babel@save).

196 \def\bbl@extras@wrap#1#2#3{% 1l:in-test, 2:before, 3:after
197 \toks@\expandafter\expandafter\expandafter{%

198 \csname extras\languagename\endcsname}%

199 \bbl@exp{\\\in@{#1}{\the\toks@}}%

200 \ifin@\else

201 \@temptokena{#2}%

202 \edef\bbl@tempc{\the\@temptokena\the\toks@}%

203 \toks@\expandafter{\bbl@tempc#3}%

204 \expandafter\edef\csname extras\languagename\endcsname{\the\toks@}%
205 \fi}

206 ((/Basic macros))

Some files identify themselves with a BIgX macro. The following code is placed before them to
define (and then undefine) if not in KTgX.

207 ((*Make sure ProvidesFile is defined)) =
208 \1fx\ProvidesFile\@undefined

209 \def\ProvidesFile#1[#2 #3 #4]1{%
210 \wlog{File: #1 #4 #3 <#2>}%

211 \let\ProvidesFile\@undefined}

212\ fi

213 ((/Make sure ProvidesFile is defined))

3.1. A few core definitions

\language Just for compatibility, for not to touch hyphen.cfg.

214 ((xDefine core switching macros)) =

215 \ifx\language\@undefined

216 \csname newcount\endcsname\language
217\ fi

218 ((/Define core switching macros))

\last@language Another counter is used to keep track of the allocated languages. TgX and ETgX
reserves for this purpose the count 19.

\addlanguage This macro was introduced for TgX < 2. Preserved for compatibility.

219 ((xDefine core switching macros)) =

220 \countdef\last@language=19

221 \def\addlanguage{\csname newlanguage\endcsname}
222 ((/Define core switching macros))

Now we make sure all required files are loaded. When the command \AtBeginDocument doesn’t
exist we assume that we are dealing with a plain-based format. In that case the file plain.def is
needed (which also defines \AtBeginDocument, and therefore it is not loaded twice). We need the
first part when the format is created, and \orig@dump is used as a flag. Otherwise, we need to use the
second part, so \orig@dump is not defined (plain.def undefines it).

Check if the current version of switch.def has been previously loaded (mainly, hyphen.cfg). If
not, load it now. We cannot load babel.def here because we first need to declare and process the
package options.

3.2. HKIgX: babel.sty (start)

Here starts the style file for ETgX. It also takes care of a number of compatibility issues with other
packages.

223 (*package)

224 \NeedsTeXFormat{LaTeX2e}

225 \ProvidesPackage{babel}%

226 [<@date@> v<@version@>

227 The multilingual framework for LualLaTeX, pdfLaTeX and XelLaTeX]

Start with some “private” debugging tools, and then define macros for errors. The global lua ‘space’
Babel is declared here, too (inside the test for debug).

228 \@ifpackagewith{babel}{debug}

229 {\providecommand\bbl@trace[1]{\message{""J[#1 1}}%
230 \let\bbl@debug\@firstofone

231 \ifx\directlua\@undefined\else

232 \directlua{

233 Babel = Babel or {}
234 Babel.debug = true }%
235 \input{babel-debug.tex}%
236 \fi}

237 {\providecommand\bbl@trace[1]{}%
238 \let\bbl@debug\@gobble
239 \ifx\directlua\@undefined\else

240 \directlua{
241 Babel = Babel or {}
242 Babel.debug = false }%

243 \fi}

244% Temporary:

245 \newif\ifBabelDebugGerman

246 \@ifpackagewith{babel}{debug-german}
247 {\BabelDebugGermantrue}

248 {\BabelDebugGermanfalse}

Macros to deal with errors, warnings, etc. Errors are stored in a separate file.

249 \def\bbl@error#1{% Implicit #2#3#4
250 \begingroup

251 \catcode \\=0 \catcode \==12 \catcode \ =12
252 \input errbabel.def

253 \endgroup

254 \bbleEerror{#1}}

255 \def\bbl@warning#1{%

256 \begingroup

257 \def\\{\MessageBreak}%

258 \PackageWarning{babel}{#1}%
259 \endgroup}

260 \def\bbl@infowarn#1{%

261 \begingroup

262 \def\\{\MessageBreak}%

263 \PackageNote{babel}{#1}%
264 \endgroup}

265 \def\bbl@info#1{%

266 \begingroup

267 \def\\{\MessageBreak}%

268 \PackageInfo{babel}{#1}%
269 \endgroup}

Many of the following options don’t do anything themselves, they are just defined in order to make
it possible for babel and language definition files to check if one of them was specified by the user.
But first, include here the Basic macros defined above.

270 <@Basic macros@>

271 \@ifpackagewith{babel}{silent}

272 {\let\bbl@info\@gobble

273 \let\bbl@infowarn\@gobble

274 \let\bbl@warning\@gobble}

275 {}

276 %

277 \def\AfterBabelLanguage#1{%

278 \global\expandafter\bbl@add\csname#l.ldf-h@ek\endcsname}%

If the format created a list of loaded languages (in \bbl@languages), get the name of the 0-th to
show the actual language used. Also available with base, because it just shows info.

279 \ifx\bbl@languages\@undefined\else

280 \begingroup

281 \catcode \""I=12

282 \@ifpackagewith{babel}{showlanguages}{%

283 \begingroup

284 \def\bbl@elt#1#2#3#4{\wlog{#2" " I#1 " I#3 " 1#4}}%
285 \wlog{<*languages>}%

286 \bbl@languages

287 \wlog{</languages>}%

288 \endgroup}{}

289 \endgroup
290 \def\bbl@elt#1#2#3#4{%
291 \ifnum#2=\z@

©

292 \gdef\bbl@nulllanguage{#1}%
293 \def\bbl@elt##1##2##3##4{}%
294 \fi}%

295 \bbl@languages

296 \ 1%

3.3. base

The first ‘real’ option to be processed is base, which set the hyphenation patterns then resets
ver@babel. sty so that BIgX forgets about the first loading. After a subset of babel.def has been
loaded (the old switch.def) and \AfterBabelLanguage defined, it exits.

Now the base option. With it we can define (and load, with luatex) hyphenation patterns, even if
we are not interested in the rest of babel.

297 \bbl@trace{Defining option 'base'}

298 \@ifpackagewith{babel}{base}{%

299 \let\bbl@onlyswitch\@empty

300 \let\bbl@provide@locale\relax

301 \input babel.def

302 \let\bbl@onlyswitch\@undefined

303 \ifx\directlua\@undefined

304 \DeclareOption*{\bbl@patterns{\CurrentOption}}%

305 \else

306 \input luababel.def

307 \DeclareOption*{\bbl@patterns@lua{\CurrentOption}}%

308 \fi

309 \DeclareOption{base}{}%

310 \DeclareOption{showlanguages}{}%

311 \ProcessOptions

312 \global\expandafter\let\csname opt@babel.sty\endcsname\relax
313 \global\expandafter\let\csname ver@babel.sty\endcsname\relax
314 \global\let\@ifleteree\@ifl@ter

315 \def\@ifl@ter#1#2#3#4#5{\global\let\@ifleter\@ifl@ter@@}%s
316 \endinput}{}%

3.4. key=value options and other general option

The following macros extract language modifiers, and only real package options are kept in the
option list. Modifiers are saved and assigned to \BabelModifiers at \bbl@load@language; when no
modifiers have been given, the former is \relax.

317 \bbl@trace{key=value and another general options}

318 \bbl@csarg\let{tempa\expandafter}\csname opt@babel.sty\endcsname
319 \def\bbl@tempb#1.#2{% Removes trailing dot

320 #1\ifx\@empty#2\else,\bbl@afterfi\bbl@tempb#2\fi}%

321 \def\bbl@tempe#1=#2\@@{%

322 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}}

323 \def\bbl@tempd#1.#2\@nnil{%

324 \ifx\@empty#2%

325 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc, \fi#1}%

326 \else

327 \in@{,provide=}{,#1}%

328 \ifin@

329 \edef\bbl@tempc{%

330 \ifx\bbl@tempc\@empty\else\bbl@tempc, \fi#l.\bbl@tempb#2}%

331 \else

332 \in@{$modifiers$}{$#1$}%

333 \ifin@

334 \bbl@tempe#2\@@

335 \else

336 \in@{=}{#1}%

337 \ifin@

338 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc, \fi#1l.#2}%
339 \else

340 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc, \fi#1}%
341 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}%

342 \fi

343 \fi

344 \fi

345 \fi}

346 \let\bbl@tempc\@empty

10

347 \bbl@foreach\bbl@tempa{\bbl@tempd#1.\@empty\@nnil}
348 \expandafter\let\csname opt@babel.sty\endcsname\bbl@tempc

The next option tells babel to leave shorthand characters active at the end of processing the
package. This is not the default as it can cause problems with other packages, but for those who want
to use the shorthand characters in the preamble of their documents this can help.

349 \DeclareOption{KeepShorthandsActive}{}

350 \DeclareOption{activeacute}{}

351 \DeclareOption{activegrave}{}

352 \DeclareOption{debug}{}

353 \DeclareOption{debug-german}{} % Temporary

354 \DeclareOption{noconfigs}{}

355 \DeclareOption{showlanguages}{}

356 \DeclareOption{silent}{}

357 \DeclareOption{shorthands=off}{\bbl@tempa shorthands=\bbl@tempa}
358 \chardef\bbl@iniflag\z@

359 \DeclareOption{provide=*}{\chardef\bbl@iniflag\@ne} % main =
360 \DeclareOption{provide+=*}{\chardef\bbl@iniflag\tw@} % second
361 \DeclareOption{provide*=*}{\chardef\bbl@iniflag\thr@@} second + main
362 \chardef\bbl@ldfflag\z@

363 \DeclareOption{provide=!}{\chardef\bbl@ldfflag\@ne} % main =
364 \DeclareOption{provide+=!}{\chardef\bbl@ldfflag\tw@} % second
365 \DeclareOption{provide*=!}{\chardef\bbl@ldfflag\thr@@} % second + main
366% Don't use. Experimental.

367 \newif\ifbbl@single

368 \DeclareOption{selectors=off}{\bbl@singletrue}

369 <@More package options@>

n =
N

o°

n =
N

Handling of package options is done in three passes. (I [JBL] am not very happy with the idea,
anyway.) The first one processes options which has been declared above or follow the syntax
(key)=(value), the second one loads the requested languages, except the main one if set with the key
main, and the third one loads the latter. First, we “flag” valid keys with a nil value.

370 \let\bbl@opt@shorthands\@nnil
371 \let\bbl@opt@config\@nnil

372 \let\bbl@opt@main\@nnil

373 \let\bbl@opt@headfoot\@nnil
374\ let\bbl@opt@layout\@nnil

375 \let\bbl@opt@provide\@nnil

The following tool is defined temporarily to store the values of options.

376 \def\bbl@tempa#l=#2\bbl@tempa{%
377 \bbl@csarg\ifx{opt@#1}\@nnil
378 \bbl@csarg\edef{opt@#1}{#2}%

379 \else
380 \bbl@error{bad-package-option}{#1}{#2}{}%
381 \fi}

Now the option list is processed, taking into account only currently declared options (including
those declared with a =), and (key)=(value) options (the former take precedence). Unrecognized
options are saved in \bbl@language@opts, because they are language options.

382 \let\bbl@language@opts\@empty
383 \DeclareOption*{%
384 \bbl@xin@{\string=}{\CurrentOption}%

385 \ifin@

386 \expandafter\bbl@tempa\CurrentOption\bbl@tempa
387 \else

388 \bbl@add@list\bbl@language@opts{\CurrentOption}%
389 \fi}

Now we finish the first pass (and start over).

390 \ProcessOptions*

11

3.5. Post-process some options

391 \1fx\bbl@opt@provide\@nnil

392 \let\bbl@opt@provide\@empty % %%% MOVE above

393 \else

394 \chardef\bbl@iniflag\@ne

395 \bbl@exp{\\\bbl@forkv{\@nameuse{@raw@opt@babel.sty}}}{%
396 \in@{,provide, }{,#1,}%

397 \ifin@

398 \def\bbl@opt@provide{#2}%
399 \fi}

400\ f1i

If there is no shorthands=(chars), the original babel macros are left untouched, but if there is,
these macros are wrapped (in babel. def) to define only those given.
A bit of optimization: if there is no shorthands=, then \bbl@ifshorthand is always true, and it is
always false if shorthands is empty. Also, some code makes sense only with shorthands=.. ..
401 \bbl@trace{Conditional loading of shorthands}
402 \def\bbl@sh@string#1{%
403 \ifx#1\@empty\else
404 \ifx#1t\string~%

405 \else\ifx#lc\string,%

406 \else\string#1%

407 \fi\fi

408 \expandafter\bbl@sh@string
409 \fi}

410 \ifx\bbl@opt@shorthands\@nnil

411 \def\bbl@ifshorthand#1#2#3{#2}%
412 \else\ifx\bbl@opt@shorthands\@empty
413 \def\bbl@ifshorthand#1#2#3{#3}%
414 \else

The following macro tests if a shorthand is one of the allowed ones.
415 \def\bbl@ifshorthand#1{%
416 \bbl@xin@{\string#1}{\bbl@opt@shorthands}%

jury

417 \ifin@

418 \expandafter\@firstoftwo
419 \else

420 \expandafter\@secondoftwo
421 \fi}

We make sure all chars in the string are ‘other’, with the help of an auxiliary macro defined above
(which also zaps spaces).
422 \edef\bbl@opt@shorthands{%
423 \expandafter\bbl@sh@string\bbl@opt@shorthands\@empty}%

The following is ignored with shorthands=off, since it is intended to take some additional actions
for certain chars.
424 \bbl@ifshorthand{'}%
425 {\PassOptionsToPackage{activeacute}{babel}}{}
426 \bbl@ifshorthand{ }%
427 {\PassOptionsToPackage{activegrave}{babel}}{}
428 \fi\fi

With headfoot=1ang we can set the language used in heads/feet. For example, in babel/3796 just

add headfoot=english. It misuses \@resetactivechars, but seems to work.

429 \ifx\bbl@opt@headfoot\@nnil\else

430 \g@addto@macro\@resetactivechars{%

431 \set@typeset@protect

432 \expandafter\select@language@x\expandafter{\bbl@opt@headfoot}%

433 \let\protect\noexpand}

434\ fi

For the option safe we use a different approach — \bbl@opt@safe says which macros are redefined
(B for bibs and R for refs). By default, both are currently set, but in a future release it will be set to
none.

435 \1fx\bbl@opt@safe\@undefined

12

436 \def\bbl@opt@safe{BR}
437 % \let\bbl@opt@safe\@empty % Pending of \cite
438 \fi

For layout an auxiliary macro is provided, available for packages and language styles.
Optimization: if there is no layout, just do nothing.
439 \bbl@trace{Defining IfBabellLayout}
440 \1fx\bbl@opt@layout\@nnil
441 \newcommand\IfBabellLayout[3]{#3}%
442 \else
443 \bbl@exp{\\\bbl@forkv{\@nameuse{@raw@opt@babel.sty}}}{%
444 \in@{, layout, }{,#1,}%

445 \ifin@

446 \def\bbl@opt@layout{#2}%

447 \bbl@replace\bbl@opt@layout{ }{.}%
448 \fi}

449 \newcommand\IfBabellLayout[1]{%
450 \@expandtwoargs\in@{.#1.}{.\bbl@opt@layout.}%

451 \ifin@

452 \expandafter\@firstoftwo
453 \else

454 \expandafter\@secondoftwo
455 \fi}

456 \ 1

457 (/package)

3.6. Plain: babel.def (start)

Because of the way docstrip works, we need to insert some code for Plain here. However, the tools
provided by the babel installer for literate programming makes this section a short interlude,
because the actual code is below, tagged as Emulate LaTeX.

First, exit immediately if previouly loaded.

458 (xcore)

459 \ifx\ldf@quit\@undefined\else

460 \endinput\fi % Same line!

461 <@Make sure ProvidesFile is defined@>

462 \ProvidesFile{babel.def}[<@date@> v<@version@> Babel common definitions]
463 \1fx\AtBeginDocument\@undefined

464 <@Emulate LaTeX@>

465 \f1

466 <@Basic macros@>

467 (/core)

That is all for the moment. Now follows some common stuff, for both Plain and ETgX. After it, we
will resume the KTgX-only stuff.

4. babel.sty and babel.def (common)

468 (xpackage | core)

469 \def\bbl@version{<@version@>}

470 \def\bbl@date{<@date@>}

471 <@efine core switching macros@>

\adddialect The macro \adddialect can be used to add the name of a dialect or variant language, for
which an already defined hyphenation table can be used.

472 \def\adddialect#1#2{%

473 \global\chardef#1#2\relax

474 \bbl@usehooks{adddialect}{{#1}{#2}}%
475 \begingroup

476 \count@#l\relax

477 \def\bbl@elt##1##2##3##4{%

478 \ifnum\count@=##2\relax
479 \edef\bbl@tempa{\expandafter\@gobbletwo\string#1}%
480 \bbl@info{Hyphen rules for '\expandafter\@gobble\bbl@tempa'

13

481
482
483
484
485
486

set to \expandafter\string\csname l@##1\endcsname\\%
(\string\language\the\count@). Reported}%
\def\bbl@e Ut#### L#### 2 #H###3#H##H#A{ }%
\fi}%
\bbl@cs{languages}%
\endgroup}

\bbl@iflanguage executes code only if the language 1@ exists. Otherwise raises an error.

The argument of \bbl@fixname has to be a macro name, as it may get “fixed” if casing (Ic/uc) is
wrong. It’s an attempt to fix a long-standing bug when \foreignlanguage and the like appear in a
\MakeXXXcase. However, a lowercase form is not imposed to improve backward compatibility
(perhaps you defined a language named MYLANG, but unfortunately mixed case names cannot be
trapped). Note 1@ is encapsulated, so that its case does not change.

487 \def\bbl@fixname#1{%

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

\begingroup
\def\bbl@tempe{1@}%
\edef\bbl@tempd{\noexpand\@ifundefined{\noexpand\bbl@tempe#1}}%
\bbl@tempd
{\lowercase\expandafter{\bbl@tempd}%
{\uppercase\expandafter{\bbl@tempd}%
\@empty
{\edef\bbl@tempd{\def\noexpand#1{#1}}%
\uppercase\expandafter{\bbl@tempd}}}%
{\edef\bbl@tempd{\def\noexpand#1{#1}}%
\lowercase\expandafter{\bbl@tempd}}}%
\@empty
\edef\bbl@tempd{\endgroup\def\noexpand#1{#1}}%
\bbl@tempd
\bbl@exp{\\\bbl@usehooks{languagename}{{\languagename}{#1}}}}

503 \def\bbl@iflanguage#1{%

504

\@ifundefined{l@#1}{\@nolanerr{#1}\@gobble}\@firstofone}

After a name has been ‘fixed’, the selectors will try to load the language. If even the fixed name is
not defined, will load it on the fly, either based on its name, or if activated, its BCP 47 code.

We first need a couple of macros for a simple BCP 47 look up. It also makes sure, with
\bbl@bcpcase, casing is the correct one, so that sr-latn-ba becomes fr-Latn-BA. Note #4 may contain
some \@empty’s, but they are eventually removed.

\bbl@bcplookup either returns the found ini tag or it is \relax.

505 \def\bbl@bcpcase#1#2#3#4\@e#5{%

506 \ifx\@empty#3%

507 \uppercase{\def#5{#1#2}}%

508 \else

509 \uppercase{\def#5{#1}}%

510 \lowercase{\edef#5{#5#2#3#4}}%

511 \fi}

512 \def\bbl@bcplookup#1-#2-#3-#4\@@{%

513 \let\bbl@bcp\relax

514 \lowercase{\def\bbl@tempa{#1}}%

515 \ifx\@empty#2%

516 \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%
517 \else\ifx\@empty#3%

518 \bbl@bcpcase#2\@empty\@empty\@@\bbl@tempb

519 \IfFileExists{babel-\bbl@tempa-\bbl@tempb.ini}%

520 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempb}}%

521 {}%

522 \ifx\bbl@bcp\relax

523 \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempal}{}%
524 \fi

525 \else

526 \bbl@bcpcase#2\@empty\@empty\@a\bbl@tempb

527 \bbl@bcpcase#3\@empty\@empty\@@\bbl@tempc

528 \IfFileExists{babel-\bbl@tempa-\bbl@tempb-\bbl@tempc.ini}%
529 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempb-\bbl@tempc}}%

530 {}%

14

531 \ifx\bbl@bcp\relax

532 \IfFileExists{babel-\bbl@tempa-\bbl@tempc.ini}%
533 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempc}}%

534 {}%

535 \fi

536 \ifx\bbl@bcp\relax

537 \IfFileExists{babel-\bbl@tempa-\bbl@tempc.ini}%
538 {\edef\bbl@bcp{\bbl@tempa-\bbl@tempc}}%

539 {}%

540 \fi

541 \ifx\bbl@bcp\relax

542 \IfFileExists{babel-\bbl@tempa.ini}{\let\bbl@bcp\bbl@tempa}{}%
543 \fi

544 \fi\fi}

545 \let\bbl@initoload\relax

\iflanguage Users might want to test (in a private package for instance) which language is currently
active. For this we provide a test macro, \iflanguage, that has three arguments. It checks whether
the first argument is a known language. If so, it compares the first argument with the value of
\language. Then, depending on the result of the comparison, it executes either the second or the
third argument.

546 \def\iflanguage#1{%
547 \bbl@iflanguage{#1}{%

548 \ifnum\csname l@#1l\endcsname=\language
549 \expandafter\@firstoftwo

550 \else

551 \expandafter\@secondoftwo

552 \fi}}

4.1. Selecting the language

\selectlanguage It checks whether the language is already defined before it performs its actual task,
which is to update \language and activate language-specific definitions.

553 \let\bbl@select@type\z@

554 \edef\selectlanguage{%

555 \noexpand\protect

556 \expandafter\noexpand\csname selectlanguage \endcsname}

Because the command \selectlanguage could be used in a moving argument it expands to
\protect\selectlanguage . Therefore, we have to make sure that a macro \protect exists. If it
doesn’titis \let to \relax.

557 \1fx\@undefined\protect\let\protect\relax\fi

The following definition is preserved for backwards compatibility (e.g., arabi, koma). It is related to
a trick for 2.09, now discarded.

558 \let\xstring\string

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table of contents etc.
in the correct language environment.

\bbl@pop@language But when the language change happens inside a group the end of the group
doesn’t write anything to the auxiliary files. Therefore we need TgX’s aftergroup mechanism to help
us. The command \aftergroup stores the token immediately following it to be executed when the
current group is closed. So we define a temporary control sequence \bbl@pop@language to be
executed at the end of the group. It calls \bbl@set@language with the name of the current language
as its argument.

\bbl@language@stack The previous solution works for one level of nesting groups, but as soon as
more levels are used it is no longer adequate. For that case we need to keep track of the nested
languages using a stack mechanism. This stack is called \bbl@language@stack and initially empty.

559 \def\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to retrieve the
information afterwards.

15

\bbl@push@language
\bbl@pop@language The stack is simply a list of languagenames, separated with a ‘+’ sign; the push
function can be simple:

560 \def\bbl@push@language{%
s61 \ifx\languagename\@undefined\else

562 \ifx\currentgrouplevel\@undefined

563 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}%
564 \else

565 \ifnum\currentgrouplevel=\z@

566 \xdef\bbl@language@stack{\languagename+}%

567 \else

568 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}%
569 \fi

570 \fi

571 \fi}

Retrieving information from the stack is a little bit less simple, as we need to remove the element
from the stack while storing it in the macro \languagename. For this we first define a helper function.

\bbl@pop@lang This macro stores its first element (which is delimited by the ‘+’-sign) in
\languagename and stores the rest of the string in \bbl@language@stack.

572 \def\bbl@pop@lang#1+#2\@@{%
573 \edef\languagename{#1}%
574 \xdef\bbl@language@stack{#2}}

The reason for the somewhat weird arrangement of arguments to the helper function is the fact it
is called in the following way. This means that before \bbl@pop@lang is executed TgX first expands
the stack, stored in \bbl@language@stack. The result of that is that the argument string of
\bbl@pop@lang contains one or more language names, each followed by a ‘+-sign (zero language
names won’t occur as this macro will only be called after something has been pushed on the stack).

575 \let\bbl@ifrestoring\@secondoftwo

576 \def\bbl@pop@language{%

577 \expandafter\bbl@pop@lang\bbl@language@stack\@@

578 \let\bbl@ifrestoring\@firstoftwo

579 \expandafter\bbl@set@language\expandafter{\languagename}%
580 \let\bbl@ifrestoring\@secondoftwo}

Once the name of the previous language is retrieved from the stack, it is fed to \bbl@set@language
to do the actual work of switching everything that needs switching.

An alternative way to identify languages (in the babel sense) with a numerical value is introduced
in 3.30. This is one of the first steps for a new interface based on the concept of locale, which explains
the name of \localeid. This means \1@. . . will be reserved for hyphenation patterns (so that two
locales can share the same rules).

581 \chardef\localeid\z@

582 \gdef\bbl@id@last{0} % No real need for a new counter
583 \def\bbl@id@assign{%

584 \bbl@ifunset{bbl@id@@\languagename}%

585 {\count@\bbl@id@last\relax

586 \advance\count@\@ne

587 \global\bbl@csarg\chardef{id@@\languagename}\count@
588 \xdef\bbl@id@last{\the\count@}%

589 \ifcase\bbl@engine\or

590 \directlua{

591 Babel.locale props[\bbl@id@last] = {}

592 Babel.locale props[\bbl@id@last].name = '\languagename'
593 Babel.locale props[\bbl@id@last].vars = {}

594 1%

595 \fi}%

596 {}%

597 \chardef\localeid\bbl@c1{id@}}

The unprotected part of \selectlanguage. In case it is used as environment, declare
\endselectlaguage, just for safety.

16

598 \let\bbl@select@opts\@empty

599 \expandafter\def\csname selectlanguage \endcsname{%
600 \@ifnextchar[\bbl@select@s{\bbl@select@s[]}}

601 \def\bbl@select@s [#1]1#2{%

602 \def\bbl@select@opts{#1}%

603 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\tw@\fi
604 \bbl@push@language

605 \aftergroup\bbl@pop@language

606 \bbl@set@language{#2}}

607 \let\endselectlanguage\relax

(=1

\bbl@set@language The macro \bbl@set@language takes care of switching the language
environment and of writing entries on the auxiliary files. For historical reasons, language names can
be either language of \language. To catch either form a trick is used, but unfortunately as a side
effect the catcodes of letters in \languagename are messed up. This is a bug, but preserved for
backwards compatibility. The list of auxiliary files can be extended by redefining
\BabelContentsFiles, but make sure they are loaded inside a group (as aux, toc, lof, and lot do)
or the last language of the document will remain active afterwards.

We also write a command to change the current language in the auxiliary files.

\bbl@savelastskip is used to deal with skips before the write whatsit (as suggested by U Fischer).
Adapted from hyperref, but it might fail, so I'll consider it a temporary hack, while I study other
options (the ideal, but very likely unfeasible except perhaps in luatex, is to avoid the \write
altogether when not needed).

608 \def\BabelContentsFiles{toc, lof, lot}

609 \def\bbl@set@language#1{% from selectlanguage, pop@

610 % The old buggy way. Preserved for compatibility, but simplified
611 \edef\languagename{\expandafter\string#l\@empty}%

612 \select@language{\languagename}%

613 \bbl@xin@{,main, }{,\bbl@select@opts, }%

614 \ifin@

615 \let\bbl@main@language\localename
616 \let\mainlocalename\localename
617 \fi

618 \let\bbl@select@opts\@empty

619 % write to aux files

620 \expandafter\ifx\csname date\languagename\endcsname\relax\else
621 \if@filesw

622 \bbl@xin@{,nofiles, }{, \bbl@select@opts, }%

623 \ifin@\else

624 \ifx\babel@aux\@gobbletwo\else % Set if single in the first, redundant
625 \bbl@savelastskip

626 \protected@write\@auxout{}{\string\babel@aux{\bbl@auxname}{}}%
627 \bbl@restorelastskip

628 \fi

629 \bbl@usehooks{write}{}%

630 \fi

631 \fi

632 \fi}

633%

634 \let\bbl@restorelastskip\relax

635 \let\bbl@savelastskip\relax

636 %

637 \def\select@language#1{% from set@, babel@aux, babel@toc
638 \ifx\bbl@selectorname\@empty

639 \def\bbl@selectorname{select}%

640 \fi

641 % set hymap

642 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi
643 % set name (when coming from babel@aux)

644 \edef\languagename{#1}%

645 \bbl@fixname\languagename

646 % define \localename when coming from set@, with a trick
647 \ifx\scantokens\@undefined

17

648 \def\localename{??}%

649 \else

650 \bbl@exp{\\\scantokens{\def\\\localename{\languagename}\\\noexpand}\relax}%
651 \fi

652 \bbl@provide@locale

653 \bbl@iflanguage\languagename{%

654 \let\bbl@select@type\z@

655 \expandafter\bbl@switch\expandafter{\languagename}}}

656 \def\babel@aux#1#2{%

657 \select@language{#1}%

658 \bbl@foreach\BabelContentsFiles{% \relax -> don't assume vertical mode
659 \@writefile{##1}{\babel@toc{#1}{#2}\relax}}}%

660 \def\babel@toc#1#2{%

661 \select@language{#1}}

First, check if the user asks for a known language. If so, update the value of \language and call
\originalTeX to bring TgX in a certain pre-defined state.

The name of the language is stored in the control sequence \ languagename.

Then we have to redefine \originalTeX to compensate for the things that have been activated. To
save memory space for the macro definition of \originalTeX, we construct the control sequence
name for the \noextras{language) command at definition time by expanding the \ csname primitive.

Now activate the language-specific definitions. This is done by constructing the names of three
macros by concatenating three words with the argument of \selectlanguage, and calling these
macros.

The switching of the values of \lefthyphenmin and \righthyphenmin is somewhat different. First
we save their current values, then we check if \(language)hyphenmins is defined. If it is not, we set
default values (2 and 3), otherwise the values in \(language)hyphenmins will be used.

No text is supposed to be added with switching captions and date, so we remove any spurious
spaces with \bbl@bsphack and \bbl@esphack.

662 \newif\ifbbl@usedategroup

663 \let\bbl@savedextras\@empty

664 \def\bbl@switch#1{% from select@, foreign@

665 % restore

666 \originalTeX

667 \expandafter\def\expandafter\originalTeX\expandafter{%

668 \csname noextras#l\endcsname
669 \let\originalTeX\@empty
670 \babel@beginsave}%

671 \bbl@usehooks{afterreset}{}%
672 \languageshorthands{none}%
673 % set the locale id

674 \bbl@id@assign

675 % switch captions, date

676 \bbl@bsphack

677 \ifcase\bbl@select@type

678 \csname captions#l\endcsname\relax

679 \csname date#l\endcsname\relax

680 \else

681 \bbl@xin@{, captions, }{,\bbl@select@opts, }%
682 \ifin@

683 \csname captions#l\endcsname\relax

684 \fi

685 \bbl@xin@{,date, }{, \bbl@select@opts, }%

686 \ifin@ % if \foreign... within \<language>date
687 \csname date#l\endcsname\relax

688 \fi

689 \fi

690 \bbl@esphack

691 % switch extras

692 \csname bbl@preextras@#l\endcsname
693 \bbl@usehooks{beforeextras}{}%

694 \csname extras#l\endcsname\relax
695 \bbl@usehooks{afterextras}{}%

18

696 % > babel-ensure

697 % > babel-sh-<short>
698 % > babel-bidi

699 % > babel-fontspec

700 \let\bbl@savedextras\@empty
701 % hyphenation - case mapping
702 \ifcase\bbl@opt@hyphenmap\or
703 \def\BabelLower##1##2{\lccode##1=##2\relax}%
704 \ifnum\bbl@hymapsel>4\else

705 \csname\languagename @bbl@hyphenmap\endcsname
706 \fi

707 \chardef\bbl@opt@hyphenmap\z@

708 \else

709 \ifnum\bbl@hymapsel>\bbl@opt@hyphenmap\else

710 \csname\languagename @bbl@hyphenmap\endcsname
711 \fi

712 \fi

713 \let\bbl@hymapsel\@cclv

714 % hyphenation - select rules

715 \ifnum\csname l1@\languagename\endcsname=\1@unhyphenated
716 \edef\bbl@tempa{u}%

717 \else
718 \edef\bbl@tempa{\bbl@cl{lnbrk}}%
719 \fi

720 % linebreaking - handle u, e, k (v in the future)

721 \bbl@xin@{/u}{/\bbl@tempa}s

722 \ifin@\else\bbl@xin@{/e}{/\bbl@tempa}\fi % elongated forms

723 \ifin@\else\bbl@xin@{/k}{/\bbl@tempa}\fi % only kashida

724 \ifin@\else\bbl@xin@{/p}{/\bbl@tempa}\fi % padding (e.g., Tibetan)
725 \ifin@\else\bbl@xin@{/v}{/\bbl@etempa}\fi % variable font

726 % hyphenation - save mins

727 \babel@savevariable\lefthyphenmin

728 \babel@savevariable\righthyphenmin

729 \ifnum\bbl@engine=\@ne

730 \babel@savevariable\hyphenationmin
731 \fi
732 \ifin@

733 % unhyphenated/kashida/elongated/padding = allow stretching
734 \language\l@unhyphenated

735 \babel@savevariable\emergencystretch
736 \emergencystretch\maxdimen

737 \babel@savevariable\hbadness

738 \hbadness\@M

739 \else

740 % other = select patterns

741 \bbl@patterns{#1}%

742 \fi

743 % hyphenation - set mins

744 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
745 \set@hyphenmins\tw@\thr@@\ relax

746 \@nameuse{bbl@hyphenmins@}%

747 \else

748 \expandafter\expandafter\expandafter\set@hyphenmins
749 \csname #lhyphenmins\endcsname\relax

750 \fi

751 \@nameuse{bbl@hyphenmins@}%

752 \@nameuse{bbl@hyphenmins@\languagename}%
753 \@nameuse{bbl@hyphenatmin@}%

754 \@nameuse{bbl@hyphenatmin@\languagename}%
755 \let\bbl@selectorname\@empty}

otherlanguage It can be used as an alternative to using the \selectlanguage declarative command.
The \ignorespaces command is necessary to hide the environment when it is entered in horizontal

19

mode.

756 \edef\otherlanguage{%

757 \noexpand\protect

758 \expandafter\noexpand\csname otherlanguage \endcsname}
759 \expandafter\def\csname otherlanguage \endcsname{%

760 \@ifstar{\@nameuse{otherlanguage*}}\bbl@otherlanguage}
761 \def\bbl@otherlanguage#1{%

762 \def\bbl@selectorname{other}%

763 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\thr@e\fi
764 \csname selectlanguage \endcsname{#1}%

765 \ignorespaces}

The \endotherlanguage part of the environment tries to hide itself when it is called in horizontal
mode.

766 \long\def\endotherlanguage{\@ignoretrue\ignorespaces}

otherlanguage* It is meant to be used when a large part of text from a different language needs to be
typeset, but without changing the translation of words such as ‘figure’. It makes use of
\foreign@language.

767 \expandafter\def\csname otherlanguage*\endcsname{%

768 \@ifnextchar[\bbl@otherlanguage@s{\bbl@otherlanguage@s[]}}
769 \def\bbl@otherlanguage@s [#1]#2{%

770 \def\bbl@selectorname{other*}%

771 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi
772 \def\bbl@select@opts{#1}%

773 \foreign@language{#2}}

At the end of the environment we need to switch off the extra definitions. The grouping mechanism
of the environment will take care of resetting the correct hyphenation rules and “extras”.

774 \expandafter\let\csname endotherlanguage*\endcsname\relax

\foreignlanguage This command takes two arguments, the first argument is the name of the
language to use for typesetting the text specified in the second argument.

Unlike \selectlanguage this command doesn’t switch everything, it only switches the hyphenation
rules and the extra definitions for the language specified. It does this within a group and assumes the
\extras{language) command doesn’t make any \global changes. The coding is very similar to part
of \selectlanguage.

\bbl@beforeforeign is a trick to fix a bug in bidi texts. \foreignlanguage is supposed to be a
‘text’ command, and therefore it must emit a \leavevmode, but it does not, and therefore the indent
is placed on the opposite margin. For backward compatibility, however, it is done only if a
right-to-left script is requested; otherwise, it is no-op.

(3.11) \foreignlanguage* is a temporary, experimental macro for a few lines with a different
script direction, while preserving the paragraph format (thank the braces around \par, things like
\hangindent are not reset). Do not use it in production, because its semantics and its syntax may
change (and very likely will, or even it could be removed altogether). Currently it enters in vinode
and then selects the language (which in turn sets the paragraph direction).

(3.11) Also experimental are the hook foreign and foreign*. With them you can redefine
\BabelText which by default does nothing. Its behavior is not well defined yet. So, use it in
horizontal mode only if you do not want surprises.

In other words, at the beginning of a paragraph \foreignlanguage enters into hmode with the
surrounding lang, and with \foreignlanguage* with the new lang.

775 \providecommand\bbl@beforeforeign{}

776 \edef\foreignlanguage{%

777 \noexpand\protect

778 \expandafter\noexpand\csname foreignlanguage \endcsname}
779 \expandafter\def\csname foreignlanguage \endcsname{%
780 \@ifstar\bbl@foreign@s\bbl@foreign@x}

781 \providecommand\bbl@foreign@x[3]1[1{%

782 \begingroup

783 \def\bbl@selectorname{foreign}%

784 \def\bbl@select@opts{#1}%

785 \let\BabelText\@firstofone

20

786 \bbl@beforeforeign

787 \foreign@language{#2}%

788 \bbl@usehooks{foreign}{}%

789 \BabelText{#3}% Now in horizontal mode!
790 \endgroup}

791 \def\bbl@foreign@s#1#2{%

792 \begingroup

793 {\par}s

794 \def\bbl@selectorname{foreign*}%

795 \let\bbl@select@opts\@empty

796 \let\BabelText\@firstofone

797 \foreign@language{#1}%

798 \bbl@usehooks{foreign*}{}%

799 \bbl@dirparastext

800 \BabelText{#2}% Still in vertical mode!
801 {\par}s%s

802 \endgroup}

803 \providecommand\BabelWrapText[1]{%

804 \def\bbl@tempa{\def\BabelText####1}%

805 \expandafter\bbl@tempa\expandafter{\BabelText{#1}}}

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage*
environment. First we need to store the name of the language and check that it is a known language.
Then it just calls bbl@switch.

806 \def\foreign@language#1{%

807 % set name

808 \edef\languagename{#1}%

809 \ifbbl@usedategroup

810 \bbl@add\bbl@select@opts{,date,}%
811 \bbl@usedategroupfalse

g12 \fi

813 \bbl@fixname\languagename

814 \let\localename\languagename

815 \bbl@provide@locale

816 \bbl@iflanguage\languagename{%

817 \let\bbl@select@type\@ne

818 \expandafter\bbl@switch\expandafter{\languagename}}}

The following macro executes conditionally some code based on the selector being used.

819 \def\IfBabelSelectorTF#1{%
820 \bbl@xin@{,\bbl@selectorname, }{,\zap@space#1 \@empty, }%

821 \ifin@

822 \expandafter\@firstoftwo
823 \else

824 \expandafter\@secondoftwo
825 \fi}

\bbl@patterns This macro selects the hyphenation patterns by changing the \language register. If
special hyphenation patterns are available specifically for the current font encoding, use them
instead of the default.

It also sets hyphenation exceptions, but only once, because they are global (here language
\lccode’s has been set, too). \bbl@hyphenation@is set to relax until the very first
\babelhyphenation, so do nothing with this value. If the exceptions for a language (by its number,
not its name, so that : ENC is taken into account) has been set, then use \hyphenation with both
global and language exceptions and empty the latter to mark they must not be set again.

826 \let\bbl@hyphlist\@empty

827 \let\bbl@hyphenation@\relax

828 \let\bbl@pttnlist\@empty

829 \let\bbl@patterns@\relax

830 \ let\bbl@hymapsel=\@cclv

831 \def\bbl@patterns#1{%

832 \language=\expandafter\ifx\csname 1@#1:\f@encoding\endcsname\relax

21

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

hyphenrules It can be used to select just the hyphenation rules. It does not change \languagename
and when the hyphenation rules specified were not loaded it has no effect. Note however, \1ccode’s

\csname 1@#1l\endcsname
\edef\bbl@tempa{#1}%

\else
\csname 1@#1:\f@encoding\endcsname
\edef\bbl@tempa{#1:\f@encoding}%

\fi
\@expandtwoargs\bbl@usehooks{patterns}{{#1}{\bbl@tempa}}%
% > luatex
\@ifundefined{bbl@hyphenation@}{}{% Can be \relax!

\begingroup

\bbl@xin@{, \number\language, }{, \bbl@hyphlist}%
\ifin@\else
\@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%
\hyphenation{%
\bbl@hyphenation@
\@ifundefined{bbl@hyphenation@#1}%
\@empty
{\space\csname bbl@hyphenation@#l\endcsname}}%
\xdef\bbl@hyphlist{\bbl@hyphlist\number\language, }%
\fi
\endgroup}}

and font encodings are not set at all, so in most cases you should use otherlanguage*.

854 \def\hyphenrules#1{%

855
856
857
858
859
860
861
862
863
864
865
866
867

\edef\bbl@tempf{#1}%
\bbl@fixname\bbl@tempf
\bbl@iflanguage\bbl@tempf{%
\expandafter\bbl@patterns\expandafter{\bbl@tempf}%
\ifx\languageshorthands\@undefined\else
\languageshorthands{none}%
\fi
\expandafter\ifx\csname\bbl@tempf hyphenmins\endcsname\relax
\set@hyphenmins\tw@\thr@e\relax
\else
\expandafter\expandafter\expandafter\set@hyphenmins
\csname\bbl@tempf hyphenmins\endcsname\relax
\fi}}

868 \Let\endhyphenrules\@empty

\providehyphenmins The macro \providehyphenmins should be used in the language definition files
to provide a default setting for the hyphenation parameters \ lefthyphenmin and \righthyphenmin.

If the macro \(language)hyphenmins is already defined this command has no effect.

869 \def\providehyphenmins#1#2{%

870
871
872

\set@hyphenmins This macro sets the values of \lefthyphenmin and \ righthyphenmin. It expects

\expandafter\ifx\csname #lhyphenmins\endcsname\relax
\@namedef{#lhyphenmins}{#2}%
\fi}

two values as its argument.

873 \def\set@hyphenmins#1#2{%

874
875

\ProvidesLanguage The identification code for each file is something that was introduced in BTgX 2¢.
When the command \ProvidesFile does not exist, a dummy definition is provided temporarily. For
use in the language definition file the command \ProvidesLanguage is defined by babel.

Depending on the format, i.e., or if the former is defined, we use a similar definition or not.

\lefthyphenmin#1\relax
\righthyphenmin#2\relax}

876 \1fx\ProvidesFile\@undefined

22

877 \def\ProvidesLanguage#1[#2 #3 #4]1{%
878 \wlog{Language: #1 #4 #3 <#2>}%

879 }

880 \else

881 \def\ProvidesLanguage#1{%

882 \begingroup

883 \catcode™\ 10 %

884 \@makeother\/%

885 \@ifnextchar([%]

886 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}

887 \def\@provideslanguage#1[#2]{%
888 \wlog{Language: #1 #2}%

889 \expandafter\xdef\csname ver@#l.ldf\endcsname{#2}%
890 \endgroup}
891 \fi

\originalTeX The macro\originalTeX should be known to TgX at this moment. As it has to be
expandable we \let it to \@empty instead of \relax.

892 \ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the macro which
initializes the save mechanism, \babel@beginsave, is not considered to be undefined.

893 \1fx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi
A few macro names are reserved for future releases of babel, which will use the concept of locale’:

894 \providecommand\setlocale{\bbl@error{not-yet-available}{}{}{}}
895 \let\uselocale\setlocale

896 \let\locale\setlocale

897 \let\selectlocale\setlocale

898 \let\textlocale\setlocale

899 \let\textlanguage\setlocale

900 \let\languagetext\setlocale

4.2. Errors

\@nolanerr

\@nopatterns The babel package will signal an error when a documents tries to select a language
that hasn’t been defined earlier. When a user selects a language for which no hyphenation patterns
were loaded into the format he will be given a warning about that fact. We revert to the patterns for
\language=0 in that case. In most formats that will be (US)english, but it might also be empty.

\@noopterr When the package was loaded without options not everything will work as expected. An
error message is issued in that case.
When the format knows about \PackageError it must be KTgX 2¢, so we can safely use its error
handling interface. Otherwise we’ll have to ‘keep it simple’.
Infos are not written to the console, but on the other hand many people think warnings are errors,
so a further message type is defined: an important info which is sent to the console.

901 \edef\bbl@nulllanguage{\string\language=0}

902 \def\bbl@nocaption{\protect\bbl@nocaption@i}

903 \def\bbl@nocaption@i#1#2{% 1: text to be printed 2: caption macro \langXname
904 \global\@namedef{#2}{\textbf{?#1?}}%

905 \@nameuse{#2}%

906 \edef\bbl@tempa{#1}%

907 \bbl@sreplace\bbl@tempa{name}{}%

908 \bbl@sreplace\bbl@tempa{NAME}{}%

909 \bbl@warning{%

910 \@backslashchar#l not set for '\languagename'. Please,\\%
911 define it after the language has been loaded\\%

912 (typically in the preamble) with:\\%

913 \string\setlocalecaption{\languagename}{\bbl@tempa}{..}\\%
914 Feel free to contribute on github.com/latex3/babel.\\%

915 Reported}}

23

916 \def\bbl@tentative{\protect\bbl@tentative@i}
917 \def\bbl@tentative@i#1{%
918 \bbl@warning{%

919 Some functions for '#1' are tentative.\\%
920 They might not work as expected and their behavior\\%
921 could change in the future.\\%

922 Reported}}

923 \def\@nolanerr#1{\bbl@error{undefined-language}{#1}{}{}}
924 \def\@nopatterns#1{%

925 \bbl@warning

926 {No hyphenation patterns were preloaded for\\%

927 the language '#1' into the format.\\%

928 Please, configure your TeX system to add them and\\%
929 rebuild the format. Now I will use the patterns\\%
930 preloaded for \bbl@nulllanguage\space instead}}

931 \let\bbl@usehooks\@gobbletwo

Here ended the now discarded switch.def.
Here also (currently) ends the base option.

932 \ifx\bbl@onlyswitch\@empty\endinput\fi

4.3. More on selection

\babelensure The user command just parses the optional argument and creates a new macro named
\bbl@e@(language). We register a hook at the afterextras event which just executes this macro in a
“complete” selection (which, if undefined, is \relax and does nothing). This part is somewhat
involved because we have to make sure things are expanded the correct number of times.

The macro \bbl@e@language) contains \bbl@ensure{(include) }{ {exclude) }{ (fontenc) }, which in
in turn loops over the macros names in \bbl@captionslist, excluding (with the help of \in@) those
in the exclude list. If the fontenc is given (and not \relax), the \fontencoding is also added. Then
we loop over the include list, but if the macro already contains \ foreignlanguage, nothing is done.
Note this macro (1) is not restricted to the preamble, and (2) changes are local.

933 \bbl@trace{Defining babelensure}

934 \newcommand\babelensure[2][]{%

935 \AddBabelHook{babel-ensure}{afterextras}{%

936 \ifcase\bbl@select@type

937 \bbl@cl{e}%

938 \fi}%

939 \begingroup

940 \let\bbl@ens@include\@empty

941 \let\bbl@ens@exclude\@empty

942 \def\bbl@ens@fontenc{\relax}%

943 \def\bbl@tempb##1{%

944 \ifx\@empty##1\else\noexpand##1\expandafter\bbl@tempb\fi}%
945 \edef\bbl@tempa{\bbl@tempb#1\@empty}%

946 \def\bbl@tempb##1=##2\@@{\@namedef{bbl@ens@##1} {##2}}%
947 \bbl@foreach\bbl@tempa{\bbl@tempb##1\@@}%

948 \def\bbl@tempc{\bbl@ensure}%

949 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%

950 \expandafter{\bbl@ens@include}}%
951 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%
952 \expandafter{\bbl@ens@exclude}}%

953 \toks@\expandafter{\bbl@tempc}%

954 \bbl@exp{%

955 \endgroup

956 \def\<bbl@e@#2>{\the\toks@{\bbleens@fontenc}}}}

957 \def\bbl@ensure#1#2#3{% 1: include 2: exclude 3: fontenc

958 \def\bbl@tempb##1{% elt for (excluding) \bbl@captionslist list

959 \ifx##1\@undefined % 3.32 - Don't assume the macro exists
960 \edef##1{\noexpand\bbl@nocaption

961 {\bbl@stripslash##1}{\languagename\bbl@stripslash##1}}%
962 \fi

963 \ifx##1\@empty\else

24

964 \in@{##1}{#2}%

965 \ifin@\else

966 \bbl@ifunset{bbl@ensure@\languagename}%

967 {\bbl@exp{%

968 \\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%
969 \\\foreignlanguage{\languagename}%

970 {\ifx\relax#3\else

971 \\\fontencoding{#3}\\\selectfont

972 \fi

973 Py STy

974 {}%

975 \toks@\expandafter{##1}%

976 \edef##1{%

977 \bbl@csarg\noexpand{ensure@\languagename}%
978 {\the\toks@}}%

979 \fi

980 \expandafter\bbl@tempb

981 \fi}%

982 \expandafter\bbl@tempb\bbl@captionslist\today\@empty
983 \def\bbl@tempa##1{% elt for include list
984 \ifx##1\@empty\else

985 \bbl@csarg\in@{ensure@\languagename\expandafter}\expandafter{##1}%
986 \ifin@\else

987 \bbl@tempb##1\@empty

988 \fi

989 \expandafter\bbl@tempa

990 \fi}%

991 \bbl@tempa#l\@empty}

992 \def\bbl@captionslist{%

993 \prefacename\refname\abstractname\bibname\chaptername\appendixname
994 \contentsname\listfigurename\listtablename\indexname\figurename
995 \tablename\partname\enclname\ccname\headtoname\pagename\seename
996 \alsoname\proofname\glossaryname}

4.4. Short tags

\babeltags This macro is straightforward. After zapping spaces, we loop over the list and define the
macros \text({tag) and \(tag). Definitions are first expanded so that they don’t contain \csname but
the actual macro.

997 \bbl@trace{Short tags}

998 \newcommand\babeltags[1]{%

999 \edef\bbl@tempa{\zap@space#l \@empty}%
1000 \def\bbl@tempb##1=##2\@@{%

1001 \edef\bbl@tempc{%

1002 \noexpand\newcommand

1003 \expandafter\noexpand\csname ##1l\endcsname{%

1004 \noexpand\protect

1005 \expandafter\noexpand\csname otherlanguage*\endcsname{##2}}
1006 \noexpand\newcommand

1007 \expandafter\noexpand\csname text##l\endcsname{%

1008 \noexpand\foreignlanguage{##2}}}

1009 \bbl@tempc}%
1010 \bbl@for\bbl@tempa\bbl@tempa{%
1011 \expandafter\bbl@tempb\bbl@tempa\@@}}

4.5. Compatibility with language.def

Plain e-TgX doesn’t rely on language.dat, but babel can be made compatible with this format easily.

1012 \bbl@trace{Compatibility with language.def}
1013 \ifx\directlua\@undefined\else

1014 \ifx\bbl@luapatterns\@undefined

1015 \input luababel.def

25

1016 \fi

1017 \ fi

1018 \ifx\bbl@languages\@undefined
1019 \ifx\directlua\@undefined

1020 \openinl = language.def

1021 \ifeofl

1022 \closeinl

1023 \message{I couldn't find the file language.def}

1024 \else

1025 \closeinl

1026 \begingroup

1027 \def\addlanguage#1#2#3#4#5{%

1028 \expandafter\ifx\csname lang@#l\endcsname\relax\else
1029 \global\expandafter\let\csname 1@#1l\expandafter\endcsname
1030 \csname lang@#1l\endcsname

1031 \fi}%

1032 \def\uselanguage#1{}%

1033 \input language.def

1034 \endgroup

1035 \fi

1036 \fi

1037 \chardef\l@english\z@

1038 \ fi

\addto It takes two arguments, a (control sequence) and TgX-code to be added to the (control
sequence).
If the (control sequence) has not been defined before it is defined now. The control sequence could
also expand to \relax, in which case a circular definition results. The net result is a stack overflow.
Note there is an inconsistency, because the assignment in the last branch is global.

1039 \def\addto#1#2{%
1040 \ifx#1\@undefined
1041 \def#1{#2}%

1042 \else
1043 \ifx#1\relax
1044 \def#1{#2}%
1045 \else
1046 {\toks@\expandafter{#1#2}%
1047 \xdef#1{\the\toks@}}%
1048 \fi
1049 \fi}
4.6. Hooks

Admittedly, the current implementation is a somewhat simplistic and does very little to catch errors,
but it is meant for developers, after all. \bbl@usehooks is the commands used by babel to execute
hooks defined for an event.

1050 \bbl@trace{Hooks}

1051 \newcommand\AddBabelHook[3][]{%

1052 \bbl@ifunset{bbl@hk@#2}{\EnableBabelHook{#2}}{}%

1053 \def\bbl@tempa##1,#3=##2 ,##3\@empty{\def\bbl@tempb{##2}}%
1054 \expandafter\bbl@tempa\bbl@evargs,#3=,\@empty

1055 \bbl@ifunset{bbl@ev@#2@#30#1}%

1056 {\bbl@csarg\bbl@add{eve#3@#1}{\bbl@elth{#2}}}%

1057 {\bbl@csarg\let{ev@#2@#3@#1}\relax}%

1058 \bbl@csarg\newcommand{ev@#2@#3@#1}[\bbl@tempb]}

1059 \newcommand\EnableBabelHook[1]{\bbl@csarg\let{hk@#1}\@firstofone}
1060 \newcommand\DisableBabelHook[1] {\bbl@csarg\let{hk@#1}\@gobble}
1061 \def\bbl@usehooks{\bbl@usehooks@lang\languagename}

1062 \def\bbl@usehooks@lang#1#2#3{% Test for Plain

1063 \ifx\UseHook\@undefined\else\UseHook{babel/*/#2}\fi

1064 \def\bbl@elth##1{%

1065 \bbl@cs{hk@##1}{\bbl@cs{eve##10#2@}#3}}%

26

1066 \bbl@cs{ev@#2@}%

1067 \ifx\languagename\@undefined\else % Test required for Plain (?)
1068 \ifx\UseHook\@undefined\else\UseHook{babel/#1/#2}\fi

1069 \def\bbl@elth##1{%

1070 \bbl@cs{hk@##1}{\bbl@cs{eve##1a#20#1}#3}}%
1071 \bbl@cs{eve#2e#1}%
1072 \fi}

To ensure forward compatibility, arguments in hooks are set implicitly. So, if a further argument is
added in the future, there is no need to change the existing code. Note events intended for hyphen.cfg
are also loaded (just in case you need them for some reason).

1073 \def\bbl@evargs{,% <- don't delete this comma

1074 everylanguage=1, loadkernel=1, loadpatterns=1,loadexceptions=1,%

1075 adddialect=2,patterns=2,defaultcommands=0,encodedcommands=2,write=0,%
1076 beforeextras=0,afterextras=0,stopcommands=0,stringprocess=0,%

1077 hyphenation=2,initiateactive=3,afterreset=0,foreign=0,foreign*=0,%
1078 beforestart=0,languagename=2,begindocument=1}

1079 \ifx\NewHook\@undefined\else % Test for Plain (?)

1080 \def\bbl@tempa#1=#2\@a{\NewHook{babel/#1}}

1081 \bbl@foreach\bbl@evargs{\bbl@tempa#1\@@}

1082 \ fi

Since the following command is meant for a hook (although a EIgX one), it’s placed here.

1083 \providecommand\PassOptionsToLocale[2]{%
1084 \bbl@csarg\bbl@add@list{passto@#2}{#1}}

4.7. Setting up language files

\LdfInit \LdfInit macro takestwo arguments. The first argument is the name of the language that
will be defined in the language definition file; the second argument is either a control sequence or a
string from which a control sequence should be constructed. The existence of the control sequence
indicates that the file has been processed before.

At the start of processing a language definition file we always check the category code of the
at-sign. We make sure that it is a ‘letter’ during the processing of the file. We also save its name as the
last called option, even if not loaded.

Another character that needs to have the correct category code during processing of language
definition files is the equals sign, ‘=’, because it is sometimes used in constructions with the \let
primitive. Therefore we store its current catcode and restore it later on.

Now we check whether we should perhaps stop the processing of this file. To do this we first need
to check whether the second argument that is passed to \LdfInit is a control sequence. We do that
by looking at the first token after passing #2 through string. When it is equal to \@ackslashchar
we are dealing with a control sequence which we can compare with \@undefined.

If so, we call \ldf@quit to set the main language, restore the category code of the @-sign and call
\endinput

When #2 was not a control sequence we construct one and compare it with \relax.

Finally we check \originalTeX.

1085 \bbl@trace{Macros for setting language files up}
1086 \def\bbl@ldfinit{%

1087 \let\bbl@screset\@empty

1088 \let\BabelStrings\bbl@opt@string

1089 \let\BabelOptions\@empty

1090 \let\BabellLanguages\relax

1091 \ifx\originalTeX\@undefined

1092 \let\originalTeX\@empty

1093 \else
1094 \originalTeX
1095 \fi}

1096 \def\LdfInit#1#2{%

1097 \chardef\atcatcode=\catcode'\@

1098 \catcode \@=11l\relax

1099 \chardef\eqcatcode=\catcode \=

1100 \catcode \==12\relax

1101 \@ifpackagewith{babel}{ensureinfo=0ff}{}%

27

1102 {\ifx\InputIfFileExists\@undefined\else

1103 \bbl@ifunset{bbl@lname@#1}%

1104 {{\let\bbl@ensuring\@empty % Flag used in babel-serbianc.tex
1105 \def\languagename{#1}%

1106 \bbl@id@assign

1107 \bbl@load@info{#1}}}%

1108 {}%

1109 \fi}%

1110 \expandafter\if\expandafter\@backslashchar

1111 \expandafter\@car\string#2\@nil
1112 \ifx#2\@undefined\else

1113 \ldf@quit{#1}%

1114 \fi

1115 \else

1116 \expandafter\ifx\csname#2\endcsname\relax\else
1117 \ldf@quit{#1}%

1118 \fi

1119 \fi

1120 \bbl@ldfinit}

\Idf@quit This macro interrupts the processing of a language definition file. Remember \endinput is
not executed immediately, but delayed to the end of the current line in the input file.

1121 \def\ldf@quit#1{%

1122 \expandafter\main@language\expandafter{#1}%
1123 \catcode \@=\atcatcode \let\atcatcode\relax
1124 \catcode \==\eqcatcode \let\eqcatcode\relax
1125 \endinput}

\Idf@finish This macro takes one argument. It is the name of the language that was defined in the
language definition file.
We load the local configuration file if one is present, we set the main language (taking into account
that the argument might be a control sequence that needs to be expanded) and reset the category
code of the @-sign.

1126 \def\bbl@afterldf{%

1127 \bbl@afterlang

1128 \let\bbl@afterlang\relax

1129 \let\BabelModifiers\relax

1130 \let\bbl@screset\relax}%

1131 \def\ldf@finish#1{%

1132 \loadlocalcfg{#1}%

1133 \bbl@afterldf

1134 \expandafter\main@language\expandafter{#1}%
1135 \catcode \@=\atcatcode \let\atcatcode\relax
1136 \catcode \==\eqcatcode \let\eqcatcode\relax}

After the preamble of the document the commands \LdfInit, \ldf@quit and \ldf@finish are no
longer needed. Therefore they are turned into warning messages in KTgX.

1137 \@nlypreamble\LdfInit
1138 \@nlypreamble\ldf@quit
1139 \@onlypreamble\ldf@finish

\main@language

\bbl@main@language This command should be used in the various language definition files. It
stores its argument in \bbl@main@language; to be used to switch to the correct language at the
beginning of the document.

1140 \def\main@language#1{%

1141 \def\bbl@main@language{#1}%

1142 \let\languagename\bbl@main@language
1143 \let\localename\bbl@main@language

1144 \let\mainlocalename\bbl@main@language
1145 \bbl@id@assign

28

1146 \ifcase\bbl@engine\or

1147 \ifx\setattribute\@undefined\else

1148 \setattribute\bbl@attr@locale\localeid
1149 \fi

1150 \fi

1151 \bbl@patterns{\languagename}}

We also have to make sure that some code gets executed at the beginning of the document, either
when the aux file is read or, if it does not exist, when the \AtBeginDocument is executed. Languages
do not set \pagedir, so we set here for the whole document to the main \bodydir.

The code written to the aux file attempts to avoid errors if babel is removed from the document.

1152 \def\bbl@beforestart{%

1153 \def\@nolanerr##1{%

1154 \bbl@carg\chardef{l@##1}\z@

1155 \bbl@warning{Undefined language '##1' in aux.\\Reported}}%
1156 \bbl@usehooks{beforestart}{}%

1157 \global\let\bbl@beforestart\relax}

1158 \AtBeginDocument{%

1159 {\@nameuse{bbl@beforestart}}% Group!

1160 \if@filesw

1161 \providecommand\babel@aux[2]{}%

1162 \immediate\write\@mainaux{\unexpanded{%

1163 \providecommand\babel@aux[2]{\global\let\babel@toc\@gobbletwo}}}%
1164 \immediate\write\@mainaux{\string\@nameuse{bbl@beforestart}}%

1165 \fi

1166 \expandafter\selectlanguage\expandafter{\bbl@main@language}%
1167 \ifbbl@single % must go after the line above.

1168 \renewcommand\selectlanguage[1]{}%

1169 \renewcommand\foreignlanguage[2]{#2}%

1170 \global\let\babel@aux\@gobbletwo % Also as flag
1171 \fi}

1172%

1173 \ifcase\bbl@engine\or
1174 \AtBeginDocument{\pagedir\bodydir}
1175 \ fi

A bit of optimization. Select in heads/feet the language only if necessary.

1176 \def\select@language@x#1{%

1177 \ifcase\bbl@select@type

1178 \bbl@ifsamestring\languagename{#1}{}{\select@language{#1}}%
1179 \else

1180 \select@language{#1}%

1181 \fi}

4.8. Shorthands

The macro \initiate@active@char below takes all the necessary actions to make its argument a
shorthand character. The real work is performed once for each character. But first we define a little
tool.

1182 \bbl@trace{Shorhands}

1183 \def\bbl@withactive#1#2{%

1184 \begingroup

1185 \lccode ~="#2\relax

1186 \lowercase{\endgroup#1~}}

\bbl@add@special The macro \bbl@add@special is used to add a new character (or single character
control sequence) to the macro \dospecials (and \@sanitize if ETgX is used). It is used only at one
place, namely when \initiate@active@char is called (which is ignored if the char has been made
active before). Because \@sanitize can be undefined, we put the definition inside a conditional.

Items are added to the lists without checking its existence or the original catcode. It does not hurt,
but should be fixed. It’s already done with \nfss@catcodes, added in 3.10.

1187 \def\bbl@add@special#1{% 1l:a macro like \", \?, etc.

29

1188 \bbl@add\dospecials{\do#1}% test @sanitize = \relax, for back. compat.
1189 \bbl@ifunset{@sanitize}{}{\bbl@add\@sanitize{\@makeother#1}}%
1190 \ifx\nfss@catcodes\@undefined\else

1191 \begingroup

1192 \catcode #1\active

1193 \nfss@catcodes

1194 \ifnum\catcode #1l=\active

1195 \endgroup

1196 \bbl@add\nfss@catcodes{\@makeother#1}%
1197 \else

1198 \endgroup

1199 \fi

1200 \fi}

\initiate@active@char A language definition file can call this macro to make a character active. This
macro takes one argument, the character that is to be made active. When the character was already
active this macro does nothing. Otherwise, this macro defines the control sequence
\normal@char{char) to expand to the character in its ‘normal state’ and it defines the active character
to expand to \normal@char{char) by default ((char) being the character to be made active). Later its
definition can be changed to expand to \active@char{char) by calling \bbl@activate{{char)}.

For example, to make the double quote character active one could have
\initiate@active@char{"} in a language definition file. This defines " as
\active@prefix "\active@char" (where the first " is the character with its original catcode, when
the shorthand is created, and \active@char" is a single token). In protected contexts, it expands to
\protect " or \noexpand " (i.e., with the original "); otherwise \active@char" is executed. This
macro in turn expands to \normal@char" in “safe” contexts (e.g., \label), but \user@active" in
normal “unsafe” ones. The latter search a definition in the user, language and system levels, in this
order, but if none is found, \normal@char" is used. However, a deactivated shorthand (with
\bbl@deactivate is defined as \active@prefix "\normal@char".

The following macro is used to define shorthands in the three levels. It takes 4 arguments: the
(string’ed) character, \(level)@group, (level)@active and {next-level)@active (except in system).

1201 \def\bbl@Eactive@def#1#2#3#4{%
1202 \@namedef{#3#1}{%

1203 \expandafter\ifx\csname#2@sh@#l@\endcsname\relax
1204 \bbl@afterelse\bbl@sh@select#2#1{#3@arg#1} {#4#1}%
1205 \else

1206 \bbl@afterfi\csname#2@sh@#1@\endcsname

1207 \fi}%

When there is also no current-level shorthand with an argument we will check whether there is a
next-level defined shorthand for this active character.

1208 \long\@namedef{#3@arg#1}##1{%
1209 \expandafter\ifx\csname#2@sh@#1@\string##1@\endcsname\relax

1210 \bbl@afterelse\csname#4#1\endcsname##1%
1211 \else
1212 \bbl@afterfi\csname#2@sh@#1@\string##1@\endcsname

1213 \fi}}%

\initiate@active@char calls \@initiate@active@char with 3 arguments. All of them are the
same character with different catcodes: active, other (\string’ed) and the original one. This trick
simplifies the code a lot.

1214 \def\initiate@active@char#1{%

1215 \bbl@ifunset{active@char\string#1}%

1216 {\bbl@withactive

1217 {\expandafter\@initiate@active@char\expandafter}#1\string#1#1}%
1218 {}}

The very first thing to do is saving the original catcode and the original definition, even if not
active, which is possible (undefined characters require a special treatment to avoid making them
\relax and preserving some degree of protection).

1219 \def\@initiate@active@char#1#2#3{%
1220 \bbl@csarg\edef{oricat@#2}{\catcode #2=\the\catcode #2\relax}%
1221 \ifx#1\@undefined

30

1222 \bbl@csarg\def{oridef@#2}{\def#l{\active@prefix#1\@undefined}}%
1223 \else

1224 \bbl@csarg\let{oridef@@#2}#1%

1225 \bbl@csarg\edef{oridef@#2}{%

1226 \let\noexpand#1%
1227 \expandafter\noexpand\csname bbl@oridef@@#2\endcsname}%
1228 \fi

If the character is already active we provide the default expansion under this shorthand
mechanism. Otherwise we write a message in the transcript file, and define \normal@char{char) to
expand to the character in its default state. If the character is mathematically active when babel is
loaded (for example ') the normal expansion is somewhat different to avoid an infinite loop (but it
does not prevent the loop if the mathcode is set to "8000 a posteriori).

1229 \1ifx#1#3\relax

1230 \expandafter\let\csname normal@char#2\endcsname#3%

1231 \else

1232 \bbl@info{Making #2 an active character}%

1233 \ifnum\mathcode #2=\ifodd\bbl@engine"1000000 \else"8000 \fi
1234 \@namedef{normal@char#2}{%

1235 \textormath{#3}{\csname bbl@oridef@@#2\endcsname}}%
1236 \else

1237 \@namedef{normal@char#2}{#3}%

1238 \fi

To prevent problems with the loading of other packages after babel we reset the catcode of the
character to the original one at the end of the package and of each language file (except with
KeepShorthandsActive). It is re-activate again at \begin{document}. We also need to make sure that
the shorthands are active during the processing of the aux file. Otherwise some citations may give
unexpected results in the printout when a shorthand was used in the optional argument of \bibitem
for example. Then we make it active (not strictly necessary, but done for backward compatibility).

1239 \bbl@restoreactive{#2}%

1240 \AtBeginDocument{%

1241 \catcode #2\active

1242 \if@filesw

1243 \immediate\write\@mainaux{\catcode \string#2\active}%
1244 \fi}%

1245 \expandafter\bbl@add@special\csname#2\endcsname

1246 \catcode #2\active

1247 \fi

Now we have set \normal@char{char), we must define \active@char{char), to be executed when
the character is activated. We define the first level expansion of \active@char{char) to check the
status of the @safe@actives flag. If it is set to true we expand to the ‘normal’ version of this
character, otherwise we call \user@active(char) to start the search of a definition in the user,
language and system levels (or eventually normal@char{char)).

1248 \let\bbl@tempa\@firstoftwo

1249 \if\string”™#2%

1250 \def\bbl@tempa{\noexpand\textormath}%
1251 \else

1252 \ifx\bbl@mathnormal\@undefined\else

1253 \let\bbl@tempa\bbl@mathnormal
1254 \fi
1255 \fi

1256 \expandafter\edef\csname active@char#2\endcsname{%
1257 \bbl@tempa

1258 {\noexpand\if@safe@actives

1259 \noexpand\expandafter

1260 \expandafter\noexpand\csname normal@char#2\endcsname
1261 \noexpand\else

1262 \noexpand\expandafter

1263 \expandafter\noexpand\csname bbl@doactive#2\endcsname
1264 \noexpand\fi}%

1265 {\expandafter\noexpand\csname normal@char#2\endcsname}}%

1266 \bbl@csarg\edef{doactive#2}{%

31

1267 \expandafter\noexpand\csname user@active#2\endcsname}%

We now define the default values which the shorthand is set to when activated or deactivated. It is
set to the deactivated form (globally), so that the character expands to

\active@prefix {(char) \normal@char{char)

(where \active@char{char) is one control sequence!).

1268 \bbl@csarg\edef{active@#2}{%

1269 \noexpand\active@prefix\noexpand#1%

1270 \expandafter\noexpand\csname active@char#2\endcsname}%
1271 \bbl@csarg\edef{normal@#2}{%

1272 \noexpand\active@prefix\noexpand#1%

1273 \expandafter\noexpand\csname normal@char#2\endcsname}%

1274 \bbl@ncarg\let#1{bbl@normal@#2}%

The next level of the code checks whether a user has defined a shorthand for himself with this
character. First we check for a single character shorthand. If that doesn’t exist we check for a
shorthand with an argument.

1275 \bbl@active@def#2\user@group{user@active}{language@active}%
1276 \bbl@Eactive@def#2\language@group{language@active}{system@active}%
1277 \bbl@active@def#2\system@group{system@active}{normal@char}%

In order to do the right thing when a shorthand with an argument is used by itself at the end of the
line we provide a definition for the case of an empty argument. For that case we let the shorthand
character expand to its non-active self. Also, When a shorthand combination such as ' ' ends up in a
heading TgX would see \protect'\protect'. To prevent this from happening a couple of shorthand
needs to be defined at user level.

1278 \expandafter\edef\csname\user@group @sh@#2@@\endcsname

1279 {\expandafter\noexpand\csname normal@char#2\endcsname}%
1280 \expandafter\edef\csname\user@group @sh@#2@\string\protect@\endcsname
1281 {\expandafter\noexpand\csname user@active#2\endcsname}%

Finally, a couple of special cases are taken care of. (1) If we are making the right quote (') active we
need to change \pr@m@s as well. Also, make sure that a single ' in math mode ‘does the right thing’.
(2) If we are using the caret () as a shorthand character special care should be taken to make sure
math still works. Therefore an extra level of expansion is introduced with a check for math mode on
the upper level.

1282 \if\string'#2%

1283 \let\prim@s\bbl@prim@s

1284 \let\active@math@prime#1%

1285 \fi

1286 \bbl@usehooks{initiateactive}{{#1}{#2}{#3}}}

The following package options control the behavior of shorthands in math mode.

1287 ((xMore package options)) =

1288 \DeclareOption{math=active}{}

1289 \DeclareOption{math=normal}{\def\bbl@mathnormal{\noexpand\textormath}}
1290 {(/More package options))

Initiating a shorthand makes active the char. That is not strictly necessary but it is still done for
backward compatibility. So we need to restore the original catcode at the end of package and and the
end of the 1df.

1291 \@ifpackagewith{babel}{KeepShorthandsActive}%
1292 {\let\bbl@restoreactive\@gobble}%
1293 {\def\bbl@restoreactive#1{%

1294 \bbl@exp{%

1295 \\\AfterBabellLanguage\\\CurrentOption
1296 {\catcode #1=\the\catcode #1\relax}%
1297 \\\AtEndOfPackage

1298 {\catcode #1=\the\catcode #1\relax}}}%

1299 \AtEndOfPackage{\let\bbl@restoreactive\@gobble}}

32

\bbl@sh@select This command helps the shorthand supporting macros to select how to proceed.
Note that this macro needs to be expandable as do all the shorthand macros in order for them to
work in expansion-only environments such as the argument of \hyphenation.

This macro expects the name of a group of shorthands in its first argument and a shorthand
character in its second argument. It will expand to either \bbl@firstcs or \bbl@scndcs. Hence two
more arguments need to follow it.

1300 \def\bbl@sh@select#1#2{%
1301 \expandafter\ifx\csname#l@sh@#2@sel\endcsname\relax
1302 \bbl@afterelse\bbl@scndcs

1303 \else
1304 \bbl@afterfi\csname#l@sh@#2@sel\endcsname
1305 \fi}

\active@prefix Used in the expansion of active characters has a function similar to \0T1-cmd in that
it \protects the active character whenever \protect is not \@typeset@protect. The \@gobble is
needed to remove a token such as \activechar: (when the double colon was the active character to
be dealt with). There are two definitions, depending of \ifincsname is available. If there is, the
expansion will be more robust.

1306 \begingroup
1307 \bbl@ifunset{ifincsname}
1308 {\gdef\active@prefix#1{%

1309 \ifx\protect\@typeset@protect

1310 \else

1311 \ifx\protect\@unexpandable@protect
1312 \noexpand#1%

1313 \else

1314 \protect#1%

1315 \fi

1316 \expandafter\@gobble

1317 \fi}}

1318 {\gdef\active@prefix#1{%

1319 \ifincsname

1320 \string#1%

1321 \expandafter\@gobble

1322 \else

1323 \ifx\protect\@typeset@protect

1324 \else

1325 \ifx\protect\@unexpandable@protect
1326 \noexpand#1%

1327 \else

1328 \protect#1%

1329 \fi

1330 \expandafter\expandafter\expandafter\@gobble
1331 \fi

1332 \fi}}

1333 \endgroup

if@safe@actives In some circumstances it is necessary to be able to reset the shorthand to its
‘normal’ value (usually the character with catcode ‘other’) on the fly. For this purpose the switch
@safe@actives is available. The setting of this switch should be checked in the first level expansion
of \active@char{char). When this expansion mode is active (with \@safe@activestrue), something
like "13"13 becomes "12"12 in an \edef (in other words, shorthands are \string’ed). This contrasts
with \protected@edef, where catcodes are always left unchanged. Once converted, they can be used
safely even after this expansion mode is deactivated (with \@safe@activefalse).

1334 \newif\if@safe@actives
1335 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made
“safe” this must be undone in the headers to prevent unexpected typeset results. For this situation we
define a command to make them “unsafe” again.

1336 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

33

\bbl@activate

\bbl@deactivate Both macros take one argument, like \initiate@active@char. The macro is used to
change the definition of an active character to expand to \active@char{char) in the case of
\bbl@activate, or \normal@char{char) in the case of \bbl@deactivate.

1337 \chardef\bbl@activated\z@

1338 \def\bbl@activate#1{%

1339 \chardef\bbl@Eactivated\@ne

1340 \bbl@withactive{\expandafter\let\expandafter}#1%
1341 \csname bbl@active@\string#l\endcsname}

1342 \def\bbl@deactivate#1{%

1343 \chardef\bbl@activated\tw@

1344 \bbl@withactive{\expandafter\let\expandafter}#1%
1345 \csname bbl@normal@\string#l\endcsname}

\bbl@firstcs
\bbl@scndcs These macros are used only as a trick when declaring shorthands.

1346 \def\bbl@firstcs#1#2{\csname#1l\endcsname}
1347 \def\bbl@scndcs#1#2{\csname#2\endcsname}

\declare@shorthand Used to declare a shorthand on a certain level. It takes three arguments:
1. aname for the collection of shorthands, i.e., ‘system’, or ‘dutch’;
2. the character (sequence) that makes up the shorthand, i.e., ~ or "a;
3. the code to be executed when the shorthand is encountered.

The auxiliary macro \babel@texpdf improves the interoperativity with hyperref and takes 4
arguments: (1) The TgX code in text mode, (2) the string for hyperref, (3) the TgX code in math mode,
and (4), which is currently ignored, but it’s meant for a string in math mode, like a minus sign instead
of an hyphen (currently hyperref doesn’t discriminate the mode). This macro may be used in 1df files.

1348 \def\babel@texpd f#1#2#3#4{%

1349 \ifx\texorpdfstring\@undefined

1350 \textormath{#1}{#3}%

1351 \else

1352 \texorpdfstring{\textormath{#1}{#3}}{#2}%

1353 % \texorpdfstring{\textormath{#1}{#3}}{\textormath{#2}{#4}}%
1354 \fi}

1355 %

1356 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}

1357 \def\@decl@short#1#2#3\@ni1#4{%

1358 \def\bbl@tempa{#3}%

1359 \ifx\bbl@tempa\@empty

1360 \expandafter\let\csname #1l@sh@\string#2@sel\endcsname\bbl@scndcs
1361 \bbl@ifunset{#1@sh@\string#2@}{}%

1362 {\def\bbl@tempa{#4}%

1363 \expandafter\ifx\csname#l@sh@\string#2@\endcsname\bbl@tempa
1364 \else

1365 \bbl@info

1366 {Redefining #1 shorthand \string#2\\%

1367 in language \CurrentOption}%

1368 \fi}%

1369 \@namedef{#1@sh@\string#2@}{#4}%

1370 \else

1371 \expandafter\let\csname #1l@sh@\string#2@sel\endcsname\bbl@firstcs
1372 \bbl@ifunset{#1@sh@\string#2@\string#3@}{}%

1373 {\def\bbl@tempa{#4}%

1374 \expandafter\ifx\csname#1l@sh@\string#2@\string#3@\endcsname\bbl@tempa
1375 \else

1376 \bbl@info

1377 {Redefining #1 shorthand \string#2\string#3\\%

1378 in language \CurrentOption}%

1379 \fi}%

1380 \@namedef{#1l@sh@\string#2@\string#3@}{#4}%

1381 \fi}

34

\textormath Some of the shorthands that will be declared by the language definition files have to be
usable in both text and mathmode. To achieve this the helper macro \textormath is provided.

1382 \def\textormath{%
1383 \ifmmode

1384 \expandafter\@secondoftwo
1385 \else
1386 \expandafter\@firstoftwo
1387 \fi}

\user@group

\language@group

\system@group The current concept of ‘shorthands’ supports three levels or groups of shorthands.
For each level the name of the level or group is stored in a macro. The default is to have a user group;
use language group ‘english’ and have a system group called ‘system’.

1388 \def\user@group{user}
1389 \def\language@group{english}
1390 \def\system@group{system}

\useshorthands This is the user level macro. It initializes and activates the character for use as a
shorthand character (i.e., it’s active in the preamble). Languages can deactivate shorthands, so a
starred version is also provided which activates them always after the language has been switched.

1391 \def\useshorthands{%

1392 \@ifstar\bbl@usesh@s{\bbl@usesh@x{}}}

1393 \def\bbl@usesh@s#1{%

1394 \bbl@usesh@x

1395 {\AddBabelHook{babel-sh-\string#l}{afterextras}{\bbl@activate{#1}}}%
1396 {#1}}

1397 \def\bbl@usesh@x#1#2{%

1398 \bbl@ifshorthand{#2}%

1399 {\def\user@group{user}%s

1400 \initiate@active@char{#2}%
1401 #1%

1402 \bbl@activate{#2}}%

1403 {\bbleerror{shorthand-is-off}{}{#2}{}}}

\defineshorthand Currently we only support two groups of user level shorthands, named internally
user and user@language) (language-dependent user shorthands). By default, only the first one is
taken into account, but if the former is also used (in the optional argument of \defineshorthand) a
new level is inserted for it (user@generic, done by \bbl@set@user@generic); we make also sure {}
and \protect are taken into account in this new top level.

1404 \def\user@language@group{user@\language@group}
1405 \def\bbl@set@user@generic#1#2{%
1406 \bbl@ifunset{user@generic@active#1}%

1407 {\bbl@active@def#1l\user@language@group{user@active}{user@generic@active}%
1408 \bbl@active@def#1l\user@group{user@generic@active}{language@active}%

1409 \expandafter\edef\csname#2@sh@#1@a\endcsname{%

1410 \expandafter\noexpand\csname normal@char#l\endcsname}%

1411 \expandafter\edef\csname#2@sh@#l@\string\protect@\endcsname{%

1412 \expandafter\noexpand\csname user@active#l\endcsname}}%

1413 \@empty}

1414 \newcommand\defineshorthand[3] [user]{%
1415 \edef\bbl@tempa{\zap@space#l \@empty}%
1416 \bbl@for\bbl@tempb\bbl@tempa{%

1417 \if*\expandafter\@car\bbl@tempb\@nil

1418 \edef\bbl@tempb{user@\expandafter\@gobble\bbl@tempb}%

1419 \@expandtwoargs

1420 \bbl@set@user@generic{\expandafter\string\@car#2\@nil}\bbl@tempb
1421 \fi

1422 \declare@shorthand{\bbl@tempb}{#2}{#3}}}

35

\languageshorthands A user level command to change the language from which shorthands are
used. Unfortunately, babel currently does not keep track of defined groups, and therefore there is no
way to catch a possible change in casing to fix it in the same way languages names are fixed.

1423 \def\languageshorthands#1{%

1424 \bbl@ifsamestring{none}{#1}{}{%

1425 \bbl@once{short-\localename-#1}{%

1426 \bbl@info{'\localename' activates '#1' shorthands.\\Reported}}}%
1427 \def\language@group{#1}}

\aliasshorthand Deprecated. First the new shorthand needs to be initialized. Then, we define the new
shorthand in terms of the original one, but note with \aliasshorthands{"}{/} is
\active@prefix /\active@char/, so we still need to let the latter to \active@char".

1428 \def\aliasshorthand#1#2{%
1429 \bbl@ifshorthand{#2}%

1430 {\expandafter\ifx\csname active@char\string#2\endcsname\relax
1431 \ifx\document\@notprerr

1432 \@notshorthand{#2}%

1433 \else

1434 \initiate@active@char{#2}%

1435 \bbl@ccarg\let{active@char\string#2}{active@char\string#1}%
1436 \bbl@ccarg\let{normal@char\string#2}{normal@char\string#1}%
1437 \bbl@activate{#2}%

1438 \fi

1439 \fi}%

1440 {\bbleerror{shorthand-is-off}{}{#2}{}}}

\@notshorthand
1441 \def\@notshorthand#1{\bbl@error{not-a-shorthand}{#1}{}{}}

\shorthandon
\shorthandoff The first level definition of these macros just passes the argument on to
\bbl@switch@sh, adding \@nil at the end to denote the end of the list of characters.

1442 \newcommand*\shorthandon[1]{\bbl@switch@sh\@ne#1\@nnil}
1443 \DeclareRobustCommand*\shorthandoff{%

1444 \@ifstar{\bbl@shorthandoff\tw@}{\bbl@shorthandoff\z@}}
1445 \def\bbl@shorthandoff#1#2{\bbl@switch@sh#1#2\@nnil}

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and
subsequently switches the category code of the shorthand character according to the first argument
of \bbl@switch@sh.

But before any of this switching takes place we make sure that the character we are dealing with is
known as a shorthand character. If it is, a macro such as \active@char" should exist.

Switching off and on is easy — we just set the category code to ‘other’ (12) and \active. With the
starred version, the original catcode and the original definition, saved in @initiate@active@char,
are restored.

1446 \def\bbl@switch@sh#1#2{%
1447 \ifx#2\@nnil\else
1448 \bbl@ifunset{bbl@active@\string#2}%

1449 {\bbl@error{not-a-shorthand-b}{}{#2}{}}%

1450 {\ifcase#1% off, on, off*

1451 \catcode #212\relax

1452 \or

1453 \catcode #2\active

1454 \bbl@ifunset{bbl@shdef@\string#2}%

1455 {}%

1456 {\bbl@withactive{\expandafter\let\expandafter}#2%
1457 \csname bbl@shdef@\string#2\endcsname
1458 \bbl@csarg\let{shdef@\string#2}\relax}%
1459 \ifcase\bbl@activated\or

1460 \bbl@activate{#2}%

36

1461 \else

1462 \bbl@deactivate{#2}%

1463 \fi

1464 \or

1465 \bbl@ifunset{bbl@shdef@\string#2}%

1466 {\bbl@withactive{\bbl@csarg\let{shdef@\string#2}}#2}%
1467 {}%

1468 \csname bbl@oricat@\string#2\endcsname
1469 \csname bbl@oridef@\string#2\endcsname
1470 \fi}%

1471 \bblEafterfi\bbl@switch@sh#1%

1472 \fi}

Note the value is that at the expansion time; e.g., in the preamble shorthands are usually
deactivated.

1473 \def\babelshorthand{\active@prefix\babelshorthand\bbl@putsh}
1474 \def\bbl@putsh#1{%

1475 \bbl@ifunset{bbl@active@\string#1}%

1476 {\bbl@putsh@i#1\@empty\@nnil}%

1477 {\csname bbl@Eactive@\string#l\endcsname}}

1478 \def\bbl@putsh@i#1#2\@nnil{%

1479 \csname\language@group @sh@\string#1@%

1480 \ifx\@empty#2\else\string#2@\fi\endcsname}

1481 %

1482 \1fx\bbl@opt@shorthands\@nnil\else

1483 \let\bbl@s@initiate@active@char\initiate@active@char

1484 \def\initiate@active@char#1{%

1485 \bbl@ifshorthand{#1}{\bbl@s@initiate@active@char{#1}}{}}
1486 \let\bbl@s@switch@sh\bbl@switch@sh

1487 \def\bbl@switch@sh#1#2{%

1488 \ifx#2\@nnil\else

1489 \bbl@afterfi
1490 \bbl@ifshorthand{#2}{\bbl@s@switch@sh#1{#2}}{\bbl@switch@sh#1}%
1491 \fi}

1492 \let\bbl@s@activate\bbl@activate

1493 \def\bblEactivate#1{%

1494 \bbl@ifshorthand{#1}{\bbl@s@activate{#1}}{}}
1495 \let\bbl@s@deactivate\bbl@deactivate

1496 \def\bbl@deactivate#1{%

1497 \bbl@ifshorthand{#1}{\bbl@s@deactivate{#1}}{}}
1498 \ fi

You may want to test if a character is a shorthand. Note it does not test whether the shorthand is on
or off.

1499 \newcommand\ifbabelshorthand[3]{\bbl@ifunset{bbl@active@\string#1}{#3}{#2}}

\bbl@prim@s

\bbl@pr@m@s One of the internal macros that are involved in substituting \prime for each right
quote in mathmode is \prim@s. This checks if the next character is a right quote. When the right
quote is active, the definition of this macro needs to be adapted to look also for an active right quote;
the hat could be active, too.

1500 \def\bbl@prim@s{%

1501 \prime\futurelet\@let@token\bbl@pr@m@s}
1502 \def\bbl@if@primes#1#2{%

1503 \ifx#1\@let@token

1504 \expandafter\@firstoftwo

1505 \else\ifx#2\@let@token

1506 \bblEafterelse\expandafter\@firstoftwo
1507 \else

1508 \bbl@eafterfi\expandafter\@secondoftwo
1509 \fi\fi}

1510 \begingroup

1511 \catcode \"=7 \catcode *=\active \lccode *="\"

37

1512 \catcode \'=12 \catcode \"=\active \lccode \"="\'
1513 \lowercase{%
1514 \gdef\bbl@praem@s{%

1515 \bbl@if@primes"'%
1516 \pr@e@@s
1517 {\bbl@if@primes*~\pr@e@et\egroup}}}

1518 \endgroup

Usually the ~ is active and expands to \penalty\@M\,,. When it is written to the aux file it is written
expanded. To prevent that and to be able to use the character ~ as a start character for a shorthand, it
is redefined here as a one character shorthand on system level. The system declaration is in most
cases redundant (when ~ is still a non-break space), and in some cases is inconvenient (if ~ has been
redefined); however, for backward compatibility it is maintained (some existing documents may rely
on the babel value).

1519 \initiate@active@char{~}
1520 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }
1521 \bbl@activate{~}

\OT1dqpos

\T1dqpos The position of the double quote character is different for the OT1 and T1 encodings. It will
later be selected using the \ f@eencoding macro. Therefore we define two macros here to store the
position of the character in these encodings.

1522 \expandafter\def\csname 0Tldgpos\endcsname{127}
1523 \expandafter\def\csname Tldgpos\endcsname{4}

When the macro \ f@encoding is undefined (as it is in plain TgX) we define it here to expand to 0T1

1524 \1fx\ f@encoding\@undefined
1525 \def\f@encoding{0T1}
1526 \ i

4.9. Language attributes

Language attributes provide a means to give the user control over which features of the language
definition files he wants to enable.

\languageattribute The macro \languageattribute checks whether its arguments are valid and
then activates the selected language attribute. First check whether the language is known, and then
process each attribute in the list.

1527 \bbl@trace{Language attributes}
1528 \newcommand\languageattribute[2]{%
1529 \def\bbl@tempc{#1}%

1530 \bbl@fixname\bbl@tempc

1531 \bbl@iflanguage\bbl@tempc{%

1532 \bbl@vforeach{#2}{%

To make sure each attribute is selected only once, we store the already selected attributes in
\bbl@known@attribs. When that control sequence is not yet defined this attribute is certainly not
selected before.

1533 \ifx\bbl@known@attribs\@undefined

1534 \in@false

1535 \else

1536 \bbl@xin@{, \bbl@tempc-##1, }{, \bbl@known@attribs, }%

1537 \fi

1538 \ifin@

1539 \bbl@warning{%

1540 You have more than once selected the attribute '##1'\\%
1541 for language #1. Reported}%

1542 \else

When we end up here the attribute is not selected before. So, we add it to the list of selected
attributes and execute the associated TgX-code.

1543 \bbl@info{Activated '##1' attribute for\\%

38

1544 "\bbl@tempc'. Reported}%

1545 \bbl@exp{%

1546 \\\bbl@add@list\\\bbl@known@attribs{\bbl@tempc-##1}}%

1547 \edef\bbl@tempa{\bbl@tempc-##1}%

1548 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes%
1549 {\csname\bbl@tempc @attr@##l\endcsname}%

1550 {\@attrerr{\bbl@tempc}{##1}}%

1551 \fi}}}

1552 \@nlypreamble\languageattribute
The error text to be issued when an unknown attribute is selected.

1553 \newcommand*{\@attrerr}[2]{%
1554 \bbl@error{unknown-attribute}{#1}{#2}{}}

\bbl@declare@ttribute This command adds the new language/attribute combination to the list of
known attributes.
Then it defines a control sequence to be executed when the attribute is used in a document. The
result of this should be that the macro \extras. .. for the current language is extended, otherwise
the attribute will not work as its code is removed from memory at \begin{document}.

1555 \def\bbl@declare@ttribute#1#2#3{%

1556 \bbl@xin@{,#2,}{,\BabelModifiers,}%

1557 \ifin@

1558 \AfterBabellLanguage{#1}{\languageattribute{#1}{#2}}%
1559 \fi

1560 \bbl@add@list\bbl@attributes{#1-#2}%

1561 \expandafter\def\csname#l@attr@#2\endcsname{#3}}

\bbl@ifattributeset This internal macro has 4 arguments. It can be used to interpret TgX code based
on whether a certain attribute was set. This command should appear inside the argument to
\AtBeginDocument because the attributes are set in the document preamble, after babel is loaded.

The first argument is the language, the second argument the attribute being checked, and the third
and fourth arguments are the true and false clauses.

1562 \def\bbl@ifattributeset#1#2#3#4{%
1563 \ifx\bbl@known@attribs\@undefined

1564 \in@false

1565 \else

1566 \bbl@xin@{,#1-#2,3}{, \bbl@known@attribs, }%
1567 \fi

1568 \ifin@
1569 \bbl@afterelse#3%

1570 \else
1571 \bbl@afterfi#4%
1572 \fi}

\bbl@ifknown@ttrib An internal macro to check whether a given language/attribute is known. The
macro takes 4 arguments, the language/attribute, the attribute list, the TgX-code to be executed when
the attribute is known and the TgX-code to be executed otherwise.

We first assume the attribute is unknown. Then we loop over the list of known attributes, trying to
find a match.

1573 \def\bbl@ifknown@ttrib#1#2{%

1574 \let\bbl@tempa\@secondoftwo

1575 \bbl@loopx\bbl@tempb{#2}{%

1576 \expandafter\in@\expandafter{\expandafter,\bbl@tempb, }{,#1,}%
1577 \ifin@

1578 \let\bbl@tempa\@firstoftwo
1579 \else
1580 \fi}%

1581 \bbl@tempa}

39

\bbl@clear@ttribs This macro removes all the attribute code from KTgX’s memory at
\begin{document} time (if any is present).

1582 \def\bbl@clear@ttribs{%
1583 \ifx\bbl@attributes\@undefined\else
1584 \bbl@loopx\bbl@tempa{\bbl@attributes}{%

1585 \expandafter\bbl@clear@ttrib\bbl@tempa.}%
1586 \let\bbl@attributes\@undefined
1587 \fi}

1588 \def\bbl@clear@ttrib#1-#2.{%
1589 \expandafter\let\csname#l@attr@#2\endcsname\@undefined}
1590 \AtBeginDocument{\bbl@clear@ttribs}

4.10. Support for saving and redefining macros

To save the meaning of control sequences using \babel@save, we use temporary control sequences.
To save hash table entries for these control sequences, we don’t use the name of the control sequence
to be saved to construct the temporary name. Instead we simply use the value of a counter, which is
reset to zero each time we begin to save new values. This works well because we release the saved
meanings before we begin to save a new set of control sequence meanings (see \selectlanguage
and \originalTeX). Note undefined macros are not undefined any more when saved - they are
\relax’ed.

\babel@savecnt
\babel@beginsave The initialization of a new save cycle: reset the counter to zero.

1591 \bbl@trace{Macros for saving definitions}
1592 \def\babel@beginsave{\babel@savecnt\z@}

Before it’s forgotten, allocate the counter and initialize all.

1593 \newcount\babel@savecnt
1594 \babel@beginsave

\babel@save

\babel@savevariable The macro \babel@save(csname) saves the current meaning of the control
sequence (csname) to \originalTeX (which has to be expandable, i.e., you shouldn’t let it to \ relax).
To do this, we let the current meaning to a temporary control sequence, the restore commands are
appended to \originalTeX and the counter is incremented. The macro
\babel@savevariable(variable) saves the value of the variable. (variable) can be anything allowed
after the \the primitive. To avoid messing saved definitions up, they are saved only the very first
time.

1595 \def\babel@save#1{%

1596 \def\bbl@tempa{{,#1,}}% Clumsy, for Plain

1597 \expandafter\bbl@add\expandafter\bbl@tempa\expandafter{%
1598 \expandafter{\expandafter,\bbl@savedextras,}}%

1599 \expandafter\in@\bbl@tempa

1600 \ifin@\else

1601 \bbl@add\bbl@savedextras{,#1,}%

1602 \bbl@carg\let{babel@\number\babel@savecnt}#1\relax
1603 \toks@\expandafter{\originalTeX\let#1=}%

1604 \bbl@exp{%

1605 \def\\\originalTeX{\the\toks@\<babel@\number\babel@savecnt>\relax}}%
1606 \advance\babel@savecnt\@ne
1607 \fi}

1608 \def\babel@savevariable#1{%
1609 \toks@\expandafter{\originalTeX #1=}%
1610 \bbl@exp{\def\\\originalTeX{\the\toks@\the#1\relax}}}

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine it to
call the original macro with the ‘sanitized’ argument. The reason why we do it this way is that we
don’t want to redefine the BTgX macros completely in case their definitions change (they have
changed in the past). A macro named \macro will be saved new control sequences named
\org@macro.

40

1611 \def\bbl@redefine#1{%

1612 \edef\bbl@tempa{\bbl@stripslash#1}%

1613 \expandafter\let\csname org@\bbl@tempa\endcsname#1%
1614 \expandafter\def\csname\bbl@tempa\endcsname}

1615 \@nlypreamble\bbl@redefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \1ong commands
such as \ifthenelse.

1616 \def\bbl@redefine@long#1{%

1617 \edef\bbl@tempa{\bbl@stripslash#1}%

1618 \expandafter\let\csname org@\bbl@tempa\endcsname#1%
1619 \long\expandafter\def\csname\bbl@tempa\endcsname}
1620 \@nlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but which might be robust we need a slightly
more intelligent macro. A robust command foo is defined to expand to \protect\foo.. So itis
necessary to check whether \foo, exists. The result is that the command that is being redefined is
always robust afterwards. Therefore all we need to do now is define \ foo,.

1621 \def\bbl@redefinerobust#1{%

1622 \edef\bbl@tempa{\bbl@stripslash#1}%

1623 \bbl@ifunset{\bbl@tempa\space}%

1624 {\expandafter\let\csname org@\bbl@tempa\endcsname#1%
1625 \bbl@exp{\def\\#1{\\\protect\<\bbl@tempa\space>}}}%
1626 {\bbl@exp{\let\<org@\bbl@tempa>\<\bbl@tempa\space>}}%
1627 \@namedef{\bbl@tempa\space}}

1628 \@onlypreamble\bbl@redefinerobust

4.11. French spacing

\bbl@frenchspacing

\bbl@nonfrenchspacing Some languages need to have \frenchspacing in effect. Others don’t want
that. The command \bbl@frenchspacing switches it on when it isn’t already in effect and
\bbl@nonfrenchspacing switches it off if necessary.

1629 \def\bbl@frenchspacing{%
1630 \ifnum\the\sfcode \.=\@m

1631 \let\bbl@nonfrenchspacing\relax

1632 \else

1633 \frenchspacing

1634 \let\bbl@nonfrenchspacing\nonfrenchspacing
1635 \fi}

1636 \ let\bbl@nonfrenchspacing\nonfrenchspacing

A more refined way to switch the catcodes is done with ini files. Here an auxiliary macro is
defined, but the main part is in \babelprovide. This new method should be ideally the default one.

1637 \let\bbl@elt\relax

1638 \edef\bbl@fs@chars{%

1639 \bbl@elt{\string.}\@m{3000}\bbl@elt{\string?}\@m{3000}%
1640 \bbl@elt{\string!}\@m{3000}\bbl@elt{\string:}\@m{2000}%
1641 \bblEelt{\string;}\@m{1500}\bbl@elt{\string, }\@m{1250}}
1642 \def\bbl@pre@fs{%

1643 \def\bblEelt##1##2##3{\sfcode ##1=\the\sfcode ##1\relax}%
1644 \edef\bbl@save@sfcodes{\bbl@fs@chars}}%

1645 \def\bbl@post@fs{%

1646 \bbl@save@sfcodes

1647 \edef\bbl@tempa{\bbl@cl{frspc}}%

1648 \edef\bbl@tempa{\expandafter\@car\bbl@tempa\@nil}%

1649 \1if u\bbl@tempa % do nothing
1650 \else\if n\bbl@tempa % non french
1651 \def\bbl@e L t##1##2##3{%

1652 \ifnum\sfcode ##1=##2\relax

1653 \babel@savevariable{\sfcode ##1}%

41

1654 \sfcode ##1=##3\relax

1655 \fi}%

1656 \bbl@fs@chars

1657 \else\if y\bbl@tempa % french

1658 \def\bbl@elt##1##2##3{%

1659 \ifnum\sfcode ##1=##3\relax

1660 \babel@savevariable{\sfcode ##1}%
1661 \sfcode ##1=##2\relax

1662 \fi}%

1663 \bbl@fs@chars
1664 \fi\fi\fi}

4.12. Hyphens

\babelhyphenation This macro saves hyphenation exceptions. Two macros are used to store them:
\bbl@hyphenation@ for the global ones and \bbl@hyphenation@(language) for language ones. See
\bbl@patterns above for further details. We make sure there is a space between words when
multiple commands are used.

1665 \bbl@trace{Hyphens}

1666 \@onlypreamble\babelhyphenation

1667 \AtEndOfPackage{%

1668 \newcommand\babelhyphenation[2][\@empty]{%
1669 \ifx\bbl@hyphenation@\relax

1670 \let\bbl@hyphenation@\@empty

1671 \fi

1672 \ifx\bbl@hyphlist\@empty\else

1673 \bbl@warning{%

1674 You must not intermingle \string\selectlanguage\space and\\%
1675 \string\babelhyphenation\space or some exceptions will not\\%
1676 be taken into account. Reported}%

1677 \fi

1678 \ifx\@empty#1%

1679 \protected@edef\bbl@hyphenation@{\bbl@hyphenation@\space#2}%
1680 \else

1681 \bbl@vforeach{#1}{%

1682 \def\bbl@tempa{##1}%

1683 \bbl@fixname\bbl@tempa

1684 \bbl@iflanguage\bbl@tempa{%

1685 \bbl@csarg\protected@edef{hyphenation@\bbl@tempa}{%

1686 \bbl@ifunset{bbl@hyphenation@\bbl@tempa}%

1687 {}%

1688 {\csname bbl@hyphenation@\bbl@tempa\endcsname\space}%
1689 #2}}1}%

1690 \fi}}

\babelhyphenmins Only KTgX (basically because it’s defined with a ETEX tool).

1691 \ifx\NewDocumentCommand\@undefined\else
1692 \NewDocumentCommand\babelhyphenmins{sommo}{%
1693 \IfNoValueTF{#2}%

1694 {\protected@edef\bbl@hyphenmins@{\set@hyphenmins{#3}{#4}}%

1695 \IfValueT{#5}{%

1696 \protected@edef\bbl@hyphenatmin@{\hyphenationmin=#5\relax}}%
1697 \IfBooleanT{#1}{%

1698 \lefthyphenmin=#3\relax

1699 \righthyphenmin=#4\relax

1700 \IfvalueT{#5}{\hyphenationmin=#5\relax}}}%

1701 {\edef\bbl@tempb{\zap@space#2 \@empty}%

1702 \bbl@for\bbl@tempa\bbl@tempb{%

1703 \@namedef{bbl@hyphenmins@\bbl@tempa}{\set@hyphenmins{#3} {#4}}%
1704 \IfValueT{#5}{%

1705 \@namedef{bbl@hyphenatmin@\bbl@tempa}{\hyphenationmin=#5\relax}}}%
1706 \IfBooleanT{#1}{\bbl@error{hyphenmins-args}{}{}{}}}}

42

1707 \ fi

\bbl@allowhyphens This macro makes hyphenation possible. Basically its definition is nothing more
than \nobreak \hskip Opt plus Opt. TgX begins and ends a word for hyphenation at a glue node.
The penalty prevents a linebreak at this glue node.

1708 \def\bbl@allowhyphens{\ifvmode\else\nobreak\hskip\z@skip\fi}
1709 \def\bbl@t@one{T1}
1710 \def\allowhyphens{\ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}

\babelhyphen Macros to insert common hyphens. Note the space before @ in \babelhyphen. Instead
of protecting it with \DeclareRobustCommand, which could insert a \relax, we use the same
procedure as shorthands, with \active@prefix.

1711 \newcommand\babelnullhyphen{\char\hyphenchar\font}

1712 \def\babelhyphen{\active@prefix\babelhyphen\bbl@hyphen}

1713 \def\bbl@hyphen{%

1714 \@ifstar{\bbl@hyphen@i @}{\bbl@hyphen@i\@empty}}

1715 \def\bbl@hyphen@i#1#2{%

1716 \lowercase{\bbl@ifunset{bbl@hy@#1#2\@empty}}%

1717 {\csname bbl@#lusehyphen\endcsname{\discretionary{#2}{}{#2}}1}%
1718 {\lowercase{\csname bbl@hy@#1#2\@empty\endcsname}}}

The following two commands are used to wrap the “hyphen” and set the behavior of the rest of the
word - the version with a single @ is used when further hyphenation is allowed, while that with @@ if
no more hyphens are allowed. In both cases, if the hyphen is preceded by a positive space, breaking
after the hyphen is disallowed.

There should not be a discretionary after a hyphen at the beginning of a word, so it is prevented if
preceded by a skip. Unfortunately, this does handle cases like “(-suffix)”. \nobreak is always preceded
by \leavevmode, in case the shorthand starts a paragraph.

1719 \def\bbl@usehyphen#1{%

1720 \leavevmode

1721 \ifdim\lastskip>\z@\mbox{#1}\else\nobreak#1\fi

1722 \nobreak\hskip\z@skip}

1723 \def\bbl@@usehyphen#1{%

1724 \leavevmode\ifdim\lastskip>\z@\mbox{#1}\else#1\fi}

The following macro inserts the hyphen char.

1725 \def\bbl@hyphenchar{%

1726 \ifnum\hyphenchar\font=\m@ne
1727 \babelnullhyphen

1728 \else

1729 \char\hyphenchar\font

1730 \fi}

Finally, we define the hyphen “types”. Their names will not change, so you may use them in 1df’s.
After a space, the \mbox in \bbl@hy@nobreak is redundant.

1731 \def\bbl@hy@soft{\bbl@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}
1732 \def\bbl@hy@@soft{\bbl@ausehyphen{\discretionary{\bbl@hyphenchar}{}{}}}
1733 \def\bbl@hy@hard{\bbl@usehyphen\bbl@hyphenchar}

1734 \def\bbl@hy@@hard{\bbl@ausehyphen\bbl@hyphenchar}

1735 \def\bbl@hy@nobreak{\bbl@usehyphen{\mbox{\bbl@hyphenchar}}}

1736 \def\bbl@hy@anobreak{\mbox{\bbl@hyphenchar}}

1737 \def\bbl@hy@repeat{%

1738 \bbl@usehyphen{%

1739 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}
1740 \def\bbl@hy@@repeat{%

1741 \bbl@@usehyphen{%

1742 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}
1743 \def\bbl@hy@empty{\hskip\z@skip}

1744 \def\bbl@hy@eempty{\discretionary{}{}{}}

\bbl@disc For some languages the macro \bbl@disc is used to ease the insertion of discretionaries

for letters that behave ‘abnormally’ at a breakpoint.
1745 \def\bbl@disc#1#2{\nobreak\discretionary{#2-}{}{#1}\bbl@allowhyphens}

43

4.13. Multiencoding strings

The aim following commands is to provide a common interface for strings in several encodings. They
also contains several hooks which can be used by luatex and xetex. The code is organized here with
pseudo-guards, so we start with the basic commands.

Tools But first, a tool. It makes global a local variable. This is not the best solution, but it works.

1746 \bbl@trace{Multiencoding strings}
1747 \def\bbl@toglobal#1{\global\let#1#1}

The following option is currently no-op. It was meant for the deprecated \SetCase.

1748 {(xMore package options)) =
1749 \DeclareOption{nocase}{}
1750 {{/More package options))

The following package options control the behavior of \SetString.

1751 {(x*More package options)) =

1752 \let\bbl@opt@strings\@nnil % accept strings=value

1753 \DeclareOption{strings}{\def\bbl@opt@strings{\BabelStringsDefault}}
1754 \DeclareOption{strings=encoded}{\let\bbl@opt@strings\relax}

1755 \def\BabelStringsDefault{generic}

1756 {{/More package options))

Main command This is the main command. With the first use it is redefined to omit the basic
setup in subsequent blocks. We make sure strings contain actual letters in the range 128-255, not
active characters.

1757 \@nlypreamble\StartBabelCommands
1758 \def\StartBabelCommands{%

1759 \begingroup

1760 \@tempcnta="7F

1761 \def\bbl@tempa{%

1762 \ifnum\@tempcnta>"FF\else
1763 \catcode\@tempcnta=11
1764 \advance\@tempcnta\@ne
1765 \expandafter\bbl@tempa
1766 \fi}%

1767 \bbl@tempa

1768 <@Macros local to BabelCommands@>
1769 \def\bbl@provstring##1##2{%

1770 \providecommand##1{##2}%

1771 \bbl@toglobal##1}%

1772 \global\let\bbl@scafter\@empty

1773 \let\StartBabelCommands\bbl@startcmds
1774 \ifx\BabellLanguages\relax

1775 \let\BabellLanguages\CurrentOption
1776 \fi

1777 \begingroup

1778 \let\bbl@screset\@nnil % local flag - disable 1st stopcommands
1779 \StartBabelCommands}

1780 \def\bbl@startcmds{%

1781 \ifx\bbl@screset\@nnil\else

1782 \bbl@usehooks{stopcommands}{}%
1783 \fi

1784 \endgroup

1785 \begingroup

1786 \@ifstar

1787 {\ifx\bbl@opt@strings\@nnil

1788 \let\bbl@opt@strings\BabelStringsDefault
1789 \fi
1790 \bbl@startcmds@i}%

1791 \bbl@startcmds@i}
1792 \def\bbl@startcmds@i#1#2{%
1793 \edef\bbl@L{\zap@space#l \@empty}%

44

1794 \edef\bbl@G{\zap@space#2 \@empty}%
1795 \bbl@startcmds@ii}
1796 \let\bbl@startcommands\StartBabelCommands

Parse the encoding info to get the label, input, and font parts.

Select the behavior of \SetString. There are two main cases, depending of if there is an optional
argument: without it and strings=encoded, strings are defined always; otherwise, they are set only
if they are still undefined (i.e., fallback values). With labelled blocks and strings=encoded, define
the strings, but with another value, define strings only if the current label or font encoding is the
value of strings; otherwise (i.e., no strings or a block whose label is not in strings=) do nothing.

We presume the current block is not loaded, and therefore set (above) a couple of default values to
gobble the arguments. Then, these macros are redefined if necessary according to several
parameters.

1797 \newcommand\bbl@startcmds@ii[1][\@empty]{%
1798 \let\SetString\@gobbletwo

1799 \let\bbl@stringdef\@gobbletwo

1800 \let\AfterBabelCommands\@gobble

1801 \ifx\@empty#1%

1802 \def\bbl@sc@label{generic}%

1803 \def\bbl@encstring##1##2{%

1804 \ProvideTextCommandDefault##1{##2}%
1805 \bbl@toglobal##1%
1806 \expandafter\bbl@toglobal\csname\string?\string##1\endcsname}%

1807 \let\bbl@sctest\in@true

1808 \else

1809 \let\bbl@sc@charset\space %
1810 \let\bbl@sc@fontenc\space %
1811 \def\bbl@tempa##1=##2\@nil{%
1812 \bbl@csarg\edef{sc@\zap@space##1 \@empty}{##2 }}%

1813 \bbl@vforeach{label=#1}{\bbl@tempa##1\@nil}%

1814 \def\bbl@tempa##1 ##2{% space -> comma

1815 ##1%

1816 \ifx\@empty##2\else\ifx,##1,\else,\fi\bbl@afterfi\bbl@tempa##2\fi}%
1817 \edef\bbl@sc@fontenc{\expandafter\bbl@tempa\bbl@sc@fontenc\@empty}%s
1818 \edef\bbl@sc@label{\expandafter\zap@space\bbl@sc@label\@empty}%

1819 \edef\bbl@sc@charset{\expandafter\zap@space\bbl@sc@charset\@empty}%
1820 \def\bbl@encstring##1##2{%

<- zapped below
< " "

1821 \bbl@foreach\bbl@sc@fontenc{%

1822 \bbl@ifunset{TE####1}%

1823 {}%

1824 {\ProvideTextCommand##1{####1} {##2}%

1825 \bbl@toglobal##1%

1826 \expandafter

1827 \bbl@toglobal\csname####1\string##1\endcsname}}}%

1828 \def\bbl@sctest{%

1829 \bbl@xin@{, \bbl@opt@strings, }{, \bbl@sc@label,\bbl@sc@fontenc, }}%
1830 \fi

1831 \ifx\bbl@opt@strings\@nnil % i.e., no strings key -> defaults

1832 \else\ifx\bbl@opt@strings\relax % i.e., strings=encoded
1833 \let\AfterBabelCommands\bbl@aftercmds
1834 \let\SetString\bbl@setstring

1835 \let\bbl@stringdef\bbl@encstring

1836 \else % i.e., strings=value

1837 \bbl@sctest

1838 \ifin@

1839 \let\AfterBabelCommands\bbl@aftercmds
1840 \let\SetString\bbl@setstring

1841 \let\bbl@stringdef\bbl@provstring

1842 \fi\fi\fi

1843 \bbl@scswitch

1844 \1ifx\bbl@G\@empty

1845 \def\SetString##1##2{%

1846 \bbl@error{missing-group}{##1}{}{}}%

45

1847 \fi

1848 \1ifx\@empty#1%

1849 \bbl@usehooks{defaultcommands}{}%

1850 \else

1851 \@expandtwoargs

1852 \bbl@usehooks{encodedcommands}{{\bbl@sc@charset}{\bbl@sc@fontenc}}%
1853 \fi}

There are two versions of \bbl@scswitch. The first version is used when 1dfs are read, and it
makes sure \(group){language) is reset, but only once (\bbl@screset is used to keep track of this).
The second version is used in the preamble and packages loaded after babel and does nothing.

The macro \bbl@forlang loops \bbl@L but its body is executed only if the value is in
\BabellLanguages (inside babel) or \date({language) is defined (after babel has been loaded). There
are also two version of \bbl@forlang. The first one skips the current iteration if the language is not
in \BabellLanguages (used in 1dfs), and the second one skips undefined languages (after babel has
been loaded) .

1854 \def\bbl@forlang#1#2{%

1855 \bbl@for#1\bbl@EL{%

1856 \bbl@xin@{,#1, }{, \BabelLanguages, }%
1857 \ifin@#2\relax\fi}}

1858 \def\bbl@scswitch{%

1859 \bbl@forlang\bbl@tempa{%

1860 \ifx\bbl@G\@empty\else

1861 \ifx\SetString\@gobbletwo\else

1862 \edef\bbl@GL{\bbl@G\bbl@tempa}%

1863 \bbl@xin@{, \bbl@GL, }{,\bbl@screset, }%

1864 \ifin@\else

1865 \global\expandafter\let\csname\bbl@GL\endcsname\@undefined
1866 \xdef\bbl@screset{\bbl@screset,\bbl@GL}%

1867 \fi

1868 \fi

1869 \fi}}

1870 \AtEndOfPackage{%

1871 \def\bbl@forlang#1#2{\bbl@for#1\bbl@L{\bbl@ifunset{date#1}{}{#2}}}%
1872 \let\bbl@scswitch\relax}

1873 \@onlypreamble\EndBabelCommands

1874 \def\EndBabelCommands{%

1875 \bbl@usehooks{stopcommands}{}%

1876 \endgroup

1877 \endgroup

1878 \bbl@scafter}

1879 \let\bbl@endcommands\EndBabelCommands

Now we define commands to be used inside \StartBabelCommands.

Strings The following macro is the actual definition of \SetString when it is “active”

First save the “switcher”. Create it if undefined. Strings are defined only if undefined (i.e., like
\providescommand). With the event stringprocess you can preprocess the string by manipulating
the value of \BabelString. If there are several hooks assigned to this event, preprocessing is done in
the same order as defined. Finally, the string is set.

1880 \def\bbl@setstring#1#2{% e.g., \prefacename{<string>}
1881 \bbl@forlang\bbl@tempa{%

1882 \edef\bbl@LC{\bbl@tempa\bbl@stripslash#1}%

1883 \bbl@ifunset{\bbl@LC}% e.g., \germanchaptername

1884 {\bbl@exp{%
1885 \global\\\bbl@add\<\bbl@G\bbl@tempa>{\\\bbl@scset\\#1\<\bbl@LC>}}}%
1886 {}%

1887 \def\BabelString{#2}%

1888 \bbl@usehooks{stringprocess}{}%

1889 \expandafter\bbl@stringdef

1890 \csname\bbl@LC\expandafter\endcsname\expandafter{\BabelString}}}

A little auxiliary command sets the string. Formerly used with casing. Very likely no longer
necessary, although it’s used in \setlocalecaption.

46

1891 \def\bbl@scset#1#2{\def#1{#2}}

Define \SetStringLoop, which is actually set inside \StartBabelCommands. The current definition
is somewhat complicated because we need a count, but \count@ is not under our control (remember
\SetString may call hooks). Instead of defining a dedicated count, we just “pre-expand” its value.

1892 {(xMacros local to BabelCommands)) =

1893 \def\SetStringLoop##1##2{%

1894 \def\bbl@templ####1{\expandafter\noexpand\csname##1\endcsname}%
1895 \count@\z@

1896 \bbl@loop\bbl@tempa{##2}{% empty items and spaces are ok

1897 \advance\count@\@ne

1898 \toks@\expandafter{\bbl@tempa}%

1899 \bbl@exp{%

1900 \\\SetString\bbl@templ{\romannumeral\count@}{\the\toks@}%
1901 \count@=\the\count@\relax}}}%

1902 ((/Macros local to BabelCommands))

Delaying code Now the definition of \AfterBabelCommands when it is activated.

1903 \def\bbl@aftercmds#1{%
1904 \toks@\expandafter{\bbl@scafter#1}%
1905 \xdef\bbl@scafter{\the\toks@}}

Case mapping The command \SetCase is deprecated. Currently it consists in a definition with a
hack just for backward compatibility in the macro mapping.

1906 ((xMacros local to BabelCommands)) =
1907 \newcommand\SetCase[3][]1{%
1908 \def\bbl@tempa#### 1####2{%

1909 \ifx####1\@empty\else

1910 \bbl@carg\bbl@add{extras\CurrentOption}{%

1911 \bbl@carg\babel@save{c text uppercase \string####1 t1}%
1912 \bbl@carg\def{c text uppercase \string####1 t1}{####2}%
1913 \bbl@carg\babel@save{c text lowercase \string####2 t1}%
1914 \bbl@carg\def{c text lowercase \string####2 t1}{####1}}%
1915 \expandafter\bbl@tempa

1916 \fi}%

1917 \bbl@tempa##1\@empty\@empty
1918 \bbl@carg\bbl@toglobal{extras\CurrentOption}}%
1919 {{/Macros local to BabelCommands))

Macros to deal with case mapping for hyphenation. To decide if the document is monolingual or
multilingual, we make a rough guess —just see if there is a comma in the languages list, built in the
first pass of the package options.

1920 {(*Macros local to BabelCommands)) =

1921 \newcommand\SetHyphenMap[1]{%

1922 \bbl@forlang\bbl@tempa{%

1923 \expandafter\bbl@stringdef

1924 \csname\bbl@tempa @bbl@hyphenmap\endcsname{##1}}}%
1925 {({/Macros local to BabelCommands))

There are 3 helper macros which do most of the work for you.

1926 \newcommand\BabelLower[2]{% one to one.
1927 \ifnum\lccode#l=#2\else

1928 \babel@savevariable{\1lccode#1}%
1929 \lccode#1=#2\relax
1930 \fi}

1931 \newcommand\BabelLowerMM[4]{% many-to-many
1932 \@tempcnta=#1\relax

1933 \@tempcntb=#4\relax

1934 \def\bbl@tempa{%

1935 \ifnum\@tempcnta>#2\else
1936 \@expandtwoargs\BabelLower{\the\@tempcnta}{\the\@tempcntb}%
1937 \advance\@tempcnta#3\relax

47

1938 \advance\@tempcntb#3\relax

1939 \expandafter\bbl@tempa

1940 \fi}%

1941 \bbl@tempa}

1942 \newcommand\BabelLowerM0[4]{% many-to-one
1943 \@tempcnta=#1\relax

1944 \def\bbl@tempa{%

1945 \ifnum\@tempcnta>#2\else

1946 \@expandtwoargs\BabelLower{\the\@tempcnta}{#4}%
1947 \advance\@tempcnta#3

1948 \expandafter\bbl@tempa

1949 \fi}%

1950 \bbl@tempa}
The following package options control the behavior of hyphenation mapping.

1951 {(xMore package options)) =

1952 \DeclareOption{hyphenmap=off}{\chardef\bbl@opt@hyphenmap\z@}

1953 \DeclareOption{hyphenmap=first}{\chardef\bbl@opt@hyphenmap\@ne}

1954 \DeclareOption{hyphenmap=select}{\chardef\bbl@opt@hyphenmap\tw@}
1955 \DeclareOption{hyphenmap=other}{\chardef\bbl@opt@hyphenmap\thr@a}
1956 \DeclareOption{hyphenmap=other*}{\chardef\bbl@opt@hyphenmap4\relax}
1957 ((/More package options))

Initial setup to provide a default behavior if hyphenmap is not set.

1958 \AtEndOfPackage{%

1959 \ifx\bbl@opt@hyphenmap\@undefined

1960 \bbl@xin@{, }{\bbl@language@opts}%

1961 \chardef\bbl@opt@hyphenmap\ifin@4\else\@ne\fi
1962 \fi}

4.14. Tailor captions

A general tool for resetting the caption names with a unique interface. With the old way, which mixes
the switcher and the string, we convert it to the new one, which separates these two steps.

1963 \newcommand\setlocalecaption{%

1964 \@ifstar\bbl@setcaption@s\bbl@setcaption@x}

1965 \def\bbl@setcaption@x#1#2#3{% language caption-name string
1966 \bbl@trim@def\bbl@tempa{#2}%

1967 \bbl@xin@{.template}{\bbl@tempa}%

1968 \ifin@

1969 \bbl@ini@captions@template{#3}{#1}%

1970 \else

1971 \edef\bbl@tempd{%

1972 \expandafter\expandafter\expandafter

1973 \strip@prefix\expandafter\meaning\csname captions#l\endcsname}%
1974 \bbl@xin@

1975 {\expandafter\string\csname #2name\endcsname}%

1976 {\bbl@tempd}%

1977 \ifin@ % Renew caption

1978 \bbl@xin@{\string\bbl@scset}{\bbl@tempd}%

1979 \ifin@

1980 \bbleexp{%

1981 \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%

1982 {\\\bbl@scset\<#2name>\<#1#2name>}%

1983 {}}%

1984 \else % 0ld way converts to new way

1985 \bbl@ifunset{#1#2name}%

1986 {\bbl@exp{%

1987 \\\bbl@add\<captions#1>{\def\<#2name>{\<#1#2name>}}%
1988 \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%

1989 {\def\<#2name>{\<#1#2name>}1}%

1990 {}}1}%

1991 {}%

48

1992 \fi

1993 \else

1994 \bbl@xin@{\string\bbl@scset}{\bbl@tempd}% New

1995 \ifin@ % New way

1996 \bbl@exp{%

1997 \\\bbl@add\<captions#1>{\\\bbl@scset\<#2name>\<#1#2name>}%
1998 \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%

1999 {\\\bbl@scset\<#2name>\<#1#2name>}%

2000 {}}%

2001 \else % 0ld way, but defined in the new way

2002 \bbl@exp{%

2003 \\\bbl@add\<captions#1>{\def\<#2name>{\<#1#2name>}}%
2004 \\\bbl@ifsamestring{\bbl@tempa}{\languagename}%

2005 {\def\<#2name>{\<#1#2name>}}%

2006 {}}%

2007 \fi%

2008 \fi

2009 \@namedef{#1#2name} {#3}%
2010 \toks@\expandafter{\bbl@captionslist}%
2011 \bbl@exp{\\\in@{\<#2name>}{\the\toks@}}%

2012 \ifin@\else

2013 \bbl@exp{\\\bbl@add\\\bbl@captionslist{\<#2name>}1}%
2014 \bbl@toglobal\bbl@captionslist

2015 \fi

2016 \fi}

4.15. Making glyphs available

This section makes a number of glyphs available that either do not exist in the 0T1 encoding and
have to be ‘faked’, or that are not accessible through Tlenc.def.

\set@low@box The following macro is used to lower quotes to the same level as the comma. It
prepares its argument in box register 0.

2017 \bbl@trace{Macros related to glyphs}

2018 \def\set@low@box#1{\setbox\tw@\hbox{, }\setbox\z@\hbox{#1}%

2019 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@%

2020 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.

2021 \def\save@sf@q#1l{\leavevmode

2022 \begingroup

2023 \edef\@SF{\spacefactor\the\spacefactor}#1\@SF
2024 \endgroup}

4.15.1.Quotation marks

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a separate
character, accessible via \quotedblbase. In the 0T1 encoding it is not available, therefore we make it
available by lowering the normal open quote character to the baseline.

2025 \ProvideTextCommand{\quotedblbase}{0T1}{%
2026 \save@sf@q{\set@low@box{\textquotedblright\/}%
2027 \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than 0T1 or T1 is used this glyph can still be typeset.

2028 \ProvideTextCommandDefault{\quotedblbase}{%
2029 \UseTextSymbol{0T1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

2030 \ProvideTextCommand{\quotesinglbase}{0T1}{%
2031 \save@sf@q{\set@low@box{\textquoteright\/}%
2032 \box\z@\kern-.04em\bbl@allowhyphens}}

49

Make sure that when an encoding other than 0T1 or T1 is used this glyph can still be typeset.

2033 \ProvideTextCommandDefault{\quotesinglbase}{%
2034 \UseTextSymbol{0T1}{\quotesinglbase}}

\guillemetleft
\guillemetright The guillemet characters are not available in 0T1 encoding. They are faked. (Wrong
names with o preserved for compatibility.)

2035 \ProvideTextCommand{\guillemetleft}{0T1}{%
2036 \ifmmode

2037 \ 11

2038 \else

2039 \save@sf@q{\nobreak

2040 \raise.2ex\hbox{$\scriptscriptstyle\11$}\bbl@allowhyphens}%
2041 \fi}

2042 \ProvideTextCommand{\guillemetright}{0T1}{%

2043 \ifmmode

2044 \gg

2045 \else

2046 \save@sf@g{\nobreak

2047 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%
2048 \fi}

2049 \ProvideTextCommand{\guillemotleft}{0T1}{%

2050 \ifmmode

2051 \11

2052 \else

2053 \save@sf@g{\nobreak

2054 \raise.2ex\hbox{$\scriptscriptstyle\11$}\bbl@allowhyphens}%
2055 \fi}

2056 \ProvideTextCommand{\guillemotright}{0T1}{%

2057 \ifmmode

2058 \gg

2059 \else

2060 \save@sf@q{\nobreak

2061 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%
2062 \fi}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can still be typeset.

2063 \ProvideTextCommandDefault{\guillemetleft}{%
2064 \UseTextSymbol{0T1}{\guillemetleft}}
2065 \ProvideTextCommandDefault{\guillemetright}{%
2066 \UseTextSymbol{0T1}{\guillemetright}}
2067 \ProvideTextCommandDefault{\guillemotleft}{%
2068 \UseTextSymbol{0T1}{\guillemotleft}}
2069 \ProvideTextCommandDefault{\guillemotright}{%
2070 \UseTextSymbol{0T1}{\gquillemotright}}

\guilsinglleft
\guilsinglright The single guillemets are not available in 0T1 encoding. They are faked.

2071 \ProvideTextCommand{\guilsinglleft}{0T1}{%

2072 \ifmmode

2073 <%

2074 \else

2075 \save@sf@q{\nobreak

2076 \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens}%
2077 \fi}

2078 \ProvideTextCommand{\guilsinglright}{0T1}{%

2079 \ifmmode

2080 >%

2081 \else

2082 \save@sf@g{\nobreak

2083 \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens}%
2084 \fi}

50

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can still be typeset.

2085 \ProvideTextCommandDefault{\guilsinglleft}{%
2086 \UseTextSymbol{0T1}{\guilsinglleft}}

2087 \ProvideTextCommandDefault{\guilsinglright}{%
2088 \UseTextSymbol{0T1}{\guilsinglright}}

4.15.2.Letters
\ij
\IJ The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not in the 0T1
encoded fonts. Therefore we fake it for the 0T1 encoding.

2089 \DeclareTextCommand{\ij}{0T1}{%

2090 i\kern-0.02em\bbl@allowhyphens j}
2091 \DeclareTextCommand{\IJ}{0T1}{%

2092 I\kern-0.02em\bbl@allowhyphens J}
2093 \DeclareTextCommand{\ij}{T1}{\char188}
2094 \DeclareTextCommand{\IJ}{T1}{\charl56}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can still be typeset.

2095 \ProvideTextCommandDefault{\ij}{%
2096 \UseTextSymbol{0T1}{\ij}}
2097 \ProvideTextCommandDefault{\IJ}{%
2098 \UseTextSymbol{OT1}{\IJ}}

\dj
\DJ The croatian language needs the letters \dj and \DJ; they are available in the T1 encoding, but not
in the 0T1 encoding by default.
Some code to construct these glyphs for the 0T1 encoding was made available to me by Stipevié¢
Mario, (stipcevic@olimp.irb.hr).

2099 \def\crrtic@{\hrule height0.lex width0.3em}

2100 \def\crttic@{\hrule height0.lex width0.33em}

2101 \def\ddj@{%

2102 \setbox0\hbox{d}\dimen@=\ht0

2103 \advance\dimen@lex

2104 \dimen@.45\dimen@

2105 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

2106 \advance\dimen@ii.5ex

2107 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
2108 \def\DDJ@{%

2109 \setbox0\hbox{D}\dimen@=.55\ht0

2110 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

2111 \advance\dimen@ii.1l5ex % correction for the dash position
2112 \advance\dimen@ii-.15\fontdimen7\font % correction for cmtt font
2113 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen@

2114 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}
2115%

2116 \DeclareTextCommand{\dj}{0T1}{\ddj@ d}

2117 \DeclareTextCommand{\DJ}{0T1}{\DDJ@ D}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can still be typeset.

2118 \ProvideTextCommandDefault{\dj}{%
2119 \UseTextSymbol{0T1}{\dj}}
2120 \ProvideTextCommandDefault{\DJ}{%
2121 \UseTextSymbol{O0T1}{\DJ}}

\SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but for other
encodings it is not available. Therefore we make it available here.

2122 \DeclareTextCommand{\SS}{0T1}{SS}
2123 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{0T1}{\SS}}

51

4.15.3.Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make them usable both
outside and inside mathmode. They are defined with \ProvideTextCommandDefault, but this is very
likely not required because their definitions are based on encoding-dependent macros.

\glq
\grq The ‘german’ single quotes.
2124 \ProvideTextCommandDefault{\glq}{%
2125 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}

The definition of \grq depends on the fontencoding. With T1 encoding no extra kerning is needed.

2126 \ProvideTextCommand{\grq}{T1}{%

2127 \textormath{\kern\z@\textquoteleft}{\mbox{\textquoteleft}}}
2128 \ProvideTextCommand{\grq}{TU}{%

2129 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}

2130 \ProvideTextCommand{\grq}{0T1}{%

2131 \save@sf@q{\kern-.0125em

2132 \textormath{\textquoteleft}{\mbox{\textquoteleft}}%

2133 \kern.07em\relax}}

2134 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{0T1}\grq}

\glqq
\grqq The ‘german’ double quotes.

2135 \ProvideTextCommandDefault{\glqq}{%
2136 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra kerning is needed.

2137 \ProvideTextCommand{\grqq}{T1}{%

2138 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
2139 \ProvideTextCommand{\grqq}{TU}{%

2140 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
2141 \ProvideTextCommand{\grqq}{0T1}{%

2142 \save@sf@g{\kern-.07em

2143 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}%
2144 \kern.07em\relax}}

2145 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{0T1}\grqq}

\flq
\frq The ‘french’ single guillemets.

2146 \ProvideTextCommandDefault{\flq}{%

2147 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
2148 \ProvideTextCommandDefault{\frq}{%

2149 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}

\flqq
\frqq The ‘french’ double guillemets.

2150 \ProvideTextCommandDefault{\flqq}{%

2151 \textormath{\guillemetleft}{\mbox{\guillemetleft}}}
2152 \ProvideTextCommandDefault{\frqq}{%

2153 \textormath{\guillemetright}{\mbox{\guillemetright}}}

4.15.4.Umlauts and tremas

The command \" needs to have a different effect for different languages. For German for instance,
the ‘umlaut’ should be positioned lower than the default position for placing it over the letters a, o, u,
A, O and U. When placed over an e, i, E or I it can retain its normal position. For Dutch the same glyph
is always placed in the lower position.

\umlauthigh

52

\umlautlow To be able to provide both positions of \" we provide two commands to switch the
positioning, the default will be \umlauthigh (the normal positioning).

2154 \def\umlauthigh{%

2155 \def\bbl@umlauta##1{\leavevmode\bgroup%

2156 \accent\csname\f@encoding dgpos\endcsname
2157 ##1\bbl@allowhyphens\egroup}%

2158 \let\bbl@umlaute\bbl@umlauta}

2159 \def\umlautlow{%

2160 \def\bbl@umlauta{\protect\lower@umlaut}}

2161 \def\umlautelow{%

2162 \def\bbl@umlaute{\protect\lower@umlaut}}

2163 \umlauthigh

\lower@umlaut Used to position the \" closer to the letter. We want the umlaut character lowered,
nearer to the letter. To do this we need an extra (dimen) register.

2164 \expandafter\ifx\csname U@D\endcsname\relax
2165 \csname newdimen\endcsname\U@D
2166 \ fi

The following code fools TgX’s make_accent procedure about the current x-height of the font to
force another placement of the umlaut character. First we have to save the current x-height of the
font, because we’ll change this font dimension and this is always done globally.

Then we compute the new x-height in such a way that the umlaut character is lowered to the base
character. The value of .45ex depends on the METAFONT parameters with which the fonts were
built. (Just try out, which value will look best.) If the new x-height is too low, it is not changed. Finally
we call the \accent primitive, reset the old x-height and insert the base character in the argument.

2167 \def\ lower@umlaut#1{%
2168 \leavevmode\bgroup
2169 \U@D lex%

2170 {\setbox\z@\hbox{%

2171 \char\csname\f@encoding dgpos\endcsname}%

2172 \dimen@ -.45ex\advance\dimen@\ht\z@

2173 \ifdim lex<\dimen@ \fontdimen5\font\dimen@ \fi}%
2174 \accent\csname\f@encoding dgpos\endcsname

2175 \fontdimen5\font\U@D #1%
2176 \egroup}

For all vowels we declare \" to be a composite command which uses \bbl@umlauta or
\bbl@umlaute to position the umlaut character. We need to be sure that these definitions override
the ones that are provided when the package fontenc with option OT1 is used. Therefore these
declarations are postponed until the beginning of the document. Note these definitions only apply to
some languages, but babel sets them for all languages — you may want to redefine \bbl@umlauta
and/or \bbl@umlaute for a language in the corresponding 1df (using the babel switching
mechanism, of course).

2177 \AtBeginDocument{%

2178 \DeclareTextCompositeCommand{\"}{0T1}{a}{\bbl@umlauta{a}}%
2179 \DeclareTextCompositeCommand{\"}{0T1}{e}{\bbl@umlaute{e}}%
2180 \DeclareTextCompositeCommand{\"}{0T1}{i}{\bbl@umlaute{\i}}%
2181 \DeclareTextCompositeCommand{\"}{0T1}{\i}{\bbl@umlaute{\i}}%
2182 \DeclareTextCompositeCommand{\"}{0T1}{o}{\bbl@umlauta{o}}%
2183 \DeclareTextCompositeCommand{\"}{0T1}{u}{\bbl@umlauta{u}}%
2184 \DeclareTextCompositeCommand{\"}{0T1}{A}{\bbl@umlauta{A}}%
2185 \DeclareTextCompositeCommand{\"}{O0T1}{E}{\bbl@umlaute{E}}%
2186 \DeclareTextCompositeCommand{\"}{O0T1}{I}{\bbl@umlaute{I}}%
2187 \DeclareTextCompositeCommand{\"}{0T1}{0}{\bbl@umlauta{0}}%
2188 \DeclareTextCompositeCommand{\"}{0T1}{U}{\bbl@umlauta{U}}}

Finally, make sure the default hyphenrules are defined (even if empty). For internal use, another
empty \language is defined. Currently used in Amharic.

2189 \ifx\1l@english\@undefined
2190 \chardef\l@english\z@
2191\ fi

53

2192% The following is used to cancel rules in ini files (see Amharic).
2193 \ifx\l@unhyphenated\@undefined

2194 \newlanguage\l@unhyphenated

2195 \ f1

4.16. Layout

Layout is mainly intended to set bidi documents, but there is at least a tool useful in general.

2196 \bbl@trace{Bidi layout}
2197 \providecommand\IfBabellLayout[3]{#3}%

4.17. Load engine specific macros

Some macros are not defined in all engines, so, after loading the files define them if necessary to
raise an error.

2198 \bbl@trace{Input engine specific macros}
2199 \ifcase\bbl@engine
2200 \input txtbabel.def

2201 \or
2202 \input luababel.def
2203\or
2204 \input xebabel.def
2205 \ fi

2206 \providecommand\babelfont{\bbl@error{only-lua-xe}{}{}{}}

2207 \providecommand\babelprehyphenation{\bbl@error{only-lua}{}{}{}}
2208 \ifx\babelposthyphenation\@undefined

2209 \let\babelposthyphenation\babelprehyphenation

2210 \let\babelpatterns\babelprehyphenation

2211 \let\babelcharproperty\babelprehyphenation

2212\ fi

2213 (/package | core)

4.18. Creating and modifying languages

Continue with ETgX only.

\babelprovide is a general purpose tool for creating and modifying languages. It creates the
language infrastructure, and loads, if requested, an ini file. It may be used in conjunction to
previously loaded 1df files.

2214 (xpackage)

2215 \bbl@trace{Creating languages and reading ini files}
2216 \ let\bbl@extend@ini\@gobble

2217 \newcommand\babelprovide[2][]{%

2218 \let\bbl@savelangname\languagename

2219 \edef\bbl@savelocaleid{\the\localeid}%

2220 % Set name and locale id

2221 \edef\languagename{#2}%

2222 \bbl@id@assign

2223 % Initialize keys

2224 \bbl@vforeach{captions,date,import,main,script, language,%

2225 hyphenrules, linebreaking, justification,mapfont,maparabic,%
2226 mapdigits,intraspace,intrapenalty,onchar,transforms,alph,%
2227 Alph, labels, labels*,mapdot, calendar,date,casing, interchar,%
2228 @import}%

2229 {\bbl@csarg\let{KVP@##1}\@nnil}%

2230 \global\let\bbl@release@transforms\@empty
2231 \global\let\bbl@release@casing\@empty

2232 \let\bbl@calendars\@empty

2233 \global\let\bbl@inidata\@empty

2234 \global\let\bbl@extend@ini\@gobble

2235 \global\let\bbl@included@inis\@empty

2236 \gdef\bbl@key@list{;}%

2237 \bbl@ifunset{bbl@passto@#2}%

54

2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300

{\def\bbl@tempa{#1}}%
{\bbl@exp{\def\\\bbl@tempa{\ [bbl@passto@#2],\unexpanded{#1}}}}%
\expandafter\bbl@forkv\expandafter{\bbl@tempa}{%
\in@{/}{##1}% With /, (re)sets a value in the ini
\ifin@
\bbl@renewinikey##1\@@{##2}%
\else
\bbl@csarg\ifx{KVP@##1}\@nnil\else
\bbl@error{unknown-provide-key}{##1}{}{}%
\fi
\bbl@csarg\def{KVP@##1} {##2}%
\fi}%
\chardef\bbl@howloaded=% 0:none; 1l:ldf without ini; 2:ini
\bbl@ifunset{date#2}\z@{\bbl@ifunset{bbl@llevel@#2}\@ne\tw@}%
% == init ==
\ifx\bbl@screset\@undefined
\bbl@ldfinit
\fi

o°

o°

If there is no import (last wins), use @import (internal, there
must be just one). To consider any order (because
\PassOptionsToLocale).
\ifx\bbl@KVP@import\@nnil
\let\bbl@KVP@import\bbl@KVP@@import
fi
== date (as option) ==
\ifx\bbl@KVP@date\@nnil\else
\fi
\let\bbl@lbkflag\relax % \@empty = do setup linebreak, only in 3 cases:
\ifcase\bbl@howloaded
\let\bbl@lbkflag\@empty % new
\else
\ifx\bbl@KVP@hyphenrules\@nnil\else
\let\bbl@lbkflag\@empty
\fi
\ifx\bbl@KVP@import\@nnil\else
\let\bbl@lbkflag\@empty
\fi
\fi
% == import, captions ==
\ifx\bbl@KVP@import\@nnil\else
\bbl@exp{\\\bbl@ifblank{\bbl@KVP@import}}%
{\ifx\bbl@initoload\relax
\begingroup
\def\BabelBeforeIni##1##2{\gdef\bbleKVP@import{##1}\endinput}%
\bbl@input@texini{#2}%
\endgroup
\else
\xdef\bbl@KVP@import{\bbl@initoload}%
\fi}%
{}%
\let\bbl@KVP@date\@empty
\fi
\let\bbl@KVP@captions@@\bbl@KVP@captions
\ifx\bbl@KVP@captions\@nnil
\let\bbl@KVP@captions\bbl@KVP@import
\fi

% ==

\ifx\bbl@KVP@transforms\@nnil\else
\bbl@replace\bbl@KVP@transforms{ }{,}%
\fi

o°

o°

~

o o° o°

o°

o°

55

2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337

\ifx\bbl@KVP@mapdot\@nnil\else
\def\bbl@tempa{\@empty}%
\ifx\bbl@KVP@mapdot\bbl@tempa\else
\bbl@exp{\gdef\<bbl@map@@.@@\languagename>{\ [bbl@KVP@mapdot]}}%
\fi
\fi
% Load ini

\ifcase\bbl@howloaded
\bbl@provide@new{#2}%
\else
\bbl@ifblank{#1}%
{}% With \bbl@load@basic below
{\bbl@provide@renew{#2}}%

% == subsequent calls after the first provide for a locale ==
\ifx\bbl@inidata\@empty\else
\bbl@extend@ini{#2}%
\fi
% == ensure captions ==
\ifx\bbl@KVP@captions\@nnil\else
\bbl@ifunset{bbl@extracaps@#2}%
{\bbl@exp{\\\babelensure[exclude=\\\today]{#2}}}%
{\bbl@exp{\\\babelensure[exclude=\\\today,
include=\[bbl@extracaps@#2]}]1{#2}}%
\bbl@ifunset{bbl@ensure@\languagename}%
{\bbl@exp{%
\\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%
\\\foreignlanguage{\languagename}%
{####111}11%
{}%
\bbl@exp{%
\\\bbl@toglobal\<bbl@ensure@\languagename>%
\\\bbl@toglobal\<bbl@ensure@\languagename\space>}%
\fi

At this point all parameters are defined if 'import’. Now we execute some code depending on them.
But what about if nothing was imported? We just set the basic parameters, but still loading the whole
ini file.

2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359

\bbl@load@basic{#2}%
% == script, language ==
% Override the values from ini or defines them
\ifx\bbl@KVP@script\@nnil\else
\bbl@csarg\edef{sname@#2}{\bbl@KVP@script}%
\fi
\ifx\bbl@KVP@language\@nnil\else
\bbl@csarg\edef{lname@#2}{\bbl@KVP@language}%
\fi
\ifcase\bbl@engine\or
\bbl@ifunset{bbl@chrng@\languagename}{}%
{\directlua{
Babel.set chranges b('\bbl@cl{sbcp}', '\bbl@cl{chrng}') }}%
\fi
% == Line breaking: intraspace, intrapenalty ==
% For CJK, East Asian, Southeast Asian, if interspace in ini
\ifx\bbl@KVP@intraspace\@nil\else % We can override the ini or set
\bbl@csarg\edef{intsp@#2}{\bbl@KVP@intraspace}%

\fi
\bbl@provide@intraspace
% == Line breaking: justification ==

\ifx\bbl@KVP@justification\@nnil\else

56

2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422

\let\bbl@KVP@linebreaking\bbl@KVP@justification
\fi
\ifx\bbl@KVP@linebreaking\@nnil\else
\bbl@xin@{, \bbl@KVP@linebreaking, }%
{,elongated, kashida, cjk,padding,unhyphenated, }%
\ifin@
\bbl@csarg\xdef
{lnbrk@\languagename}{\expandafter\@car\bbl@KVP@linebreaking\@nil}%
\fi
\fi
\bbl@xin@{/e}{/\bbl@cl{lnbrk}}%
\ifin@\else\bbl@xin@{/k}{/\bbl@cl{lnbrk}}\fi
\ifin@\bbl@arabicjust\fi
\bbl@xin@{/p}{/\bbl@cl{lnbrk}}%
\ifin@\AtBeginDocument{\@nameuse{bbl@tibetanjust}}\fi
% == Line breaking: hyphenate.other.(locale|script) ==
\ifx\bbl@lbkflag\@empty
\bbl@ifunset{bbl@hyotl@\languagename}{}%
{\bbl@csarg\bbl@replace{hyotl@\languagename}{ }{,1}%
\bbl@startcommands*{\languagename}{}%
\bbl@csarg\bbl@foreach{hyotl@\languagename}{%
\ifcase\bbl@engine
\ifnum##1<257
\SetHyphenMap{\BabellLower{##1} {##1}}%
\fi
\else
\SetHyphenMap{\BabellLower{##1} {##1}}%
\fi}%
\bbl@endcommands}%
\bbl@ifunset{bbl@hyots@\languagename}{}%
{\bbl@csarg\bbl@replace{hyots@\languagename}{ }{,}%
\bbl@csarg\bbl@foreach{hyots@\languagename}{%
\ifcase\bbl@engine
\ifnum##1<257
\global\lccode##1=##1\relax
\fi
\else
\global\lccode##1=##1\relax
\fi}}%
\fi
% == Counters: maparabic ==
% Native digits, if provided in ini (TeX level, xe and lua)
\ifcase\bbl@engine\else
\bbl@ifunset{bbl@dgnat@\languagename}{}%
{\expandafter\ifx\csname bbl@dgnat@\languagename\endcsname\@empty\else
\expandafter\expandafter\expandafter
\bbl@setdigits\csname bbl@dgnat@\languagename\endcsname
\ifx\bbl@KVP@maparabic\@nnil\else
\ifx\bbl@latinarabic\@undefined
\expandafter\let\expandafter\@arabic
\csname bbl@counter@\languagename\endcsname
\else % 1i.e., if layout=counters, which redefines \@arabic
\expandafter\let\expandafter\bbl@latinarabic
\csname bbl@counter@\languagename\endcsname
\fi
\fi
\fi}%
fi
== Counters: mapdigits ==
> luababel.def
== Counters: alph, Alph ==
\ifx\bbl@KVP@alph\@nnil\else
\bblEexp{%

~

o o°

o°

57

2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485

\\\bbl@add\<bbl@preextras@\languagename>{%
\\\babel@save\\\@alph
\let\\\@alph\<bbl@cntr@\bbl@KVP@alph @\languagename>}}%

\fi
\ifx\bbl@KVP@Alph\@nnil\else
\bbl@exp{%

\\\bbl@add\<bbl@preextras@\languagename>{%
\\\babel@save\\\@Alph
\let\\\@Alph\<bbl@cntr@\bbl@KVP@Alph @\languagename>}}%

\fi
= Counters: mapdot ==
\ifx\bbl@KVP@mapdot\@nnil\else
\bbl@foreach\bbl@list@the{%
\bbl@ifunset{the##1}{}%
{{\bbl@ncarg\let\bbl@tempd{the##1}%
\bbl@carg\bbl@sreplace{the##1}{.}{\bbl@map@lbl{.}}%
\expandafter\ifx\csname the##1l\endcsname\bbl@tempd\else
\bbl@exp{\gdef\<the##1>{{\[the##1]1}}}%
\Fi}}}%
\edef\bbl@tempb{enumi,enumii,enumiii,enumiv}%
\bbl@foreach\bbl@tempb{%
\bbl@ifunset{label##1}{}%

{{\bbl@ncarg\let\bbl@tempd{label##1}%

\bbl@carg\bbl@sreplace{label##1}{.}{\bbl@map@lbl{.}}%
\expandafter\ifx\csname label##1\endcsname\bbl@tempd\else
\bbl@exp{\gdef\<label##1>{{\[label##1]1}}}%

\fi}}}%
\fi
= Casing ==
\bbl@release@casing

\ifx\bbl@KVP@casing\@nnil\else

\bbl@csarg\xdef{casing@\languagename}%

{\@nameuse{bbl@casing@\languagename}\bbl@maybextx\bbl@KVP@casing}%
\fi
% == Calendars ==
\ifx\bbl@KVP@calendar\@nnil

\edef\bbl@KVP@calendar{\bbl@cl{calpr}}%s
\fi
\def\bbl@tempe##1 ##2\@@{% Get first calendar

\def\bbl@tempa{##1}}%

\bbl@exp{\\\bbl@tempe\bbl@KVP@calendar\space\\\@@}%
\def\bbl@tempe##1.##2 . ##3\@Q{%

\def\bbl@tempc{##1}%

\def\bbl@tempb{##2}}%
\expandafter\bbl@tempe\bbl@tempa. .\@@
\bbl@csarg\edef{calpr@\languagename}{%
\ifx\bbl@tempc\@empty\else

calendar=\bbl@tempc
\fi
\ifx\bbl@tempb\@empty\else

,variant=\bbl@tempb
\fi}%
== engine specific extensions ==
% Defined in XXXbabel.def
\bbl@provide@extra{#2}%

% == require.babel in ini ==

% To load or reaload the babel-*.tex, if require.babel in ini

\ifx\bbl@beforestart\relax\else % But not in doc aux or body
\bbl@ifunset{bbl@rqtex@\languagename}{}%

o°

{\expandafter\ifx\csname bbl@rgtex@\languagename\endcsname\@empty\else

\let\BabelBeforeIni\@gobbletwo
\chardef\atcatcode=\catcode \@
\catcode \@=11\relax

58

2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523

\def\CurrentOption{#2}%
\bbl@input@texini{\bbl@cs{rqtex@\languagename}}%
\catcode \@=\atcatcode
\let\atcatcode\relax
\global\bbl@csarg\let{rqtex@\languagename}\relax
\fi}%
\bbl@foreach\bbl@calendars{%
\bbl@ifunset{bbl@ca@##1}{%
\chardef\atcatcode=\catcode \@
\catcode \@=11\relax
\InputIfFileExists{babel-ca-##1.tex}{}{}%
\catcode \@=\atcatcode
\let\atcatcode\relax}%
{}1}%
\fi
% == frenchspacing ==
\ifcase\bbl@howloaded\in@true\else\in@false\fi
\ifin@\else\bbl@xin@{typography/frenchspacing}{\bbl@key@list}\fi
\ifin@
\bbl@extras@wrap{\\\bbl@pre@fs}%

{\bbl@pre@fs}%s
{\bbl@post@fs}%
\fi
% == transforms ==

% > luababel.def

\def\CurrentOption{#2}%

\@nameuse{bbl@icsave@#2}%

% == main ==

\ifx\bbl@KVP@main\@nnil % Restore only if not 'main'
\let\languagename\bbl@savelangname
\chardef\localeid\bbl@savelocaleid\relax

\fi

% == hyphenrules (apply if current) ==

\ifx\bbl@KVP@hyphenrules\@nnil\else
\ifnum\bbl@savelocaleid=\1localeid

\language\@nameuse{1l@\languagename}%

\fi

\fi}

Depending on whether or not the language exists (based on \date(language)), we define two
macros. Remember \bbl@startcommands opens a group.

2524 \def\bbl@provide@new#1{%

2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545

\@namedef{date#1}{}% marks lang exists - required by \StartBabelCommands
\@namedef{extras#1}{}%
\@namedef{noextras#1}{}%
\bbl@startcommands*{#1}{captions}%
\ifx\bbl@KVP@captions\@nnil % and also if import, implicit
\def\bbl@tempb##1{% elt for \bbl@captionslist
\ifx##1\@nnil\else
\bbl@exp{%
\\\SetString\\##1{%
\\\bbl@nocaption{\bbl@stripslash##1}{#1\bbl@stripslash##1}}}%
\expandafter\bbl@tempb
\fi}%
\expandafter\bbl@tempb\bbl@captionslist\@nnil
\else
\ifx\bbl@initoload\relax
\bbl@read@ini{\bbl@KVP@captions}2% % Here letters cat = 11
\else
\bbl@read@ini{\bbl@initoload}2% % Same
\fi
\fi
\StartBabelCommands*{#1}{date}%

59

2546 \ifx\bbl@KVP@date\@nnil

2547 \bbl@exp{%

2548 \\\SetString\\\today{\\\bbl@nocaption{today}{#1today}}}%
2549 \else

2550 \bbl@savetoday

2551 \bbl@savedate

2552 \fi

2553 \bbl@endcommands

2554 \bbl@load@basic{#1}%

2555 % == hyphenmins == (only if new)
2556 \bbl@exp{%

2557 \gdef\<#lhyphenmins>{%

2558 {\bbl@ifunset{bbl@lfthm@#1}{2}{\bbl@cs{lfthme#1}}}%
2559 {\bbl@ifunset{bbl@rgthm@#1}{3}{\bbl@cs{rgthm@#1}}}}}%
2560 % == hyphenrules (also in renew) ==

2561 \bbl@provide@hyphens{#1}%

2562 % == main ==

2563 \ifx\bbl@KVP@main\@nnil\else

2564 \expandafter\main@language\expandafter{#1}%

2565 \fi}

2566 %

2567 \def\bbl@provide@renew#1{%
2568 \ifx\bbl@KVP@captions\@nnil\else
2569 \StartBabelCommands*{#1}{captions}%

2570 \bbl@read@ini{\bbl@KVP@captions}2% % Here all letters cat = 11
2571 \EndBabelCommands
2572 \fi

2573 \ifx\bbl@KVP@date\@nnil\else
2574 \StartBabelCommands*{#1}{date}%

2575 \bbl@savetoday

2576 \bbl@savedate

2577 \EndBabelCommands

2578 \fi

2579 % == hyphenrules (also in new) ==

2580 \ifx\bbl@lbkflag\@empty
2581 \bbl@provide@hyphens{#1}%

2582 \fi

2583 % == main ==

2584 \ifx\bbl@KVP@main\@nnil\else

2585 \expandafter\main@language\expandafter{#1}%
2586 \fi}

Load the basic parameters (ids, typography, counters, and a few more), while captions and dates
are left out. But it may happen some data has been loaded before automatically, so we first discard
the saved values.

2587 \def\bbl@load@basic#1{%
2588 \ifcase\bbl@howloaded\or\or

2589 \ifcase\csname bbl@llevel@\languagename\endcsname
2590 \bbl@csarg\let{lname@\languagename}\relax

2591 \fi

2592 \fi

2593 \bbl@ifunset{bbl@lname@#1}%
2594 {\def\BabelBeforeIni##1##2{%

2595 \begingroup

2596 \let\bbl@ini@captions@aux\@gobbletwo

2597 \def\bbl@inidate ####1 . ####2 . #H###3 ####HA\ relax #H##SH###6{}%
2598 \bbl@read@ini{##1}1%

2599 \ifx\bbl@initoload\relax\endinput\fi

2600 \endgroup}%

2601 \begingroup % boxed, to avoid extra spaces:

2602 \ifx\bbl@initoload\relax

2603 \bbl@input@texini{#1}%

2604 \else

60

2605 \setbox\z@\hbox{\BabelBeforeIni{\bbl@initoload}{}}%
2606 \fi

2607 \endgroup}%

2608 {}}

The following ini reader ignores everything but the identification section. It is called when a
font is defined (i.e., when the language is first selected) to know which script/language must be
enabled. This means we must make sure a few characters are not active. The ini is not read directly,
but with a proxy tex file named as the language (which means any code in it must be skipped, too).

2609 \def\bbl@load@info#1{%
2610 \def\BabelBeforeIni##1##2{%

2611 \begingroup

2612 \bbl@read@ini{##1}0%

2613 \endinput % babel- .tex may contain onlypreamble's
2614 \endgroup}% boxed, to avoid extra spaces:

2615 {\bbl@input@texini{#1}}}

The hyphenrules option is handled with an auxiliary macro. This macro is called in three cases:
when a language is first declared with \babelprovide, with hyphenrules and with import.

2616 \def\bbl@provide@hyphens#1{%

2617 \@tempcnta\m@ne % a flag

2618 \1fx\bbl@KVP@hyphenrules\@nnil\else

2619 \bbl@replace\bbl@KVP@hyphenrules{ }{,}%
2620 \bbl@foreach\bbl@KVP@hyphenrules{%

2621 \ifnum\@tempcnta=\m@ne % if not yet found
2622 \bbl@ifsamestring{##1}{+}%
2623 {\bbl@carg\addlanguage{1@##1}}%
2624 {}%
2625 \bbl@ifunset{l@##1}% After a possible +
2626 {}%
2627 {\@tempcnta\@nameuse{l@##1}}%
2628 \fi}%
2629 \ifnum\@tempcnta=\m@ne
2630 \bbl@warning{%
2631 Requested 'hyphenrules' for '\languagename' not found:\\%
2632 \bb1l@KVP@hyphenrules.\\%
2633 Using the default value. Reported}%
2634 \fi
2635 \fi
2636 \ifnum\@tempcnta=\m@ne % if no opt or no language in opt found
2637 \ifx\bbl@KVP@captions@@\@nnil
2638 \bbl@ifunset{bbl@hyphr@#1}{}% use value in ini, if exists
2639 {\bbl@exp{\\\bbl@ifblank{\bbl@cs{hyphr@#1}}}%
2640 {}%
2641 {\bbl@ifunset{l@\bbl@cl{hyphr}}%
2642 {}% if hyphenrules found:
2643 {\@tempcnta\@nameuse{l@\bbl@cl{hyphr}}}}}%
2644 \fi
2645 \fi
2646 \bbl@ifunset{lE#1}%
2647 {\ifnum\@tempcnta=\m@ne
2648 \bbl@carg\adddialect{l@#1}\language
2649 \else
2650 \bbl@carg\adddialect{l@#1}\@tempcnta
2651 \fi}%
2652 {\ifnum\@tempcnta=\m@ne\else
2653 \global\bbl@carg\chardef{l@#1}\@tempcnta
2654 \fi}}
The reader of babel-. . . tex files. We reset temporarily some catcodes (and make sure no space is

accidentally inserted).

2655 \def\bbl@input@texini#1{%
2656 \bbl@bsphack
2657 \bblEexp{%

61

2658 \catcode \\\%=14 \catcode \\\\=0

2659 \catcode ' \\\{=1 \catcode \\\}=2

2660 \lowercase{\\\InputIfFileExists{babel-#1.tex}{}{}}%
2661 \catcode \\\%=\the\catcode \%\relax

2662 \catcode \\\\=\the\catcode \\\relax

2663 \catcode \\\{=\the\catcode \{\relax

2664 \catcode \\\}=\the\catcode \}\relax}%

2665 \bbl@esphack}

The following macros read and store ini files (but don’t process them). For each line, there are 3
possible actions: ignore if starts with ;, switch section if starts with [, and store otherwise. There are
used in the first step of \bbl@read@ini.

2666 \def\bbl@iniline#1\bbl@iniline{%

2667 \@ifnextchar[\bbl@inisect{\@ifnextchar;\bbl@iniskip\bbl@inistore}#1\@a}% 1]
2668 \def\bbl@inisect [#1]#2\@@{\def\bbl@section{#1}}

2669 \def\bbl@iniskip#1\@a{}% if starts with ;

2670 \def\bbl@inistore#1=#2\@a{% full (default)

2671 \bbl@trim@def\bbl@tempa{#1}%

2672 \bbl@trim\toks@{#2}%

2673 \bbl@ifsamestring{\bbl@tempa}{@include}%

2674 {\bbl@read@subini{\the\toks@}}%

2675 {\bbl@xin@{;\bbl@section/\bbl@tempa; }{\bbl@key@list}%

2676 \ifin@\else

2677 \bbl@xin@{,identification/include.}%

2678 {,\bbl@section/\bbl@tempa}%

2679 \ifin@\xdef\bbl@included@inis{\the\toks@}\fi

2680 \bbl@exp{%

2681 \\\g@addto@macro\\\bbl@inidata{%

2682 \\\bbl@elt{\bbl@section}{\bbl@tempa}{\the\toks@}}}%
2683 \fi}}

2684 \def\bbl@inistore@min#1=#2\@a{% minimal (maybe set in \bbl@read@ini)
2685 \bbl@trim@def\bbl@tempa{#1}%

2686 \bbl@trim\toks@{#2}%

2687 \bbl@xin@{.identification.}{.\bbl@section.}%

2688 \ifin@

2689 \bbl@exp{\\\g@addto@macro\\\bbl@inidata{%

2690 \\\bble@elt{identification}{\bbl@tempa}{\the\toks@}}}%

2691 \fi}

4.19. Main loop in ‘provide’

Now, the ‘main loop’, \bbl@read@ini, which **must be executed inside a group**. At this point,
\bbl@inidata may contain data declared in \babelprovide, with ‘slashed’ keys. There are 3 steps:
first read the ini file and store it; then traverse the stored values, and process some groups if
required (date, captions, labels, counters); finally, ‘export’ some values by defining global macros
(identification, typography, characters, numbers). The second argument is 0 when called to read the
minimal data for fonts; with \babelprovide it’s either 1 (without import) or 2 (which import). The
value —1 is used with \DocumentMetadata.

\bbl@loop@ini is the reader, line by line (1: stream), and calls \bbl@iniline to save the key/value
pairs. If \bbl@inistore finds the @include directive, the input stream is switched temporarily and
\bbl@read@subini is called.

When the language is being set based on the document metadata (#2 in \bbl@read@ini is —1),
there is an interlude to get the name, after the data have been collected, and before it’s processed.

2692 \def\bbl@loop@ini#1{%

2693 \loop

2694 \if T\ifeof#1 F\fi T\relax % Trick, because inside \loop
2695 \endlinechar\m@ne

2696 \read#1 to \bbl@line

2697 \endlinechar \""M

2698 \ifx\bbl@line\@empty\else

2699 \expandafter\bbl@iniline\bbl@line\bbl@iniline

2700 \fi

2701 \repeat}

62

2702 %

2703 \def\bbl@read@subini#1{%

2704 \ifx\bbl@readsubstream\@undefined

2705 \csname newread\endcsname\bbl@readsubstream
2706 \fi

2707 \openin\bbl@readsubstream=babel-#1.ini

2708 \ifeof\bbl@readsubstream

2709 \bbl@error{no-ini-file}{#1}{}{}%

2710 \else

2711 {\bbl@loop@ini\bbl@readsubstream}%

2712 \fi
2713 \closein\bbl@readsubstream}
2714 %

2715 \1ifx\bbl@readstream\@undefined

2716 \csname newread\endcsname\bbl@readstream

2717\ fi

2718 \def\bbl@read@ini#1#2{%

2719 \global\let\bbl@extend@ini\@gobble

2720 \openin\bbl@readstream=babel-#1.ini

2721 \ifeof\bbl@readstream

2722 \bbl@error{no-ini-file}{#1}{}{}%

2723 \else

2724 % == Store ini data in \bbl@inidata ==

2725 \catcode '\ =10 \catcode \"=12

2726 \catcode \[=12 \catcode \]=12 \catcode \==12 \catcode \&=12
2727 \catcode™\;=12 \catcode \|=12 \catcode \%=14 \catcode \-=12

2728 \ifnum#2=\m@ne % Just for the info

2729 \edef\languagename{tag \bbl@metalang}%

2730 \fi

2731 \bbl@info{\ifnum#2=\m@ne Fetching locale name for tag \bbl@metalang
2732 \else Importing

2733 \ifcase#2font and identification \or basic \fi
2734 data for \languagename

2735 \Fi\\%

2736 from babel-#1.ini. Reported}%

2737 \ifnum#2<\@ne

2738 \global\let\bbl@inidata\@empty

2739 \let\bbl@inistore\bbl@inistore@min % Remember it's local
2740 \fi

2741 \def\bbl@section{identification}%

2742 \bbl@exp{%

2743 \\\bbl@inistore tag.ini=#1\\\@@

2744 \\\bbl@inistore load.level=\ifnum#2<\@ne 0\else #2\fi\\\@@}%
2745 \bbl@loop@ini\bbl@readstream

2746 % == Process stored data ==

2747 \ifnum#2=\m@ne

2748 \def\bbl@tempa##1 ##2\@e{##1}% Get first name

2749 \def\bbl@elt##1##2##3{%

2750 \bbl@ifsamestring{identification/name.babel}{##1/##2}%
2751 {\edef\languagename{\bbl@tempa##3 \@@}%

2752 \let\localename\languagename

2753 \bbl@id@assign

2754 \def\bbl@el t#### Li###2####3{} }%

2755 {}}%

2756 \bbl@inidata

2757 \fi

2758 \bbl@csarg\xdef{lini@\languagename}{#1}%

2759 \bbl@read@ini@aux

2760 % == 'Export' data ==

2761 \bbl@ini@exports{#2}%

2762 \global\bbl@csarg\let{inidata@\languagename}\bbl@inidata
2763 \global\let\bbl@inidata\@empty

2764 \bbl@exp{\\\bbl@add@list\\\bbl@ini@loaded{\languagename}}%

63

2765
2766
2767

\bbl@toglobal\bbl@ini@loaded
\fi
\closein\bbl@readstream}

2768 \def\bbl@read@ini@aux{%

2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782

\let\bbl@savestrings\@empty
\let\bbl@savetoday\@empty
\let\bbl@savedate\@empty
\def\bbl@el t##1##2##3{%
\def\bbl@section{##1}%
\in@{=date.}{=##1}% Find a better place
\ifin@
\bbl@ifunset{bbl@inikv@##1}%
{\bbl@ini@calendar{##1}}%
{}%
\fi
\bbl@ifunset{bbl@inikv@##1}{}%

{\csname bbl@inikv@##1l\endcsname{##2}{##3}}}%

\bbl@inidata}

A variant to be used when the ini file has been already loaded, because it’s not the first
\babelprovide for this language.

2783 \def\bbl@extend@ini@aux#1{%

2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809

\bbl@startcommands*{#1}{captions}%
% Activate captions/... and modify expo

rts

\bbl@csarg\def{inikv@captions.licr}##1##2{%

\setlocalecaption{#1}{##1} {##2}}%
\def\bbl@inikv@captions##1##2{%
\bbl@ini@captions@aux{##1} {##2}}%

\def\bbl@stringdef##1##2{\gdef##1{##2}}%

\def\bbl@exportkey##1##2##3{%
\bbl@ifunset{bbl@akv@##2}{}%

{\expandafter\ifx\csname bblEekv@##2\endcsname\@empty\else
\bbl@exp{\global\let\<bbl@##1@\languagename>\<bbl@akve##2>}%

\fi}}%

% As with \bbl@read@ini, but with some changes

\bbl@read@ini@aux

\bbl@ini@exports\tw@

% Update inidata@lang by pretending the

\def\bbleelt##1##2##3{%
\def\bbl@section{##1}%
\bbl@iniline##2=##3\bbl@iniline}%

\csname bbl@inidata@#l\endcsname

ini is read.

\global\bbl@csarg\let{inidata@#1}\bbl@inidata
\StartBabelCommands*{#1}{date}% And from the import stuff
\def\bbl@stringdef##1##2{\gdef##1{##2}}%

\bbl@savetoday
\bbl@savedate
\bbl@endcommands}

A somewhat hackish tool to handle calendar sections.
2810 \def\bbl@ini@calendar#1{%

2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823

\lowercase{\def\bbl@tempa{=#1=}}%
\bbl@replace\bbl@tempa{=date.gregorian}{}%
\bbl@replace\bbl@tempa{=date.}{}%
\in@{.licr=}{#1=1}%
\ifin@
\ifcase\bbl@engine
\bbl@replace\bbl@tempa{.licr=}{}%
\else
\let\bbl@tempa\relax
\fi
\fi
\ifx\bbl@tempa\relax\else
\bbl@replace\bbl@tempa{=}{}%

64

2824 \ifx\bbl@tempa\@empty\else

2825 \xdef\bbl@calendars{\bbl@calendars,\bbl@tempa}%

2826 \fi

2827 \bbl@exp{%

2828 \def\<bbl@inikv@#1>####1####2{%

2829 \\\bbl@inidate####1. . . \relax{####2}{\bbl@tempa}}}%
2830 \fi}

A key with a slash in \babelprovide replaces the value in the ini file (which is ignored altogether).
The mechanism is simple (but suboptimal): add the data to the ini one (at this point the ini file has
not yet been read), and define a dummy macro. When the ini file is read, just skip the corresponding
key and reset the macro (in \bbl@inistore above).

2831 \def\bbl@renewinikey#1/#2\@e#3{%

2832 \global\let\bbl@extend@ini\bbl@extend@ini@aux

2833 \edef\bbl@tempa{\zap@space #1 \@empty}% section

2834 \edef\bbl@tempb{\zap@space #2 \@empty}% key

2835 \bbl@trim\toks@{#3}% value

2836 \bbl@exp{%

2837 \edef\\\bbl@key@list{\bbl@key@list \bbl@tempa/\bbl@tempb;}%
2838 \\\g@addto@macro\\\bbl@inidata{%

2839 \\\bbl@elt{\bbl@tempa}{\bbl@tempb}{\the\toks@}}}}%

The previous assignments are local, so we need to export them. If the value is empty, we can
provide a default value.

2840 \def\bbl@exportkey#1#2#3{%

2841 \bbl@ifunset{bblE@kv@#2}%

2842 {\bbl@csarg\gdef{#1@\languagename}{#3}}%

2843 {\expandafter\ifx\csname bbl@@kv@#2\endcsname\@empty

2844 \bbl@csarg\gdef{#1@\languagename}{#3}%

2845 \else

2846 \bbl@exp{\global\let\<bbl@#1@\languagename>\<bblE@kv@#2>}%
2847 \fi}}

Key-value pairs are treated differently depending on the section in the ini file. The following
macros are the readers for identification and typography. Note \bbl@ini@exports is called
always (via \bbl@inisec), while \bbl@after@ini must be called explicitly after \bbl@read@ini if
necessary.

Although BCP 47 doesn’t treat “-x-” as an extension, the CLDR and many other sources do (as a
private use extension). For consistency with other single-letter subtags or ‘singletons’, here is
considered an extension, too.

The identification section is used internally by babel in the following places [to be completed]: BCP
47 script tag in the Unicode ranges, which is in turn used by onchar; the language system is set with
the names, and then fontspec maps them to the opentype tags, but if the latter package doesn’t define
them, then babel does it; encodings are used in pdftex to select a font encoding valid (and preloaded)
for alanguage loaded on the fly.

2848 \def\bbl@iniwarning#1{%
2849 \bbl@ifunset{bble@kv@identification.warning#1}{}%
2850 {\bbl@warning{%

2851 From babel-\bbl@cs{lini@\languagename}.ini:\\%
2852 \bbl@cs{@kv@identification.warning#1}\\%

2853 Reported}}}

2854 %

2855 \let\bbl@release@transforms\@empty
2856 \ let\bbl@release@casing\@empty

Relevant keys are ‘exported’, i.e., global macros with short names are created with values taken
from the corresponding keys. The number of exported keys depends on the loading level (#1): —1
and 0 only info (the identificacion section), 1 also basic (like linebreaking or character ranges), 2 also
(re)new (with date and captions).

2857 \def\bbl@ini@exports#1{%

2858 % Identification always exported
2859 \bbl@iniwarning{}%

2860 \ifcase\bbl@engine

2861 \bbl@iniwarning{.pdflatex}%

65

2862 \or

2863 \bbl@iniwarning{.lualatex}%
2864 \or
2865 \bbl@iniwarning{.xelatex}%

2866 \Ti%

2867 \bbl@exportkey{llevel}{identification.load.level}{}%

2868 \bbl@exportkey{elname}{identification.name.english}{}%

2869 \bbl@exp{\\\bbl@exportkey{lname}{identification.name.opentype}%
2870 {\csname bbl@elname@\languagename\endcsname}}%

2871 \bbl@exportkey{tbcp}{identification.tag.bcp47}{}%

2872 \bbl@exportkey{casing}{identification.tag.bcpd7}{}%

2873 \bbl@exportkey{lbcp}{identification.language.tag.bcp47}{}%

2874 \bbl@exportkey{lotf}{identification.tag.opentype}{dflt}%

2875 \bbl@exportkey{esname}{identification.script.name}{}%

2876 \bbl@exp{\\\bbl@exportkey{sname}{identification.script.name.opentype}%
2877 {\csname bbl@esname@\languagename\endcsname}}%

2878 \bbl@exportkey{sbcp}{identification.script.tag.bcpd7}{}%

2879 \bbl@exportkey{sotf}{identification.script.tag.opentype}{DFLT}%
2880 \bbl@exportkey{rbcp}{identification.region.tag.bcp47}{}%

2881 \bbl@exportkey{vbcp}{identification.variant.tag.bcp47}{}%

2882 \bbl@exportkey{extt}{identification.extension.t.tag.bcp47}{}%
2883 \bbl@exportkey{extu}{identification.extension.u.tag.bcpd7}{}%
2884 \bbl@exportkey{extx}{identification.extension.x.tag.bcp47}{}%
2885 % Also maps bcp47 -> languagename

2886 \bbl@csarg\xdef{bcp@map@\bbl@cl{tbcp}}{\languagename}%

2887 \ifcase\bbl@engine\or

2888 \directlua{%

2889 Babel.locale props[\the\bbl@cs{id@@\languagename}].script
2890 = '\bbl@cl{sbcp}'}%

2891 \fi

2892 % Conditional

2893 \ifnum#l>\z@ % -1 or 0 = only info, 1 = basic, 2 = (re)new

2894 \bbl@exportkey{calpr}{date.calendar.preferred}{}%

2895 \bbl@exportkey{lnbrk}{typography.linebreaking}{h}%

2896 \bbl@exportkey{hyphr}{typography.hyphenrules}{}%

2897 \bbl@exportkey{lfthm}{typography.lefthyphenmin}{2}%

2898 \bbl@exportkey{rgthm}{typography.righthyphenmin}{3}%

2899 \bbl@exportkey{prehc}{typography.prehyphenchar}{}%

2900 \bbl@exportkey{hyotl}{typography.hyphenate.other.locale}{}%
2901 \bbl@exportkey{hyots}{typography.hyphenate.other.script}{}%
2902 \bbl@exportkey{intsp}{typography.intraspace}{}%

2903 \bbl@exportkey{frspc}{typography.frenchspacing}{u}%

2904 \bbl@exportkey{chrng}{characters.ranges}{}%

2905 \bbl@exportkey{quote}{characters.delimiters.quotes}{}%

2906 \bbl@exportkey{dgnat}{numbers.digits.native}{}%

2907 \ifnum#l=\tw@ % only (re)new

2908 \bbl@exportkey{rqtex}{identification.require.babel}{}%
2909 \bbl@toglobal\bbl@savetoday

2910 \bbl@toglobal\bbl@savedate

2911 \bbl@savestrings

2912 \fi

2913 \fi}

4.20. Processing keys in ini

A shared handler for key=val lines to be stored in \bbl@@kv@{section).(key).

2914 \def\bbl@inikv#1#2{% key=value
2915 \toks@{#2}% This hides #'s from ini values
2916 \bbl@csarg\edef{@kv@\bbl@section.#1}{\the\toks@}}

By default, the following sections are just read. Actions are taken later.

2917 \let\bbl@inikv@identification\bbl@inikv
2918 \let\bbl@inikv@date\bbl@inikv

66

2919 \let\bbl@inikv@typography\bbl@inikv
2920 \let\bbl@inikv@numbers\bbl@inikv

The characters section also stores the values, but casing is treated in a different fashion. Much
like transforms, a set of commands calling the parser are stored in \bbl@release@casing, which is
executed in \babelprovide.

2921 \def\bbl@maybextx{-\bbl@csarg\ifx{extx@\languagename}\@empty x-\fi}
2922 \def\bbl@inikv@characters#1#2{%

2923 \bbl@ifsamestring{#1}{casing}% e.g., casing = uV

2924 {\bbl@exp{%

2925 \\\g@addto@macro\\\bbl@release@casing{%

2926 \\\bbl@casemapping{}{\languagename}{\unexpanded{#2}3}}}}%
2927 {\in@{$casing.}{$#1}% e.g., casing.Uv = uV

2928 \ifin@

2929 \lowercase{\def\bbl@tempb{#1}}%

2930 \bbl@replace\bbl@tempb{casing.}{}%

2931 \bbl@exp{\\\g@addto@macro\\\bbl@release@casing{%

2932 \\\bbl@casemapping

2933 {\\\bbl@maybextx\bbl@tempb}{\languagename}{\unexpanded{#2}}}3}%
2934 \else

2935 \bbl@inikv{#1}{#2}%

2936 \fi}}

Additive numerals require an additional definition. When . 1 is found, two macros are defined —
the basic one, without .1 called by \localenumeral, and another one preserving the trailing . 1 for
the ‘units’.

2937 \def\bbl@inikv@counters#1#2{%

2938 \bbl@ifsamestring{#1}{digits}%

2939 {\bbl@error{digits-is-reserved}{}{}{}}%

2940 {}%

2941 \def\bbl@tempc{#1}%

2942 \bbl@trim@def{\bbl@tempb*}{#2}%

2943 \1in@{.1$}{#1$}%

2944 \ifin@

2945 \bbl@replace\bbl@tempc{.1}{}%

2946 \bbl@csarg\protectedexdef{cntr@\bbl@tempc @\ languagename}{%
2947 \noexpand\bbl@alphnumeral{\bbl@tempc}}%

2948 \fi

2949 \1in@{.F.}{#1}%

2950 \ifin@\else\in@{.S.}{#1}\fi

2951 \ifin@

2952 \bbl@csarg\protected@xdef{cntr@#1@\languagename}{\bbl@tempb*}%
2953 \else

2954 \toks@{}% Required by \bbl@buildifcase, which returns \bbl@tempa
2955 \expandafter\bbl@buildifcase\bbl@tempb* \\ % Space after \\
2956 \bbl@csarg{\global\expandafter\let}{cntr@#l@\languagename}\bbl@tempa
2957 \fi}

Now captions and captions.licr, depending on the engine. And below also for dates. They rely
on a few auxiliary macros. It is expected the ini file provides the complete set in Unicode and LICR, in
that order.

2958 \ifcase\bbl@engine

2959 \bbl@csarg\def{inikv@captions.licr}#1#2{%
2960 \bbl@ini@captions@aux{#1}{#2}}

2961 \else

2962 \def\bbl@inikv@captions#1#2{%

2963 \bbl@ini@captions@aux{#1}{#2}}

2964 \f1

The auxiliary macro for captions define \{(captionyname.

2965 \def\bbl@ini@captions@template#1#2{% string language tempa=capt-name
2966 \bbl@replace\bbl@tempa{.template}{}%

2967 \def\bbl@toreplace{#1{}}%

2968 \bbl@replace\bbl@toreplace{[]}{\nobreakspace{}}%

67

2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986 %

\bbl@replace\bbl@toreplace{[[}{\csname}%
\bbl@replace\bbl@toreplace{[}{\csname the}%
\bbl@replace\bbl@toreplace{]]}{name\endcsname{}}%
\bbl@replace\bbl@toreplace{]l}{\endcsname{}}%
\bbl@xin@{, \bbl@tempa, }{, chapter,appendix,part, }%
\ifin@
\@nameuse{bbl@patch\bbl@tempa}%
\global\bbl@csarg\let{\bbl@tempa fmt@#2}\bbl@toreplace
\fi
\bbl@xin@{, \bbl@tempa, }{, figure, table, }%
\ifin@
\global\bbl@csarg\let{\bbl@tempa fmt@#2}\bbl@toreplace
\bbl@exp{\gdef\<fnum@\bbl@tempa>{%
\\\bbl@ifunset{bbl@\bbl@tempa fmt@\\\languagename}%
{\[fnum@\bbl@tempa]l}%
{\\\@nameuse{bbl@\bbl@tempa fmt@\\\languagename}}}}%
\fi}

2987 \def\bbl@ini@captions@aux#1#2{%

2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007

Labels. Captions must contain just strings, no format at all, so there is new group in ini files.

\bbl@trim@def\bbl@tempa{#1}%
\bbl@xin@{.template}{\bbl@tempal}%
\ifin@
\bbl@ini@captions@template{#2}\languagename
\else
\bbl@ifblank{#2}%
{\bbl@exp{%

\toks@{\\\bbl@nocaption{\bbl@tempa name}{\languagename\bbl@tempa name}}}}%

{\bbl@trim\toks@{#2}}%
\bbl@exp{%
\\\bbl@add\\\bbl@savestrings{%
\\\SetString\<\bbl@tempa name>{\the\toks@}}}%
\toks@\expandafter{\bbl@captionslist}%
\bbl@exp{\\\in@{\<\bbl@tempa name>}{\the\toks@}}%
\ifin@\else
\bbl@exp{%
\\\bbl@add\<bbl@extracaps@\languagename>{\<\bbl@tempa name>}%
\\\bbl@toglobal\<bbl@extracaps@\languagename>}%
\fi
\fi}

3008 \def\bbl@list@the{%

3009
3010
3011
3012 %

part,chapter,section,subsection,subsubsection,paragraph,%
subparagraph,enumi,enumii,enumiii, enumiv,equation,figure,%
table, page, footnote,mpfootnote,mpfn}

3013 \def\bbl@map@cnt#1{% #1l:roman,etc, // #2:enumi,etc

3014
3015
3016
3017 %

\bbl@ifunset{bbl@map@#1@\languagename}%
{\@nameuse{#1}}%
{\@nameuse{bbl@map@#1@\languagename}}}

3018 \def\bbl@map@lbl#1{% #l:a sign, eg,

3019
3020
3021
3022
3023
3024 %

\ifincsname#l\else
\bbl@ifunset{bbl@map@e#1@@\languagename}%
{#1}%
{\@nameuse{bbl@map@e#1@@\languagename} }%
\fi}

3025 \def\bbl@inikv@labels#1#2{%

3026
3027
3028
3029

\in@{.map}{#1}%

\ifin@
\in@{,dot.map, }{,#1,}%
\ifin@

68

3030 \global\@namedef{bbl@map@@.@@\languagename}{#2}%

3031 \fi

3032 \ifx\bbl@KVP@labels\@nnil\else

3033 \bbl@xin@{ map }{ \bbl@KVP@labels\space}%

3034 \ifin@

3035 \def\bbl@tempc{#1}%

3036 \bbl@replace\bbl@tempc{.map}{}%

3037 \in@{,#2,}{,arabic, roman,Roman,alph,Alph, fnsymbol, }%
3038 \bbl@exp{%

3039 \gdef\<bbl@map@\bbl@tempc @\languagename>%

3040 {\ifin@\<#2>\else\\\localecounter{#2}\fi}}%

3041 \bbl@foreach\bbl@list@the{%

3042 \bbl@ifunset{the##1}{}%

3043 {\bbl@ncarg\let\bbl@tempd{the##1}%

3044 \bbl@exp{%

3045 \\\bbl@sreplace\<the##1>%

3046 {\<\bbl@tempc>{##1}}%

3047 {\\\bbl@map@cnt{\bbl@tempc} {##1}}%

3048 \\\bbl@sreplace\<the##1>%

3049 {\<\@empty @\bbl@tempc>\<c@##1>}%

3050 {\\\bbl@map@cnt{\bbl@tempc} {##1}}%

3051 \\\bbl@sreplace\<the##1>%

3052 {\\\csname @\bbl@tempc\\\endcsname\<c@##1>}%
3053 {{\\\bbl@map@cnt{\bbl@tempc} {##1}}}}%

3054 \expandafter\ifx\csname the##1l\endcsname\bbl@tempd\else
3055 \bbl@exp{\gdef\<the##1>{{\[the##1]}}}%

3056 \fi}}%

3057 \fi

3058 \fi

3059 %

3060 \else

3061 % The following code is still under study. You can test it and make
3062 % suggestions. E.g., enumerate.2 = ([enumi]).([enumii]). It's
3063 % language dependent.

3064 \in@{enumerate.}{#1}%

3065 \ifin@

3066 \def\bbl@tempa{#1}%

3067 \bbl@replace\bbl@tempa{enumerate.}{}%

3068 \def\bbl@toreplace{#2}%

3069 \bbl@replace\bbl@toreplace{[]}{\nobreakspace{}}%

3070 \bbl@replace\bbl@toreplace{[}{\csname the}%

3071 \bbl@replace\bbl@toreplace{]}{\endcsname{}}%

3072 \toks@\expandafter{\bbl@toreplace}%

3073 \bbl@exp{%

3074 \\\bbl@add\<extras\languagename>{%

3075 \\\babel@save\<labelenum\romannumeral\bbl@tempa>%
3076 \def\<labelenum\romannumeral\bbl@tempa>{\the\toks@}}%
3077 \\\bbl@toglobal\<extras\languagename>}%

3078 \fi

3079 \fi}

To show correctly some captions in a few languages, we need to patch some internal macros,
because the order is hardcoded. For example, in Japanese the chapter number is surrounded by two
string, while in Hungarian is placed after. These replacement works in many classes, but not all.
Actually, the following lines are somewhat tentative.

3080 \def\bbl@chaptype{chapter}

3081 \ifx\@makechapterhead\@undefined
3082 \let\bbl@patchchapter\relax

3083 \else\ifx\thechapter\@undefined
3084 \let\bbl@patchchapter\relax

3085 \else\ifx\ps@headings\@undefined
3086 \let\bbl@patchchapter\relax

3087 \else

69

3088 \def\bbl@patchchapter{%
3089 \global\let\bbl@patchchapter\relax
3090 \gdef\bbl@chfmt{%

3091 \bbl@ifunset{bbl@\bbl@chaptype fmt@\languagename}%
3092 {\@chapapp\space\thechapter}s
3093 {\@nameuse{bbl@\bbl@chaptype fmt@\languagename}}}%

3094 \bbl@add\appendix{\def\bbl@chaptype{appendix}}% Not harmful, I hope
3095 \bbl@sreplace\ps@headings{\@chapapp\ \thechapter}{\bbl@chfmt}%

3096 \bbl@sreplace\chaptermark{\@chapapp\ \thechapter}{\bbl@chfmt}%

3097 \bbl@sreplace\@makechapterhead{\@chapapp\space\thechapter}{\bbl@chfmt}%
3098 \bbl@toglobal\appendix

3099 \bbl@toglobal\ps@headings

3100 \bbl@toglobal\chaptermark

3101 \bbl@toglobal\@makechapterhead}

3102 \let\bbl@patchappendix\bbl@patchchapter

3103 \fi\fi\fi

3104 \ifx\@part\@undefined

3105 \let\bbl@patchpart\relax

3106 \else

3107 \def\bbl@patchpart{%

3108 \global\let\bbl@patchpart\relax

3109 \gdef\bbl@partformat{%

3110 \bbl@ifunset{bbl@partfmt@\languagename}%
3111 {\partname\nobreakspace\thepart}%
3112 {\@nameuse{bbl@partfmt@\languagename}}}%

3113 \bbl@sreplace\@part{\partname\nobreakspace\thepart}{\bbl@partformat}%
3114 \bbl@toglobal\@part}
3115\ fi

Date. Arguments (year, month, day) are not protected, on purpose. In \today, arguments are
always gregorian, and therefore always converted with other calendars.

3116 \let\bbl@calendar\@empty

3117 \DeclareRobustCommand\localedate[1] []{\bbl@localedate{#1}}
3118 \def\bbl@localedate#1#2#3#4{%

3119 \begingroup

3120 \edef\bbl@they{#2}%

3121 \edef\bbl@them{#3}%

3122 \edef\bbl@thed{#4}%

3123 \edef\bbl@tempe{%

3124 \bbl@ifunset{bbl@calpr@\languagename}{}{\bbl@cl{calpr}},%
3125 #1}%

3126 \bbl@exp{\lowercase{\edef\\\bbl@tempe{\bbl@tempe}}}%
3127 \bbl@replace\bbl@tempe{ }{}%

3128 \bbl@replace\bbl@tempe{convert}{convert=}%

3129 \let\bbl@ld@calendar\@empty

3130 \let\bbl@ld@variant\@empty

3131 \let\bbl@ld@convert\relax

3132 \def\bbl@tempb##1=##2\@@{\@namedef{bbl@ld@##1} {##2}}%
3133 \bbl@foreach\bbl@tempe{\bbl@tempb##1\@@}%

3134 \bbl@replace\bbl@ld@calendar{gregorian}{}%

3135 \ifx\bbl@ld@calendar\@empty\else

3136 \ifx\bbl@ld@convert\relax\else

3137 \babelcalendar[\bbl@they-\bbl@them-\bbl@thed]%
3138 {\bbl@ld@calendar}\bbl@they\bbl@them\bbl@thed
3139 \fi

3140 \fi

3141 \@nameuse{bbl@precalendar}%s Remove, e.g., +, -civil (-ca-islamic)
3142 \edef\bbl@calendar{% Used in \month..., too

3143 \bbl@ld@calendar

3144 \ifx\bbl@ld@variant\@empty\else

3145 .\bbl@ld@variant

3146 \fi}%

3147 \bbl@cased

70

3148 {\@nameuse{bbl@date@\languagename @\bbl@calendar}%

3149 \bbl@they\bbl@them\bbl@thed}%
3150 \endgroup}
3151%

3152 \def\bbl@printdate#1{%

3153 \@ifnextchar[{\bbl@printdate@i{#1}}{\bbl@printdate@i{#1}[1}}
3154 \def\bbl@printdate@i#1[#2 1#3#4#5{%

3155 \bbl@usedategrouptrue

3156 \@nameuse{bbl@ensure@#l}{\localedate[#2]{#3}{#4}{#5}}}

3157%

3158% e.g.: l=months, 2=wide, 3=1, 4=dummy, 5=value, 6=calendar
3159 \def\bbl@inidate#1.#2.#3.#4\relax#5#6{%

3160 \bbl@trim@def\bbl@tempa{#1.#2}%

3161 \bbl@ifsamestring{\bbl@tempa}{months.wide}% to savedate

3162 {\bbl@trim@def\bbl@tempa{#3}%

3163 \bbl@trim\toks@{#5}%

3164 \@temptokena\expandafter{\bbl@savedate}%

3165 \bbl@exp{% Reverse order - in ini last wins

3166 \def\\\bbl@savedate{%

3167 \\\SetString\<month\romannumeral\bbl@tempa#6name>{\the\toks@}%
3168 \the\@temptokena}}}%

3169 {\bbl@ifsamestring{\bbl@tempa}{date.long}% defined now

3170 {\lowercase{\def\bbl@tempb{#6}}%

3171 \bbl@trim@def\bbl@toreplace{#5}%

3172 \bb1l@TGe@date

3173 \global\bbl@csarg\let{date@\languagename @\bbl@tempb}\bbl@toreplace
3174 \ifx\bbl@savetoday\@empty

3175 \bbl@exp{%

3176 \\\AfterBabelCommands{%

3177 \gdef\<\languagename date>{\\\protect\<\languagename date >}%
3178 \gdef\<\languagename date >{\\\bbl@printdate{\languagename}}}%
3179 \def\\\bbl@savetoday{%

3180 \\\SetString\\\today{%

3181 \<\languagename date>[convert]%

3182 {\\\the\year}{\\\the\month}{\\\the\day}}}}%

3183 \fi}%

3184 {11}

Dates will require some macros for the basic formatting. They may be redefined by language, so
“semi-public” names (camel case) are used. Oddly enough, the CLDR places particles like “de”
inconsistently in either in the date or in the month name. Note after \bbl@replace \toks@ contains
the resulting string, which is used by \bbl@replace@finish@iii (this implicit behavior doesn’t seem
a good idea, but it’s efficient).

3185 \let\bbl@calendar\@empty

3186 \newcommand\babelcalendar[2] [\the\year-\the\month-\the\day]{%
3187 \@nameuse{bbl@ca@#2}#1\@@}

3188 \newcommand\BabelDateSpace{\nobreakspace}

3189 \newcommand\BabelDateDot{.\@}

3190 \newcommand\BabelDated[1]{{\number#1}}

3191 \newcommand\BabelDatedd[1]{{\ifnum#1<10 O\fi\number#1}}

3192 \newcommand\BabelDateM[1]{{\number#1}}

3193 \newcommand\BabelDateMM[1] {{\ifnum#1<10 O\fi\number#1}}

3194 \newcommand\BabelDateMMMM[1] {{%

3195 \csname month\romannumeral#l\bbl@calendar name\endcsname}}%
3196 \newcommand\BabelDatey[1]{{\number#1}}%

3197 \newcommand\BabelDateyy[1]{{%

3198 \ifnum#1<10 O\number#l %

3199 \else\ifnum#1<100 \number#l %

3200 \else\ifnum#1<1000 \expandafter\@gobble\number#l %

3201 \else\ifnum#1<10000 \expandafter\@gobbletwo\number#l %

3202 \else

3203 \bbl@error{limit-two-digits}{}{}{}%

3204 \Fi\fi\fi\fi}}

71

3205 \newcommand\BabelDateyyyy[1]{{\number#1}}

3206 \newcommand\BabelDateU[1]{{\number#1}}%

3207 \def\bbl@replace@finish@iii#1{%

3208 \bbl@exp{\def\\#L#### L####2####3{\ the\toks@} }}

3209 \def\bbl@TGe@date{%

3210 \bbl@replace\bbl@toreplace{[]}{\BabelDateSpace{}}%
3211 \bbl@replace\bbl@toreplace{[.]}{\BabelDateDot{}}%

3212 \bbl@replace\bbl@toreplace{[y]}{\BabelDatey{####1}}%
3213 \bbl@replace\bbl@toreplace{[y|}{\bbl@datecntr[####1]|}%
3214 \bbl@replace\bbl@toreplace{[yy]}{\BabelDateyy{####1}}%
3215 \bbl@replace\bbl@toreplace{[yyyyl}{\BabelDateyyyy{####1}}%
3216 \bbl@replace\bbl@toreplace{[M]}{\BabelDateM{####2}}%
3217 \bbl@replace\bbl@toreplace{[M|}{\bbl@datecntr[####2|}%
3218 \bbl@replace\bbl@toreplace{[MM]}{\BabelDateMM{####2}}%
3219 \bbl@replace\bbl@toreplace{[MMMM]}{\BabelDateMMMM{####2} }%
3220 \bbl@replace\bbl@toreplace{[d]}{\BabelDated{####3}}%
3221 \bbl@replace\bbl@toreplace{[d|}{\bbl@datecntr [####3]|}%
3222 \bbl@replace\bbl@toreplace{[dd]}{\BabelDatedd{####3}}%
3223 \bbl@replace\bbl@toreplace{[U]}{\BabelDateU{####1}}%
3224 \bbl@replace\bbl@toreplace{[U|}{\bbl@datecntr [####1]|}%
3225 \bbl@replace@finish@iii\bbl@toreplace}

3226 \def\bbl@datecntr{\expandafter\bbl@xdatecntr\expandafter}
3227 \def\bbl@xdatecntr[#1|#2]{\localenumeral{#2}{#1}}

4.21. French spacing (again)

For the following declarations, see issue #240. \nonfrenchspacing is set by document too early, so it’s
a hack.

3228 \AddToHook{begindocument/before}{%
3229 \let\bbl@normalsf\normalsfcodes
3230 \let\normalsfcodes\relax}

3231 \AtBeginDocument{%

3232 \ifx\bbl@normalsf\@empty

3233 \ifnum\sfcode \.=\@m
3234 \let\normalsfcodes\frenchspacing
3235 \else
3236 \let\normalsfcodes\nonfrenchspacing
3237 \fi
3238 \else
3239 \let\normalsfcodes\bbl@normalsf
3240 \fi}
Transforms.

Process the transforms read from ini files, converts them to a form close to the user interface (with
\babelprehyphenation and \babelprehyphenation), wrapped with \bbl@transforms@aux
...\relax, and stores them in \bbl@release@transforms. However, since building a list enclosed in
braces isn’t trivial, the replacements are added after a comma, and then \bbl@transforms@aux adds
the braces.

3241 \bbl@csarg\let{inikv@transforms.prehyphenation}\bbl@inikv
3242 \bbl@csarg\let{inikv@transforms.posthyphenation}\bbl@inikv
3243 \def\bbl@transforms@aux#1#2#3#4,#5\relax{%

3244 #1[#2]{#3}{#4}{#5}}

3245 \begingroup

3246 \catcode \%=12

3247 \catcode \&=14

3248 \gdef\bbl@transforms#1#2#3{&%

3249 \directlua{

3250 local str = [==[#2]==

3251 str = str:gsub('%.%d+%.%d+$"', '"')
3252 token.set macro('babeltempa', str)
3253 }8%

3254 \def\babeltempc{}&%
3255 \bbl@xin@{, \babeltempa, }{, \bbl@KVP@transforms, }&%

72

3256 \ifin@\else

3257 \bbl@xin@{:\babeltempa, }{, \bbl@KVP@transforms, }&%

3258 \fi

3259 \ifin@

3260 \bbl@foreach\bbl@KVP@transforms{&%

3261 \bbl@xin@{:\babeltempa, }{,##1,}&%

3262 \ifin@ &% font:font:transform syntax

3263 \directlua{

3264 local t = {}

3265 for m in string.gmatch('##1'..':', '(.-):') do
3266 table.insert(t, m)

3267 end

3268 table.remove(t)

3269 token.set macro('babeltempc', ', fonts=' .. table.concat(t, ' '))
3270 }8&%

3271 \fi}&%

3272 \in@{.0$}{#2$}8&%

3273 \ifin@

3274 \directlua{&% (\attribute) syntax

3275 local str = string.match([[\bbl@KVP@transforms]],
3276 "%((["%(]1-)%)["%)]-\babeltempa")
3277 if str == nil then

3278 token.set macro('babeltempb', '')

3279 else

3280 token.set macro('babeltempb', ',attribute=' .. str)
3281 end

3282 }8%

3283 \toks@{#3}&%

3284 \bbl@exp{&%

3285 \\\g@addto@macro\\\bbl@release@transforms{&%

3286 \relax &% Closes previous \bbl@transforms@aux
3287 \\\bbl@transforms@aux

3288 \\#1{label=\babeltempa\babeltempb\babeltempc}&%s
3289 {\languagename}{\the\toks@}}}&%

3290 \else

3291 \g@addto@macro\bbl@release@transforms{, {#3}}&%
3292 \fi

3293 \fi}

3294 \endgroup

4.22. Handle language system

The language system (i.e., Language and Script) to be used when defining a font or setting the
direction are set with the following macros. It also deals with unhyphenated line breaking in xetex
(e.g., Thai and traditional Sanskrit), which is done with a hack at the font level because this engine
doesn’t support it.

3295 \def\bbl@provide@lsys#1{%

3296 \bbl@ifunset{bbl@lLname@#1}%

3297 {\bbl@load@info{#1}}%

3298 {}%

3299 \bbl@csarg\let{lsys@#1}\@empty

3300 \bbl@ifunset{bbl@sname@#1}{\bbl@csarg\gdef{sname@#1}{Default}}{}%
3301 \bbl@ifunset{bbl@sotf@#1l}{\bbl@csarg\gdef{sotf@#1}{DFLT}}{}%

3302 \bbl@csarg\bbl@add@list{lsys@#1}{Script=\bbl@cs{sname@#1}}%

3303 \bbl@ifunset{bbl@lname@#1}{}%

3304 {\bbl@csarg\bbl@add@list{lsys@#1}{Language=\bbl@cs{lname@#1}}}%
3305 \ifcase\bbl@engine\or\or

3306 \bbl@ifunset{bbl@prehc@#1}{}%

3307 {\bbl@exp{\\\bbl@ifblank{\bbl@cs{prehc@#1}}}%
3308 {}%

3309 {\ifx\bbl@xenohyph\@undefined

3310 \global\let\bbl@xenohyph\bbl@xenohyph@d
3311 \ifx\AtBeginDocument\@notprerr

73

3312 \expandafter\@secondoftwo % to execute right now

3313 \fi

3314 \AtBeginDocument{%

3315 \bbl@patchfont{\bbl@xenohyph}%

3316 {\expandafter\select@language\expandafter{\languagename}}}%
3317 \fi}}%

3318 \fi

3319 \bbl@csarg\bbl@toglobal{lsys@#1}}

4.23. Numerals

A tool to define the macros for native digits from the list provided in the ini file. Somewhat
convoluted because there are 10 digits, but only 9 arguments in TgX. Non-digits characters are kept.
The first macro is the generic “localized” command.

3320 \def\bbl@setdigits#1#2#3#4#5{%
3321 \bbl@exp{%

3322 \def\<\languagename digits>####1{% i.e., \langdigits

3323 \<bbl@digits@\languagename>####1\\\@nil}%

3324 \let\<bbl@cntr@digits@\languagename>\<\languagename digits>%
3325 \def\<\languagename counter>####1{% i.e., \langcounter
3326 \\\expandafter\<bbl@counter@\languagename>%

3327 \\\csname c@E####1\endcsname}%

3328 \def\<bbl@counter@\languagename>####1{% i.e., \bbl@counter@lang
3329 \\\expandafter\<bbl@digits@\languagename>%

3330 \\\number####1\\\@nil}}%

3331 \def\bbl@tempa## 1##2##3##4##5{%
3332 \bbl@exp{% Wow, quite a lot of hashes! :-(

3333 \def\<bbl@digits@\languagename>########1{%

3334 \\\ L x###1\\\@nil % i.e., \bbl@digits@lang
3335 \\\else

3336 \\\1ifxO########1#1%

3337 \\\else\\\ i fx1########142%

3338 \\\else\\\1fx2########14#3%

3339 \\\else\\\1ifx3########1#4%

3340 \\\else\\\ i fxa########145%

3341 \\\else\\\ifxS########1##1%

3342 \\\else\\\1ifXxe########1##2%

3343 \\\else\\\ 1 fx7########14#3%

3344 \\\else\\\ifx8########1##4%

3345 \\\else\\\1fxO########1##5%

3346 \\\ e Use########1%

3347 ANAVZANAN SANAN SARNN #ANNS SANNN SANRN SANNN SANNN SANNN 1
3348 \\\expandafter\<bbl@digits@\languagename>%

3349 \\fi}}}%

3350 \bbl@tempa}
Alphabetic counters must be converted from a space separated list to an \ifcase structure.

3351 \def\bbl@buildifcase#1 {% Returns \bbl@tempa, requires \toks@={}

3352 \1fx\\#1% % \\ before, in case #l is multiletter
3353 \bbl@exp{%

3354 \def\\\bbl@tempa####1{%

3355 \<ifcase>####1\space\the\toks@\<else>\\\@ctrerr\<fi>}}%
3356 \else

3357 \toks@\expandafter{\the\toks@\or #1}%
3358 \expandafter\bbl@buildifcase
3359 \fi}

The code for additive counters is somewhat tricky and it’s based on the fact the arguments just
before \@@ collects digits which have been left ‘unused’ in previous arguments, the first of them
being the number of digits in the number to be converted. This explains the reverse set 76543210.
Digits above 10000 are not handled yet. When the key contains the subkey .F., the number after is
treated as an special case, for a fixed form (see babel-he.ini, for example).

3360 \newcommand\localenumeral[2]{%

74

3361 \bbl@ifunset{bbl@cntr@#l@\languagename}%

3362 {#2}%

3363 {\bbl@cs{cntr@#l@\languagename}{#2}}}

3364 \def\bbl@localecntr#1#2{\localenumeral{#2}{#1}}

3365 \newcommand\localecounter[2]{%

3366 \expandafter\bbl@localecntr

3367 \expandafter{\number\csname c@#2\endcsname}{#1}}

3368 \def\bbl@alphnumeral#1#2{%

3369 \expandafter\bbl@alphnumeral@i\number#2 76543210\@@{#1}}
3370 \def\bbl@alphnumeral@i#1#2#3#4#5#6#7#8\Q0#9{%

3371 \ifcase\@car#8\@nil\or % Currently <10000, but prepared for bigger
3372 \bbl@alphnumeral@ii{#9}000000#1\or

3373 \bbl@alphnumeral@ii{#9}00000#1#2\or

3374 \bbl@alphnumeral@ii{#9}0000#1#2#3\or

3375 \bbl@alphnumeral@ii{#9}000#1#2#3#4\else

3376 \bbl@alphnum@invalid{>9999}%

3377 \fi}

3378 \def\bbl@alphnumeral@ii#1#2#3#4#5#6#7#8{%

3379 \bbl@ifunset{bbl@cntr@#l.F.\number#5#6#7#8@\languagename}%
3380 {\bbl@cs{cntr@#l.4@\languagename}#5%

3381 \bbl@cs{cntr@#1l.3@\languagename}#6%

3382 \bbl@cs{cntr@#l.2@\languagename}#7%

3383 \bbl@cs{cntr@#1.1@\languagename}#8%

3384 \ifnum#6#7#8>\z@

3385 \bbl@ifunset{bbl@cntr@#1l.S.321@\languagename}{}%
3386 {\bbl@cs{cntr@#1.S.321@\languagename}}%

3387 \fi}%

3388 {\bbl@cs{cntr@#l.F.\number#5#6#7#8@\languagename}}}
3389 \def\bbl@alphnum@invalid#1{%
3390 \bbl@error{alphabetic-too-large}{#1}{}{}}

4.24. Casing

3391 \newcommand\BabelUppercaseMapping[3]{%
3392 \DeclareUppercaseMapping[\@nameuse{bbl@casing@#1}]{#2}{#3}}
3393 \newcommand\BabelTitlecaseMapping[31{%
3394 \DeclareTitlecaseMapping[\@nameuse{bbl@casing@#1}]1{#2}{#3}}
3395 \newcommand\BabelLowercaseMapping[31{%
3396 \DeclareLowercaseMapping[\@nameuse{bbl@casing@#1}]{#2}{#3}}

The parser for casing and casing. (variant).
3397 \ifcase\bbl@engine % Converts utf8 to its code (expandable)
3398 \def\bbl@utftocode#1{\the\numexpr\decode@UTFviii#1l\relax}
3399 \else
3400 \def\bbl@utftocode#1l{\expandafter \string#1}
3401 \ fi
3402 \def\bbl@casemapping#1#2#3{% 1l:variant
3403 \def\bbl@tempa##1 ##2{% Loop
3404 \bbl@casemapping@i{##1}%
3405 \ifx\@empty##2\else\bbl@afterfi\bbl@tempa##2\fi}%
3406 \edef\bbl@templ{\@nameuse{bbl@casing@#2}#1}% Language code
3407 \def\bbl@tempe{0}% Mode (upper/lower...)
3408 \def\bbl@tempc{#3 }% Casing list
3409 \expandafter\bbl@tempa\bbl@tempc\@empty}
3410 \def\bbl@casemapping@i#1{%
3411 \def\bbl@tempb{#1}%
3412 \ifcase\bbl@engine % Handle utf8 in pdftex, by surrounding chars with {}

3413 \@nameuse{regex replace _all:nnN}%

3414 {I\x{cO}-\x{ff}1[\x{80}-\x{bf}1*}{{\0}}\bbl@tempb
3415 \else

3416 \@nameuse{regex_replace all:nnN}{.}{{\0}}\bbl@tempb
3417 \fi

3418 \expandafter\bbl@casemapping@ii\bbl@tempb\@@}
3419 \def\bbl@casemapping@ii#1#2#3\@a{%

75

3420 \in@{#1#3}{<>}% i.e., if <u>, <l>, <t>
3421 \ifin@
3422 \edef\bbl@tempe{%

3423 \if#2ul \else\if#212 \else\if#2t3 \fi\fi\fi}%

3424 \else

3425 \ifcase\bbl@tempe\relax

3426 \DeclareUppercaseMapping[\bbl@templ]{\bbl@utftocode{#1}}{#2}%
3427 \DeclareLowercaseMapping[\bbl@templ]{\bbl@utftocode{#2}}{#1}%
3428 \or

3429 \DeclareUppercaseMapping[\bbl@templ]{\bbl@utftocode{#1}}{#2}%
3430 \or

3431 \DeclareLowercaseMapping[\bbl@templ]{\bbl@utftocode{#1}}{#2}%
3432 \or

3433 \DeclareTitlecaseMapping[\bbl@templ]{\bbl@utftocode{#1}}{#2}%
3434 \fi

3435 \fi}

4.25. Getting info

The information in the identification section can be useful, so the following macro just exposes it
with a user command.

3436 \def\bbl@localeinfo#1#2{%

3437 \bbl@ifunset{bbl@info@#2}{#1}%

3438 {\bbl@ifunset{bbl@\csname bbl@info@#2\endcsname @\languagename}{#1}%
3439 {\bbl@cs{\csname bbl@info@#2\endcsname @\languagename}}}}

3440 \newcommand\localeinfo[1]{%

3441 \ifx*#1\@empty

3442 \bbl@afterelse\bbl@localeinfo{}%

3443 \else

3444 \bbl@localeinfo

3445 {\bbl@error{no-ini-info}{}{}{}}%
3446 {#1}%
3447 \fi}

3448 % \@namedef{bbl@info@name.locale}{lcname}

3449 \@namedef{bbl@info@tag.ini}{1lini}

3450 \@namedef{bbl@info@name.english}{elname}

3451 \@namedef{bbl@info@name.opentype}{lname}

3452 \@namedef{bbl@info@tag.bcp47}{tbcp}

3453 \@namedef{bbl@info@language.tag.bcp47}{lbcp}
3454 \@namedef{bbl@info@tag.opentype}{lotf}

3455 \@namedef{bbl@info@script.name}{esname}

3456 \@namedef{bbl@info@script.name.opentype}{sname}
3457 \@namedef{bbl@info@script.tag.bcp47}{sbcp}

3458 \@namedef{bbl@info@script.tag.opentype}{sotf}
3459 \@namedef{bbl@info@region.tag.bcp47}{rbcp}

3460 \@namedef{bbl@info@variant.tag.bcp47}{vbcp}

3461 \@namedef{bbl@info@extension.t.tag.bcpd7}{extt}
3462 \@namedef{bbl@info@extension.u.tag.bcp47}{extu}
3463 \@namedef{bbl@info@extension.x.tag.bcpd7}{extx}

With version 3.75 \BabelEnsureInfo is executed always, but there is an option to disable it. Since
the info in ini files are always loaded, it has be made no-op in version 25.8.

3464 ((xMore package options)) =

3465 \DeclareOption{ensureinfo=0ff}{}
3466 ((/More package options))

3467 \let\BabelEnsureInfo\relax

More general, but non-expandable, is \getlocaleproperty.

3468 \newcommand\getlocaleproperty{%

3469 \@ifstar\bbl@getproperty@s\bbl@getproperty@x}
3470 \def\bbl@getproperty@s#1#2#3{%

3471 \let#1l\relax

3472 \def\bbl@elt##1##2##3{%

3473 \bbl@ifsamestring{##1/##2}{#3}%

76

3474 {\providecommand#1{##3}%

3475 \def\bbl@e t#### 1 ####2####3{} }%

3476 {}}%

3477 \bbl@cs{inidata@#2}}%

3478 \def\bbl@getproperty@x#1#2#3{%

3479 \bbl@getproperty@s{#1}{#2}{#3}%

3480 \ifx#l\relax

3481 \bbl@error{unknown-locale-key}{#1}{#2}{#3}%
3482 \fi}

To inspect every possible loaded ini, we define \LocaleForEach, where \bbl@ini@loaded is a
comma-separated list of locales, built by \bbl@read@ini.

3483 \let\bbl@ini@loaded\@empty

3484 \newcommand\LocaleForEach{\bbl@foreach\bbl@ini@loaded}

3485 \def\ShowLocaleProperties#1{%

3486 \typeout{}%

3487 \typeout{*** Properties for language '#1' ***}

3488 \def\bblEelt##1##2##3{\typeout{##1/##2 = \unexpanded{##3}}}%
3489 \@nameuse{bbl@inidata@#1}%

3490 \typeout{*¥¥¥x**x}}

4.26. BCP 47 related commands

This macro is called by language selectors when the language isn’t recognized. So, it’s the core for (1)
mapping from a BCP 27 tag to the actual language, if bcp47. toname is enabled (i.e., if bbl@bcptoname
is true), and (2) lazy loading. With autoload.bcp47 enabled and lazy loading, we must first build a
name for the language, with the help of autoload.bcp47.prefix. Then we use \provideprovide
passing the options set with autoload.bcp47.options (by default import). Finally, and if the locale
has not been loaded before, we use \provideprovide with the language name as passed to the
selector.

3491 \newif\ifbbl@bcpallowed

3492 \bbl@bcpallowedfalse

3493 \def\bbl@Eautoload@options{@import}

3494 \def\bbl@provide@locale{%

3495 \ifx\babelprovide\@undefined

3496 \bbl@error{base-on-the-fly}{}{}{}%

3497 \fi

3498 \let\bbl@auxname\languagename

3499 \ifbbl@bcptoname

3500 \bbl@ifunset{bbl@bcp@map@\languagename}{}% Move uplevel??

3501 {\edef\languagename{\@nameuse{bbl@bcp@map@\languagename}}%
3502 \let\localename\languagename}%

3503 \fi

3504 \ifbbl@bcpallowed

3505 \expandafter\ifx\csname date\languagename\endcsname\relax
3506 \expandafter

3507 \bbl@bcplookup\languagename-\@empty-\@empty-\@empty\@@

3508 \ifx\bbl@bcp\relax\else % Returned by \bbl@bcplookup

3509 \edef\languagename{\bbl@bcp@prefix\bbl@bcp}%

3510 \let\localename\languagename

3511 \expandafter\ifx\csname date\languagename\endcsname\relax
3512 \let\bbl@initoload\bbl@bcp

3513 \bbl@exp{\\\babelprovide[\bbl@autoload@bcpoptions]{\languagename}}%
3514 \let\bbl@initoload\relax

3515 \fi

3516 \bbl@csarg\xdef{bcp@map@\bbl@bcp}{\localename}%

3517 \fi

3518 \fi

3519 \fi

3520 \expandafter\ifx\csname date\languagename\endcsname\relax

3521 \IfFileExists{babel-\languagename.tex}%

3522 {\bbl@exp{\\\babelprovide[\bbl@autoload@options]{\languagename}}}%
3523 {}%

77

3524 \fi}

KTEX needs to know the BCP 47 codes for some features. For that, it expects \BCPdata to be defined.
While language, region, script, and variant are recognized, extension.(s) for singletons may
change.

Still somewhat hackish. Note \str if eq:nnTF is fully expandable (\bbl@ifsamestring isn’t). The
argument is the prefix to tag.bcp47.

3525 \providecommand\BCPdata{}

3526 \ifx\renewcommand\@undefined\else

3527 \renewcommand\BCPdata[1l]{\bbl@bcpdata@i#1\@empty\@empty\@empty}
3528 \def\bbl@bcpdata@i#1#2#3#4#5#6\@empty{%

3529 \@nameuse{str if eq:nnTF}{#1#2#3#4#5}{main.}%

3530 {\bbl@bcpdata@ii{#6}\bbl@main@language}%

3531 {\bbl@bcpdata@ii{#1#2#3#4#5#6}\1languagename}}%

3532 \def\bbl@bcpdata@ii#1#2{%

3533 \bbl@ifunset{bbl@info@#1l.tag.bcpd7}%

3534 {\bbl@error{unknown-ini-field}{#1}{}{}}%

3535 {\bbl@ifunset{bbl@\csname bbl@info@#l.tag.bcp47\endcsname @#2}{}%
3536 {\bbl@cs{\csname bbl@info@#l.tag.bcp47\endcsname @#2}}}}

3537 \fi

3538 \@namedef{bbl@info@casing.tag.bcp47}{casing}
3539 \@namedef{bbl@info@tag.tag.bcpd7}{tbcp} % For \BCPdata

5. Adjusting the Babel behavior

A generic high level interface is provided to adjust some global and general settings.

3540 \newcommand\babeladjust[1]{%
3541 \bbl@forkv{#1}{%
3542 \bbl@ifunset{bblEADI@##1@##2}%

3543 {\bbl@cs{ADI@##1} {##2}}%
3544 {\bbl@cs{ADJ@##1@##2}}}}
3545 %

3546 \def\bbl@adjust@lua#1l#2{%
3547 \ifvmode

3548 \ifnum\currentgrouplevel=\z@

3549 \directlua{ Babel.#2 }%

3550 \expandafter\expandafter\expandafter\@gobble
3551 \fi

3552 \fi

3553 {\bbl@error{adjust-only-vertical}{#1}{}{}}}% Gobbled if everything went ok.
3554 \@namedef{bbl@ADJ@bidi.mirroring@on}{%

3555 \bbl@adjust@lua{bidi}{mirroring enabled=true}}
3556 \@namedef{bbl@ADJ@bidi.mirroring@off}{%

3557 \bbl@adjust@lua{bidi}{mirroring enabled=false}}
3558 \@namedef{bbl@ADJ@bidi.text@on}{%

3559 \bbl@adjust@lua{bidi}{bidi enabled=true}}

3560 \@namedef{bbl@ADJ@bidi.text@off}{%

3561 \bbl@adjust@lua{bidi}{bidi_enabled=false}}
3562 \@namedef{bb1@ADI@bidi.math@on}{%

3563 \let\bbl@noamsmath\@empty}

3564 \@namedef{bbl@ADJ@bidi.math@off}{%

3565 \let\bbl@noamsmath\relax}

3566 %

3567 \@namedef{bbl@ADJ@bidi.mapdigits@on}{%

3568 \bbl@adjust@lua{bidi}{digits mapped=true}}
3569 \@namedef{bbl@ADJ@bidi.mapdigits@off}{%

3570 \bblEadjust@lua{bidi}{digits mapped=false}}
3571%

3572 \@namedef{bb1l@ADJ@linebreak.sea@on}{%

3573 \bbl@adjust@lua{linebreak}{sea_enabled=true}}
3574 \@namedef{bb1l@ADJ@linebreak.sea@off}{%

3575 \bbl@adjust@lua{linebreak}{sea enabled=false}}

78

3576 \@namedef{bbl@ADJ@linebreak.cjk@on}{%

3577 \bbl@adjust@lua{linebreak}{cjk enabled=true}}

3578 \@namedef{bbl@ADJ@linebreak.cjk@off}{%

3579 \bbl@adjust@lua{linebreak}{cjk enabled=false}}

3580 \@namedef{bbl@ADJ@justify.arabic@on}{%

3581 \bbl@adjust@lua{linebreak}{arabic.justify enabled=true}}
3582 \@namedef{bbl@ADJ@justify.arabic@off}{%

3583 \bbl@adjust@lua{linebreak}{arabic.justify enabled=false}}
3584 %

3585 \def\bbl@adjust@layout#1{%

3586 \ifvmode

3587 #1%
3588 \expandafter\@gobble
3589 \fi

3590 {\bbl@error{layout-only-vertical}{}{}{}}}% Gobbled if everything went ok.
3591 \@namedef{bbl@ADJ@layout.tabular@on}{%

3592 \ifnum\bbl@tabular@mode=\tw@

3593 \bbl@adjust@layout{\let\@tabular\bbl@NL@@tabular}%

3594 \else
3595 \chardef\bbl@tabular@mode\@ne
3596 \fi}

3597 \@namedef{bbl@ADJ@layout.tabular@off}{%
3598 \ifnum\bbl@tabular@mode=\tw@
3599 \bbl@adjust@layout{\let\@tabular\bbl@OL@@tabular}%

3600 \else
3601 \chardef\bbl@tabular@mode\z@
3602 \fi}

3603 \@namedef{bbl@ADJ@layout.lists@on}{%

3604 \bbl@adjust@layout{\let\list\bbl@NL@list}}

3605 \@namedef{bbl@ADJ@layout.lists@off}{%

3606 \bbl@adjust@layout{\let\list\bbl@OL@list}}

3607 %

3608 \@namedef{bbl@ADJ@autoload.bcp47@on}{%

3609 \bbl@bcpallowedtrue}

3610 \@namedef{bbl@ADJ@autoload.bcp47@off}{%

3611 \bbl@bcpallowedfalse}

3612 \@namedef{bbl@ADJ@autoload.bcpd7.prefix}#1{%

3613 \def\bbl@bcp@prefix{#1}}

3614 \def\bbl@bcp@prefix{bcp47-}

3615 \@namedef{bbl@ADJ@autoload.options}#1{%

3616 \def\bbl@autoload@options{#1}}

3617 \def\bbl@autoload@bcpoptions{import}

3618 \@namedef{bbl@ADJ@autoload.bcp47.options}#1{%

3619 \def\bbl@autoload@bcpoptions{#1}}

3620 \newif\ifbbl@bcptoname

3621%

3622 \@namedef{bbl@ADJ@bcp47.toname@on}{%

3623 \bbl@bcptonametrue}

3624 \@namedef{bbl@ADJI@bcp47.toname@off}{%

3625 \bbl@bcptonamefalse}

3626 %

3627 \@namedef{bbl@ADJ@prehyphenation.disable@nohyphenation}{%
3628 \directlua{ Babel.ignore pre char = function(node)
3629 return (node.lang == \the\csname l@nohyphenation\endcsname)
3630 end }}

3631 \@namedef{bbl@ADJ@prehyphenation.disable@off}{%

3632 \directlua{ Babel.ignore pre char = function(node)

3633 return false
3634 end }}
3635%

3636 \@namedef{bbl@ADJ@interchar.disable@nohyphenation}{%
3637 \def\bbl@ignoreinterchar{%
3638 \ifnum\language=\1@nohyphenation

79

3639 \expandafter\@gobble

3640 \else
3641 \expandafter\@firstofone
3642 \fi}}

3643 \@namedef{bbl@ADJ@interchar.disable@off}{%
3644 \let\bbl@ignoreinterchar\@firstofone}
3645 %

3646 \@namedef{bbl@ADJ@select.write@shift}{%
3647 \let\bbl@restorelastskip\relax

3648 \def\bbl@savelastskip{%

3649 \let\bbl@restorelastskip\relax

3650 \ifvmode

3651 \ifdim\lastskip=\z@

3652 \let\bbl@restorelastskip\nobreak

3653 \else

3654 \bbl@exp{%

3655 \def\\\bbl@restorelastskip{%

3656 \skip@=\the\lastskip

3657 \\\nobreak \vskip-\skip@ \vskip\skip@}}%
3658 \fi

3659 \fi}}

3660 \@namedef{bbl@ADJ@select.write@keep}{%

3661 \let\bbl@restorelastskip\relax

3662 \let\bbl@savelastskip\relax}

3663 \@namedef{bbl@ADJ@select.write@omit}{%

3664 \AddBabelHook{babel-select}{beforestart}{%

3665 \expandafter\babel@aux\expandafter{\bbl@main@language}{}}%
3666 \let\bbl@restorelastskip\relax

3667 \def\bbl@savelastskip##1l\bbl@restorelastskip{}}

3668 \@namedef{bbl@ADJ@select.encoding@off}{%

3669 \let\bbl@encoding@select@off\@empty}

5.1. Crossreferencing macros

The ETgX book states:

The key argument is any sequence of letters, digits, and punctuation symbols; upper- and
lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a language that has active
characters, special care has to be taken of the category codes of these characters when they appear in
an argument of the cross referencing macros.

When a cross referencing command processes its argument, all tokens in this argument should be
character tokens with category ‘letter’ or ‘other’.

The following package options control which macros are to be redefined.

3670 {(xMore package options)) =

3671 \DeclareOption{safe=none}{\let\bbl@opt@safe\@empty}
3672 \DeclareOption{safe=bib}{\def\bbl@opt@safe{B}}

3673 \DeclareOption{safe=ref}{\def\bbl@opt@safe{R}}

3674 \DeclareOption{safe=refbib}{\def\bbl@opt@safe{BR}}
3675 \DeclareOption{safe=bibref}{\def\bbl@opt@safe{BR}}
3676 ({/More package options))

\@newl@bel First we open a new group to keep the changed setting of \protect local and then we
set the @safe@actives switch to true to make sure that any shorthand that appears in any of the
arguments immediately expands to its non-active self.

3677 \bbl@trace{Cross referencing macros}

3678 \1fx\bbl@opt@safe\@empty\else % i.e., if 'ref' and/or 'bib'
3679 \def\@newl@bel#1#2#3{%

3680 {\@safe@activestrue

3681 \bbl@ifunset{#1@#2}%

3682 \relax

3683 {\gdef\@multiplelabels{%

80

3684 \@latex@warning@no@line{There were multiply-defined labels}}%
3685 \@latex@warning@no@line{Label “#2' multiply defined}}%
3686 \global\@namedef{#1@#2} {#3}}}

\@testdef An internal KTgX macro used to test if the labels that have been written on the aux file have
changed. It is called by the \enddocument macro.

3687 \CheckCommand*\@testdef[3]{%
3688 \def\reserved@a{#3}%

3689 \expandafter\ifx\csname#l@#2\endcsname\reserved@a
3690 \else

3691 \@tempswatrue

3692 \fi}

Now that we made sure that \@testdef still has the same definition we can rewrite it. First we
make the shorthands ‘safe’. Then we use \bbl@tempa as an ‘alias’ for the macro that contains the
label which is being checked. Then we define \bbl@tempb just as \@newl@bel does it. When the label
is defined we replace the definition of \bbl@tempa by its meaning. If the label didn’t change,
\bbl@tempa and \bbl@tempb should be identical macros.

3693 \def\@testdef#1#2#3{%

3694 \@safe@activestrue

3695 \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname
3696 \def\bbl@tempb{#3}%

3697 \@safe@activesfalse

3698 \ifx\bbl@tempa\relax

3699 \else

3700 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempa}s%
3701 \fi

3702 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%
3703 \ifx\bbl@tempa\bbl@tempb

3704 \else
3705 \@tempswatrue
3706 \fi}
3707 \ fi
\ref

\pageref The same holds for the macro \ref that references a label and \pageref to reference a
page. We make them robust as well (if they weren’t already) to prevent problems if they should
become expanded at the wrong moment.

3708 \bbl@xin@{R}\bbl@opt@safe

3709 \ifin@

3710 \edef\bbl@tempc{\expandafter\string\csname ref code\endcsname}%
3711 \bbl@xin@{\expandafter\strip@prefix\meaning\bbl@tempc}%

3712 {\expandafter\strip@prefix\meaning\ref}%

3713 \ifin@

3714 \bbl@redefine\@kernel@ref#1{%

3715 \@safe@activestrue\org@@kernel@ref{#1}\@safe@activesfalse}

3716 \bbl@redefine\@kernel@pageref#1{%

3717 \@safe@activestrue\org@ekernel@pageref{#1}\@safe@activesfalse}
3718 \bbl@redefine\@kernel@sref#1{%

3719 \@safe@activestrue\org@@kernel@sref{#1}\@safe@activesfalse}

3720 \bbl@redefine\@kernel@spageref#1{%

3721 \@safe@activestrue\org@@kernel@spageref{#1}\@safe@activesfalse}

3722 \else
3723 \bbl@redefinerobust\ref#1{%

3724 \@safe@activestrue\org@ref{#1}\@safe@activesfalse}

3725 \bbl@redefinerobust\pageref#1{%

3726 \@safe@activestrue\org@pageref{#1}\@safe@activesfalse}
3727 \fi

3728 \else

3729 \let\org@ref\ref
3730 \let\org@pageref\pageref
3731\ fi

81

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro, \@citex. It is this
internal macro that picks up the argument(s), so we redefine this internal macro and leave \cite
alone. The first argument is used for typesetting, so the shorthands need only be deactivated in the
second argument.

3732 \bbl@xin@{B}\bbl@opt@safe

3733\ifin@

3734 \bbl@redefine\@citex[#1]#2{%

3735 \@safe@activestrue\edef\bbl@tempa{#2}\@safe@activesfalse
3736 \orge@citex[#1]{\bbl@tempa}}

Unfortunately, the packages natbib and cite need a different definition of \@citex... To begin
with, natbib has a definition for \@citex with three arguments... We only know that a package is
loaded when \begin{document} is executed, so we need to postpone the different redefinition.

Notice that we use \def here instead of \bbl@redefine because \orge@citex is already defined
and we don’t want to overwrite that definition (it would result in parameter stack overflow because
of a circular definition).

(Recent versions of natbib change dynamically \@citex, so PR4087 doesn’t seem fixable in a
simple way. Just load natbib before.)

3737 \AtBeginDocument{%
3738 \@ifpackageloaded{natbib}{%
3739 \def\@citex[#1][#2]#3{%

3740 \@safe@activestrue\edef\bbl@tempa{#3}\@safe@activesfalse
3741 \org@@citex[#1] [#2]1{\bbl@tempa}}%
3742 H

The package cite has a definition of \@citex where the shorthands need to be turned off in both
arguments.

3743 \AtBeginDocument{%
3744 \@ifpackageloaded{cite}{%

3745 \def\@citex[#1]1#2{%
3746 \@safe@activestrue\org@@citex[#1]{#2}\@safe@activesfalse}%
3747 H1}

\nocite The macro \nocite which is used to instruct BiBTgX to extract uncited references from the
database.

3748 \bbl@redefine\nocite#1{%
3749 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}

\bibcite The macro that is used in the aux file to define citation labels. When packages such as natbib
or cite are not loaded its second argument is used to typeset the citation label. In that case, this
second argument can contain active characters but is used in an environment where
\@safe@activestrue is in effect. This switch needs to be reset inside the \hbox which contains the
citation label. In order to determine during aux file processing which definition of \bibcite is
needed we define \bibcite in such a way that it redefines itself with the proper definition. We call
\bbl@cite@choice to select the proper definition for \bibcite. This new definition is then activated.

3750 \bbl@redefine\bibcite{%
3751 \bbl@cite@choice
3752 \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither natbib
nor cite is loaded.

3753 \def\bbl@bibcite#1#2{%
3754 \org@bibcite{#1}{\@safe@activesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.
First we give \bibcite its default definition.

3755 \def\bbl@cite@choice{%

3756 \global\let\bibcite\bbl@bibcite

3757 \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%
3758 \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%
3759 \global\let\bbl@cite@choice\relax}

82

When a document is run for the first time, no aux file is available, and \bibcite will not yet be
properly defined. In this case, this has to happen before the document starts.

3760 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal ETgX macros called by \bibitem that write the citation label on the
aux file.

3761 \bbl@redefine\@bibitem#1{%

3762 \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}
3763 \else

3764 \let\org@nocite\nocite

3765 \let\org@@citex\@citex

3766 \let\org@bibcite\bibcite

3767 \let\org@@bibitem\@bibitem

3768 \ fi

5.2. Layout

3769 \newcommand\BabelPatchSection[1]{%

3770 \@ifundefined{#1}{}{%

3771 \bbl@exp{\let\<bbl@ss@#1>\<#1>}%

3772 \@namedef{#1}{%

3773 \@ifstar{\bbl@presec@s{#1}}%

3774 {\@dblarg{\bbl@presec@x{#1}}}3}}}

3775 \def\bbl@presec@x#1[#2]#3{%

3776 \bbl@exp{%

3777 \\\select@language@x{\bbl@main@language}%

3778 \\\bbl@cs{sspre@#1}%

3779 \\\bbl@cs{ss@#1}%

3780 [\\\foreignlanguage{\languagename}{\unexpanded{#2}}1%
3781 {\\\foreignlanguage{\languagename}{\unexpanded{#3}}1}%
3782 \\\select@language@x{\languagename}}}

3783 \def\bbl@presec@s#1#2{%

3784 \bbl@exp{%

3785 \\\select@language@x{\bbl@main@language}%

3786 \\\bbl@cs{sspre@#1}%

3787 \\\bbl@cs{ss@#1}*%

3788 {\\\foreignlanguage{\languagename}{\unexpanded{#2}}}%
3789 \\\select@language@x{\languagename}}}
3790 %

3791 \IfBabelLayout{sectioning}%

3792 {\BabelPatchSection{part}%

3793 \BabelPatchSection{chapter}%

3794 \BabelPatchSection{section}%

3795 \BabelPatchSection{subsection}%
3796 \BabelPatchSection{subsubsection}%
3797 \BabelPatchSection{paragraph}%

3798 \BabelPatchSection{subparagraph}%
3799 \def\babel@toc#1{%

3800 \select@language@x{\bbl@main@language}}}{}
3801 \IfBabelLayout{captions}%

3802 {\BabelPatchSection{caption}}{}

\BabelFootnote Footnotes.

3803 \bbl@trace{Footnotes}

3804 \def\bbl@footnote#1#2#3{%

3805 \@ifnextchar[%

3806 {\bbl@footnote@o{#1}{#2}{#3}}%

3807 {\bbl@footnote@x{#1}{#2}{#3}}}

3808 \long\def\bbl@footnote@x#1#2#3#4{%

3809 \bgroup

3810 \select@language@x{\bbl@main@language}%
3811 \bbl@fn@footnote{#2#1{\ignorespaces#4}#3}%

83

3812

\egroup}

3813 \long\def\bbl@footnote@o#1#2#3 [#4]1#5{%

3814
3815
3816
3817

\bgroup
\select@language@x{\bbl@main@language}%
\bbl@fn@footnote[#4]{#2#1{\ignorespaces#5}#3}%
\egroup}

3818 \def\bbl@footnotetext#1#2#3{%

3819
3820
3821

\@ifnextchar[%
{\bbl@footnotetext@o{#1}{#2}{#3}}%
{\bbl@footnotetext@x{#1}{#2}{#3}}}

3822 \long\def\bbl@footnotetext@x#1#2#3#4{%

3823
3824
3825
3826

\bgroup
\select@language@x{\bbl@main@language}%
\bbl@fn@footnotetext{#2#1{\ignorespaces#4}#3}%
\egroup}

3827 \long\def\bbl@footnotetext@o#1#2#3 [#4]1#5{%

3828
3829
3830
3831

\bgroup
\select@language@x{\bbl@main@language}%
\bbl@fn@footnotetext [#4] {#2#1{\ignorespaces#5}#3}%
\egroup}

3832 \def\BabelFootnote#1#2#3#4{%

3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845

\ifx\bbl@fn@footnote\@undefined
\let\bbl@fn@footnote\footnote
\fi
\ifx\bbl@fn@footnotetext\@undefined
\let\bbl@fn@footnotetext\footnotetext
\fi
\bbl@ifblank{#2}%
{\def#1{\bbl@footnote{\@firstofone}{#3}{#4}}
\@namedef{\bbl@stripslash#ltext}%
{\bbl@footnotetext{\@firstofone}{#3}{#4}}}%
{\def#1{\bbl@exp{\\\bbl@footnote{\\\foreignlanguage{#2}}}{#3}{#4}}%
\@namedef{\bbl@stripslash#ltext}%
{\bbl@exp{\\\bbl@footnotetext{\\\foreignlanqguage{#2}}}{#3}{#4}}}}

3846 \IfBabellLayout{footnotes}%

3847
3848
3849
3850
3851

5.3. Marks

{\let\bbl@OL@footnote\footnote
\BabelFootnote\footnote\languagename{}{}%
\BabelFootnote\localfootnote\languagename{}{}%
\BabelFootnote\mainfootnote{}{}{}}

{}

\markright Because the output routine is asynchronous, we must pass the current language attribute
to the head lines. To achieve this we need to adapt the definition of \markright and \markboth
somewhat. However, headlines and footlines can contain text outside marks; for that we must take
some actions in the output routine if the headfoot’ options is used.

We need to make some redefinitions to the output routine to avoid an endless loop and to correctly
handle the page number in bidi documents.

3852 \bbl@trace{Marks}
3853 \IfBabellLayout{sectioning}

3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865

{\ifx\bbl@opt@headfoot\@nnil
\g@addto@macro\@resetactivechars{%
\set@typeset@protect
\expandafter\select@language@x\expandafter{\bbl@main@language}%
\let\protect\noexpand
\ifcase\bbl@bidimode\else % Only with bidi. See also above
\edef\thepage{%
\noexpand\babelsublr{\unexpanded\expandafter{\thepage}}}%
\fi}%
\fi}
{\ifbbl@single\else
\bbl@ifunset{markright }\bbl@redefine\bbl@redefinerobust

84

3866 \markright#1{%

3867 \bbl@ifblank{#1}%

3868 {\org@markright{}}%

3869 {\toks@{#1}%

3870 \bbl@exp{%

3871 \\\org@markright{\\\protect\\\foreignlanguage{\languagename}%

3872 {\\\protect\\\bbl@restore@actives\the\toks@}}}}}%
\markboth

\@mkboth The definition of \markboth is equivalent to that of \markright, except that we need two
token registers. The documentclasses report and book define and set the headings for the page.
While doing so they also store a copy of \markboth in \@mkboth. Therefore we need to check whether
\@mkboth has already been set. If so we need to do that again with the new definition of \markboth.
(As of Oct 2019, ETiX stores the definition in an intermediate macro, so it’s not necessary anymore,
but it’s preserved for older versions.)

3873 \ifx\@mkboth\markboth

3874 \def\bbl@tempc{\let\@mkboth\markboth}%

3875 \else

3876 \def\bbl@tempc{}%

3877 \fi

3878 \bbl@ifunset{markboth }\bbl@redefine\bbl@redefinerobust
3879 \markboth#1#2{%

3880 \protected@edef\bbl@tempb##1{%

3881 \protect\foreignlanguage

3882 {\languagename}{\protect\bbl@restore@actives##1}}%
3883 \bbl@ifblank{#1}%

3884 {\toks@{}}%

3885 {\toks@\expandafter{\bbl@tempb{#1}}}%

3886 \bbl@ifblank{#2}%

3887 {\@temptokena{}}%

3888 {\@temptokena\expandafter{\bbl@tempb{#2}}}%

3889 \bbl@exp{\\\org@markboth{\the\toks@}{\the\@temptokena}}}%
3890 \bbl@tempc

3891 \fi} % end ifbbl@single, end \IfBabellLayout

5.4. Other packages
5.4.1. ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the page a
certain fragment of text appears on. This can be achieved by the following piece of code:

o°

\ifthenelse{\isodd{\pageref{some-label}}}
{code for odd pages}
{code for even pages}

o° o°

o°

In order for this to work the argument of \isodd needs to be fully expandable. With the above
redefinition of \pageref it is not in the case of this example. To overcome that, we add some code to
the definition of \ifthenelse to make things work.

We want to revert the definition of \pageref and \ref to their original definition for the first
argument of \ifthenelse, so we first need to store their current meanings.

Then we can set the \@safe@actives switch and call the original \ifthenelse. In order to be able
to use shorthands in the second and third arguments of \ifthenelse the resetting of the switch and
the definition of \pageref happens inside those arguments.

3892 \bbl@trace{Preventing clashes with other packages}
3893 \ifx\org@ref\@undefined\else

3894 \bbl@xin@{R}\bbl@opt@safe

3895 \ifin@

3896 \AtBeginDocument{%
3897 \@ifpackageloaded{ifthen}{%
3898 \bbl@redefine@long\ifthenelse#1#2#3{%

85

3899 \let\bbl@temp@pref\pageref

3900 \let\pageref\org@pageref

3901 \let\bbl@temp@ref\ref

3902 \let\ref\org@ref

3903 \@safe@activestrue

3904 \org@ifthenelse{#1}%

3905 {\let\pageref\bbl@temp@pref
3906 \let\ref\bbl@temp@ref

3907 \@safe@activesfalse

3908 #2}%

3909 {\let\pageref\bbl@temp@pref
3910 \let\ref\bbl@temp@ref

3911 \@safe@activesfalse

3912 #31%

3913 }%

3914 H%

3915 }

3916 \ i

5.4.2. varioref

\@@vpageref

\vrefpagenum

\Ref When the package varioref is in use we need to modify its internal command \@avpageref in
order to prevent problems when an active character ends up in the argument of \vref. The same
needs to happen for \vrefpagenum.

3917 \AtBeginDocument{%

3918 \@ifpackageloaded{varioref}{%

3919 \bbl@redefine\@avpageref#1[#2]#3{%
3920 \@safe@activestrue

3921 \org@e@vpageref{#1} [#2]{#3}%

3922 \@safe@activesfalse}%

3923 \bbl@redefine\vrefpagenum#1#2{%
3924 \@safe@activestrue

3925 \org@vrefpagenum{#1}{#2}%

3926 \@safe@activesfalse}%

The package varioref defines \Ref to be a robust command which uppercases the first character
of the reference text. In order to be able to do that it needs to access the expandable form of \ref. So
we employ a little trick here. We redefine the (internal) command \Ref, to call \org@ref instead of
\ref. The disadvantage of this solution is that whenever the definition of \Ref changes, this
definition needs to be updated as well.

3927 \expandafter\def\csname Ref \endcsname#1{%
3928 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\@tempa}
3929 H%
3930 }
3931\ fi
5.4.3. hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with the
hhline package. The reason is that it uses the ¢’ character which is made active by the french support
in babel. Therefore we need to reload the package when the ‘’ is an active character. Note that this
happens after the category code of the @-sign has been changed to other, so we need to temporarily
change it to letter again.

3932 \AtEndOfPackage{%
3933 \AtBeginDocument{%
3934 \@ifpackageloaded{hhline}%

3935 {\expandafter\ifx\csname normal@char\string:\endcsname\relax
3936 \else

3937 \makeatletter

3938 \def\@currname{hhline}\input{hhline.sty}\makeatother

86

3939 \fi}%
3940 {}1}

\substitutefontfamily Deprecated. It creates an fd file on the fly. The first argument is an encoding
mnemonic, the second and third arguments are font family names. Use the tools provided by ETgX
(\DeclareFontFamilySubstitution).

3941 \def\substitutefontfamily#1#2#3{%

3942 \lowercase{\immediate\openoutl5=#1#2.fd\relax}%

3943 \immediate\writel5{%

3944 \string\ProvidesFile{#1#2.fd}%

3945 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}

3946 \space generated font description file]”~"J

3947 \string\DeclareFontFamily{#1}{#2}{}""J]

3948 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}""J]
3949 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}""J
3950 \string\DeclareFontShape{#1}{#2}{m}{s1}{<->ssub * #3/m/s1}{}""]
3951 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}""J
3952 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}""J]
3953 \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}""J
3954 \string\DeclareFontShape{#1}{#2}{b}{s1}{<->ssub * #3/bx/s1}{}""]
3955 \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}""]

3956 1%
3957 \closeoutl5
3958 }

3959 \@onlypreamble\substitutefontfamily

5.5. Encoding and fonts

Because documents may use non-ASCII font encodings, we make sure that the logos of TgX and ITgX
always come out in the right encoding. There is a list of non-ASCII encodings. Requested encodings
are currently stored in \@fontenc@load@list. If a non-ASCII has been loaded, we define versions of
\TeX and \LaTeX for them using \ensureascii. The default ASCII encoding is set, too (in reverse
order): the “main” encoding (when the document begins), the last loaded, or 0T1.

\ensureascii

3960 \bbl@trace{Encoding and fonts}

3961 \newcommand\BabelNonASCII{LGR,LGI,X2,0T2,0T3,0T6,LHE, LWN, LMA, LMC,LMS, LMU}
3962 \newcommand\BabelNonText{TS1,T3,TS3}

3963 \let\org@TeX\TeX

3964 \let\org@LaTeX\LaTeX

3965 \let\ensureascii\@firstofone

3966 \let\asciiencoding\@empty

3967 \AtBeginDocument{%

3968 \def\@elt#1{,#1,}%

3969 \edef\bbl@tempa{\expandafter\@gobbletwo\@fontenc@load@list}%
3970 \let\@elt\relax

3971 \let\bbl@tempb\@empty

3972 \def\bbl@tempc{0T1}%

3973 \bbl@foreach\BabelNonASCII{% LGR loaded in a non-standard way
3974 \bbl@ifunset{T@#1}{}{\def\bbl@tempb{#1}}}%

3975 \bbl@foreach\bbl@tempa{%

3976 \bbl@xin@{,#1,}{, \BabelNonASCII, }%

3977 \ifin@

3978 \def\bbl@tempb{#1}% Store last non-ascii
3979 \else\bbl@xin@{,#1, }{, \BabelNonText, }% Pass
3980 \ifin@\else

3981 \def\bbl@tempc{#1}% Store last ascii
3982 \fi

3983 \fi}%

3984 \ifx\bbl@tempb\@empty\else
3985 \bbl@xin@{, \cf@encoding, }{, \BabelNonASCII,\BabelNonText, }%
3986 \ifin@\else

87

3987 \edef\bbl@tempc{\cf@encoding}% The default if ascii wins
3988 \fi

3989 \let\asciiencoding\bbl@tempc
3990 \renewcommand\ensureascii[1]{%
3991 {\fontencoding{\asciiencoding}\selectfont#1}}%

3992 \DeclareTextCommandDefault{\TeX}{\ensureascii{\org@TeX}}%
3993 \DeclareTextCommandDefault{\LaTeX}{\ensureascii{\org@LaTeX}}%
3994 \fi}

Now comes the old deprecated stuff (with a little change in 3.9], for fontspec). The first thing we
need to do is to determine, at \begin{document}, which latin fontencoding to use.

\latinencoding When text is being typeset in an encoding other than ‘latin’ (0T1 or T1), it would be
nice to still have Roman numerals come out in the Latin encoding. So we first assume that the
current encoding at the end of processing the package is the Latin encoding.

3995 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}

But this might be overruled with a later loading of the package fontenc. Therefore we check at the
execution of \begin{document} whether it was loaded with the T1 option. The normal way to do this
(using \@ifpackageloaded) is disabled for this package. Now we have to revert to parsing the
internal macro \@filelist which contains all the filenames loaded.

3996 \AtBeginDocument{%
3997 \@ifpackageloaded{fontspec}%

3998 {\xdef\latinencoding{%

3999 \ifx\UTFencname\@undefined

4000 EU\ifcase\bbl@engine\or2\orl\fi
4001 \else

4002 \UTFencname

4003 \fi}}%

4004 {\gdef\latinencoding{0T1}%

4005 \ifx\cf@encoding\bbl@t@one

4006 \xdef\latinencoding{\bbl@t@one}%
4007 \else

4008 \def\@elt#1{,#1,}%

4009 \edef\bbl@tempa{\expandafter\@gobbletwo\@fontenc@load@list}%
4010 \let\@elt\relax

4011 \bbl@xin@{,T1, }\bbl@tempa

4012 \ifin@

4013 \xdef\latinencoding{\bbl@t@one}%
4014 \fi

4015 \fi}}

\latintext Then we can define the command \latintext which is a declarative switch to a latin
font-encoding. Usage of this macro is deprecated.

4016 \DeclareRobustCommand{\latintext}{%
4017 \fontencoding{\latinencoding}\selectfont
4018 \def\encodingdefault{\latinencoding}}

\textlatin This command takes an argument which is then typeset using the requested font encoding.
In order to avoid many encoding switches it operates in a local scope.

4019 \ifx\@undefined\DeclareTextFontCommand

4020 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}
4021 \else

4022 \DeclareTextFontCommand{\textlatin}{\latintext}

4023 \fi

For several functions, we need to execute some code with \selectfont. With ETgX 2021-06-01,
there is a hook for this purpose.

4024 \def\bbl@patchfont#1{\AddToHook{selectfont}{#1}}

88

5.6. Basic bidi support

This code is currently placed here for practical reasons. It will be moved to the correct place soon, I
hope.

It is loosely based on rlbabel. def, but most of it has been developed from scratch. This babel
module (by Johannes Braams and Boris Lavva) has served the purpose of typesetting R documents
for two decades, and despite its flaws I think it is still a good starting point (some parts have been
copied here almost verbatim), partly thanks to its simplicity. I've also looked at ARABI (by Youssef
Jabri), which is compatible with babel.

There are two ways of modifying macros to make them “bidi”, namely, by patching the internal
low-level macros (which is what I have done with lists, columns, counters, tocs, much like ribabel
did), and by introducing a “middle layer” just below the user interface (sectioning, footnotes).

* pdftex provides a minimal support for bidi text, and it must be done by hand. Vertical typesetting
is not possible.

» Xxetex is somewhat better, thanks to its font engine (even if not always reliable) and a few
additional tools. However, very little is done at the paragraph level. Another challenging problem
is text direction does not honour TgX grouping.

* luatex can provide the most complete solution, as we can manipulate almost freely the node list,
the generated lines, and so on, but bidi text does not work out of the box and some development
is necessary. It also provides tools to properly set left-to-right and right-to-left page layouts. As
LuaTgX-ja shows, vertical typesetting is possible, too.

4025 \bbl@trace{Loading basic (internal) bidi support}
4026 \1fodd\bbl@engine

4027 \else % Any xe+lua bidi

4028 \ifnum\bbl@bidimode>100 \ifnum\bbl@bidimode<200
4029 \bbl@error{bidi-only-lua}{}{}{}%

4030 \let\bbl@beforeforeign\leavevmode
4031 \AtEndOfPackage{%

4032 \EnableBabelHook{babel-bidi}%
4033 \bbl@xebidipar}

4034 \fi\fi
4035 \def\bbl@loadxebidi#1{%
4036 \ifx\RTLfootnotetext\@undefined

4037 \AtEndOfPackage{%

4038 \EnableBabelHook{babel-bidi}%

4039 \ifx\fontspec\@undefined

4040 \usepackage{fontspec}% bidi needs fontspec

4041 \fi

4042 \usepackage#1{bidi}%

4043 \let\bbl@digitsdotdash\DigitsDotDashInterCharToks

4044 \def\DigitsDotDashInterCharToks{% See the 'bidi' package
4045 \ifnum\@nameuse{bbl@wdir@\languagename}=\tw@ % 'AL' bidi
4046 \bbl@digitsdotdash % So ignore in 'R' bidi

4047 \fi}}%

4048 \fi}

4049 \ifnum\bbl@bidimode>200 % Any xe bidi=
4050 \ifcase\expandafter\@gobbletwo\the\bbl@bidimode\or

4051 \bbl@tentative{bidi=bidi}

4052 \bbl@loadxebidi{}

4053 \or

4054 \bbl@loadxebidi{[rldocument]}
4055 \or

4056 \bbl@loadxebidi{}

4057 \fi

4058 \fi

4059 \ i

4060 \1fnum\bbl@bidimode=\@ne % bidi=default

4061 \let\bbl@beforeforeign\leavevmode

4062 \ifodd\bbl@engine % lua

4063 \newattribute\bbl@Eattr@dir

4064 \directlua{ Babel.attr dir = luatexbase.registernumber'bbl@attr@dir' }
4065 \bbl@exp{\output{\bodydir\pagedir\the\output}}

89

4066 \fi

4067 \AtEndOfPackage{%

4068 \EnableBabelHook{babel-bidi}% pdf/lua/xe
4069 \ifodd\bbl@engine\else % pdf/xe

4070 \bbl@xebidipar
4071 \fi}
4072 \fi

Now come the macros used to set the direction when a language is switched. Testing are based on
script names, because it’s the user interface (including language and script in \babelprovide. First
the (mostly) common macros.

4073 \bbl@trace{Macros to switch the text direction}

4074 \def\bbl@alscripts{%

4075 ,Arabic,Syriac,Thaana,Hanifi Rohingya,Hanifi,Sogdian,}

4076 \def\bbl@rscripts{%

4077 Adlam,Avestan,Chorasmian,Cypriot,Elymaic,Garay,%

4078 Hatran,Hebrew,Imperial Aramaic,Inscriptional Pahlavi,%

4079 Inscriptional Parthian,Kharoshthi,Lydian,Mandaic,Manichaean,%
4080 Mende Kikakui,Meroitic Cursive,Meroitic Hieroglyphs,Nabataean,%
4081 Nko,O0ld Hungarian,0ld North Arabian,0ld Sogdian,%

4082 0ld South Arabian,0ld Turkic,0ld Uyghur,Palmyrene,Phoenician,%
4083 Psalter Pahlavi,Samaritan,Yezidi,Mandaean,%

4084 Meroitic,N'Ko,Orkhon,Todhri}

4085 %

4086 \def\bbl@provide@dirs#1{%

4087 \bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts\bbl@rscripts}%
4088 \ifin@

4089 \global\bbl@csarg\chardef{wdir@#l}\@ne

4090 \bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts}%
4091 \ifin@

4092 \global\bbl@csarg\chardef{wdir@#1}\tw@
4093 \fi

4094 \else

4095 \global\bbl@csarg\chardef{wdir@#1}\z@
4096 \fi

4097 \ifodd\bbl@engine
4098 \bbl@csarg\ifcase{wdir@#1}%

4099 \directlua{ Babel.locale props[\the\localeid].textdir = 'l' }%
4100 \or

4101 \directlua{ Babel.locale props[\the\localeid].textdir = 'r' }%
4102 \or

4103 \directlua{ Babel.locale props[\the\localeid].textdir = 'al' }%
4104 \fi

4105 \fi}

4106 %

4107 \def\bbl@switchdir{%

4108 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%
4109 \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%
4110 \bbl@exp{\\\bbl@setdirs\bbl@cl{wdir}}}

4111 \def\bbl@setdirs#1{%

4112 \ifcase\bbl@select@type

4113 \bbl@bodydir{#1}%

4114 \bbl@pardir{#1}% <- Must precede \bbl@textdir

4115 \fi

4116 \bblEtextdir{#1}}

4117 \ifnum\bbl@bidimode>\z@

4118 \AddBabelHook{babel-bidi}{afterextras}{\bbl@switchdir}

4119 \DisableBabelHook{babel-bidi}

4120 \fi

Now the engine-dependent macros.

4121 \ifodd\bbl@engine % luatex=1
4122 \else % pdftex=0, xetex=2
4123 \newcount\bbl@dirlevel

90

4124 \chardef\bbl@thetextdir\z@
4125 \chardef\bbl@thepardir\z@
4126 \def\bbl@textdir#1{%

4127 \ifcase#l\relax

4128 \chardef\bbl@thetextdir\z@

4129 \@nameuse{setlatin}%

4130 \bbl@textdir@i\beginL\endL

4131 \else

4132 \chardef\bbl@thetextdir\@ne

4133 \@nameuse{setnonlatin}%

4134 \bbl@textdir@i\beginR\endR

4135 \fi}

4136 \def\bbl@textdir@i#1#2{%

4137 \ifhmode

4138 \ifnum\currentgrouplevel>\z@

4139 \ifnum\currentgrouplevel=\bbl@dirlevel

4140 \bbl@error{multiple-bidi}{}{}{}%

4141 \bgroup\aftergroup#2\aftergroup\egroup

4142 \else

4143 \ifcase\currentgrouptype\or % 0 bottom

4144 \aftergroup#2% 1 simple {}

4145 \or

4146 \bgroup\aftergroup#2\aftergroup\egroup % 2 hbox
4147 \or

4148 \bgroup\aftergroup#2\aftergroup\egroup % 3 adj hbox
4149 \or\or\or % vbox vtop align

4150 \or

4151 \bgroup\aftergroup#2\aftergroup\egroup % 7 noalign
4152 \or\or\or\or\or\or % output math disc insert vcent mathchoice
4153 \or

4154 \aftergroup#2% 14 \begingroup

4155 \else

4156 \bgroup\aftergroup#2\aftergroup\egroup % 15 adj
4157 \fi

4158 \fi

4159 \bbl@dirlevel\currentgrouplevel

4160 \fi

4161 #1%

4162 \fi}

4163 \def\bbl@pardir#l{\chardef\bbl@thepardir#l\relax}
4164 \let\bbl@bodydir\@gobble
4165 \def\bbl@dirparastext{\chardef\bbl@thepardir\bbl@thetextdir}

The following command is executed only if there is a right-to-left script (once). It activates the
\everypar hack for xetex, to properly handle the par direction. Note text and par dirs are decoupled
to some extent (although not completely).

4166 \def\bbl@xebidipar{%

4167 \let\bbl@xebidipar\relax
4168 \TeXXeTstate\@ne

4169 \def\bbl@xeeverypar{%

4170 \ifcase\bbl@thepardir

4171 \ifcase\bbl@thetextdir\else\beginR\fi
4172 \else

4173 {\setbox\z@\lastbox\beginR\box\z@}%
4174 \fi}%

4175 \AddToHook{para/begin}{\bbl@xeeverypar}}
4176 \ifnum\bbl@bidimode>200 % Any xe bidi=
4177 \let\bbl@textdir@i\@gobbletwo

4178 \let\bbl@xebidipar\@empty

4179 \AddBabelHook{bidi}{foreign}{%

4180 \ifcase\bbl@thetextdir
4181 \BabelWrapText{\LR{##1}}%
4182 \else

91

4183 \BabelWWrapText{\RL{##1}}%

4184 \fi}

4185 \def\bbl@pardir#l{\ifcase#1l\relax\setLR\else\setRL\fi}
4186 \fi

4187\ fi

A tool for weak L (mainly digits). We also disable warnings with hyperref.

4188 \DeclareRobustCommand\babelsublr[1]{\leavevmode{\bbl@textdir\z@#1}}
4189 \AtBeginDocument{%
4190 \ifx\pdfstringdefDisableCommands\@undefined\else

4191 \ifx\pdfstringdefDisableCommands\relax\else

4192 \pdfstringdefDisableCommands{\let\babelsublr\@firstofone}%
4193 \fi

4194 \fi}

5.7. Local Language Configuration

\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language definition
file. This can be done by creating a file with the same name as the language definition file, but with
the extension . cfg. For instance the file norsk. cfg will be loaded when the language definition file
norsk.ldf is loaded.

For plain-based formats we don’t want to override the definition of \loadlocalcfg from
plain.def.

4195 \bbl@trace{Local Language Configuration}
4196 \1fx\loadlocalcfg\@undefined

4197 \@ifpackagewith{babel}{noconfigs}%
4198 {\let\loadlocalcfg\@gobble}%

4199 {\def\loadlocalcfg#1l{%

4200 \InputIfFileExists{#1.cfg}%

4201 {\typeout{*************************************A’\J%
4202 * Local config file #1l.cfg used™"J1%
4203 *1}%

4204 \@empty}}

4205\ f1i

5.8. Language options

Languages are loaded when processing the corresponding option except if a main language has been
set. In such a case, it is not loaded until all options has been processed. The following macro inputs
the 1df file and does some additional checks (\input works, too, but possible errors are not caught).

4206 \bbl@trace{Language options}

4207 \def\BabelDefinitionFile#1#2#3{}

4208 \let\bbl@afterlang\relax

4209 \let\BabelModifiers\relax

4210 \let\bbl@loaded\@empty

4211 \def\bbl@load@language#1{%

4212 \InputIfFileExists{#1.l1df}%

4213 {\edef\bbl@loaded{\CurrentOption

4214 \ifx\bbl@loaded\@empty\else,\bbl@loaded\fi}%

4215 \expandafter\let\expandafter\bbl@afterlang

4216 \csname\CurrentOption.ldf-h@ak\endcsname

4217 \expandafter\let\expandafter\BabelModifiers

4218 \csname bbl@mod@\CurrentOption\endcsname

4219 \bbl@exp{\\\AtBeginDocument{%

4220 \\\bbl@usehooks@lang{\CurrentOption}{begindocument}{{\CurrentOption}}}}}%

4221 {\bbl@error{unknown-package-option}{}{}{}}}

Another way to extend the list of ‘known’ options for babel was to create the file bblopts.cfgin
which one can add option declarations. However, this mechanism is deprecated - if you want an
alternative name for a language, just create a new 1df file loading the actual one. You can also set the
name of the file with the package option config=(name), which will load (name). cfg instead.

If the language as been set as metadata, read the info from the corresponding ini file and extract
the babel name. Then added it as a package option at the end, so that it becomes the main language.

92

The behavior of a metatag with a global language option is not well defined, so if there is not a main
option we set here explicitly.

Tagging PDF Span elements requires horizontal mode. With DocumentMetada we also force it with
\foreignlanguage (this is also done in bidi texts).

4222 \1ifx\GetDocumentProperties\@undefined\else

4223 \let\bbl@beforeforeign\leavevmode

4224 \edef\bbl@metalang{\GetDocumentProperties{document/lang}}%
4225 \ifx\bbl@metalang\@empty\else

4226 \begingroup

4227 \expandafter

4228 \bbl@bcplookup\bbl@metalang-\@empty-\@empty-\@empty\@@
4229 \ifx\bbl@bcp\relax

4230 \ifx\bbl@opt@main\@nnil

4231 \bbl@error{no-locale-for-meta}{\bbl@metalang}{}{}%
4232 \fi

4233 \else

4234 \bbl@read@ini{\bbl@bcp}\m@ne

4235 \xdef\bbl@language@opts{\bbl@language@opts, \languagename}%
4236 \ifx\bbl@opt@main\@nnil

4237 \global\let\bbl@opt@main\languagename

4238 \fi

4239 \bbl@info{Passing \languagename\space to babel.\\%
4240 This will be the main language except if\\%
4241 explictly overriden with 'main='.\\%

4242 Reported}%

4243 \fi

4244 \endgroup

4245 \fi

4246 \f1i

4247 \1fx\bbl@opt@config\@nnil
4248 \@ifpackagewith{babel}{noconfigs}{}%
4249 {\InputIfFileExists{bblopts.cfg}%

4250 {\bbl@info{Configuration files are deprecated, as\\%
4251 they can break document portability.\\%
4252 Reported}%

4253 \‘typeout{*************************************""J%
4254 * Local config file bblopts.cfg used”"J1%
4255 *1}%

4256 {}}%

4257 \else

4258 \InputIfFileExists{\bbl@opt@config.cfg}%

4259 {\bbl@info{Configuration files are deprecated, as\\%
4260 they can break document portability.\\%
4261 Reported}%

4262 \typeou‘t{*************************************""J%
4263 * Local config file \bbl@opt@config.cfg used”™"J%
4264 *11%

4265 {\bbl@error{config-not-found}{}{}{}}%

4266 \T1

Recognizing global options in packages not having a closed set of them is not trivial, as for them to
be processed they must be defined explicitly. So, package options not yet taken into account and
stored in bbl@language@opts are assumed to be languages. If not declared above, the names of the
option and the file are the same. We first pre-process the class and package options to determine the
available locales, and which version (ldf or ini will be loaded. This is done by first loading the
corresponding babel-(name). tex file.

The second argument of \BabelBeforeIni may content a \BabelDefinitionFile which defines
\bbl@tempa and \bbl@tempb and saves the third argument for the moment of the actual loading. If
there is no \BabelDefinitionFile the last element is usually empty, and the ini file is loaded. The
values are used to build a list in the form ‘main-or-not’ / ‘ldf-or-ldfini-flag’ // ‘option-name’ //
‘bep-tag’ / ‘ldf-name-or-none’. The ‘main-or-not’ element is 0 by default and set to 10 later if
necessary (by prepending 1). The ‘bcp-tag’ is stored here so that the corresponding ini file can be be
loaded directly (with @import).

93

4267 \def\BabelBeforeIni#1#2{%

4268 \def\bbl@tempa{\@m}% <- Default if no \BDefFile
4269 \let\bbl@tempb\@empty

4270 #2%

4271 \edef\bbl@toload{%

4272 \ifx\bbl@toload\@empty\else\bbl@toload, \fi
4273 \bbl@toload@last}%

4274 \edef\bbl@toload@last{0/\bbl@tempa//\CurrentOption//#1/\bbl@tempb}}
4275 \def\BabelDefinitionFile#1#2#3{%

4276 \def\bbl@tempa{#1}\def\bbl@tempb{#2}%

4277 \@namedef{bbl@preldf@\CurrentOption}{#3}%

4278 \endinput}%

For efficiency, first preprocess the class options to remove those with =, which are becoming
increasingly frequent (no language should contain this character). Here we use the more robust
macro to traverse a clist from the KTgX3 layer.

4279 \def\bbl@tempf{, }

4280 \@nameuse{clist map inline:Nn}\@raw@classoptionslist{%
4281 \in@{=}{#1}%

4282 \ifin@\else

4283 \edef\bbl@tempf{\bbl@tempf\zap@space#1l \@empty, }%
4284 \fi}

Store the class/package options in a list. If there is an explicit main, it’s placed as the last option.
Then loop it to read the tex files, which can have a \BabelDefinitionFile. If there is no tex file, we
attempt loading the Idf for the option name; if it fails, an error is raised. Note the option name is
surrounded by //...//. Class and package options are separated with @@, because errors and info
are dealt with in different ways. Consecutive identical languages count as one.

4285 \let\bbl@toload\@empty

4286 \let\bbl@toload@last\@empty

4287 \let\bbl@unkopt\@gobble %% <- Ugly

4288 \edef\bbl@tempc{%

4289 \bbl@tempf,@@, \bbl@language@opts

4290 \ifx\bbl@opt@main\@nnil\else,\bbl@opt@main\fi}

4291 \let\BabellLocalesTentative\bbl@tempc

4292%

4293 \bbl@foreach\bbl@tempc{%

4294 \in@{@@}{#1}% <- Ugly

4295 \ifin@

4296 \def\bbl@unkopt##1{%

4297 \DeclareOption{##1}{\bbl@error{unknown-package-option}{}{}{}}}%
4298 \else

4299 \def\CurrentOption{#1}%

4300 \bbl@xin@{//#1//}{\bbl@toload@last}% Collapse consecutive
4301 \ifin@\else

4302 \lowercase{\InputIfFileExists{babel-#1.tex}}{}{%

4303 \IfFileExists{#1.1df}%

4304 {\edef\bbl@toload{%

4305 \ifx\bbl@toload\@empty\else\bbl@toload, \fi

4306 \bbl@toload@last}%

4307 \edef\bbl@toload@last{0/0//\CurrentOption//und/#1}}%
4308 {\bbl@unkopt{#1}}}%

4309 \fi

4310 \fi}

We have to determine (1) if no language has be loaded (in which case we fallback to ‘nil’, with a
special tag), and (2) the main language. With an explicit ‘main’ language, remove repeated elements.
The number 1 flags it as the main language (relevant in ini locales), because with @ becomes 10.

4311 \ifx\bbl@opt@main\@nnil

4312 \ifx\bbl@toload@last\@empty

4313 \def\bbl@toload@last{0/0//nil//und-x-nil/nil}

4314 \bbl@info{%

4315 You haven't specified a language as a class or package\\%
4316 option. I'll load 'nil'. Reported}

94

4317 \fi

4318 \else

4319 \let\bbl@tempc\@empty

4320 \bbl@foreach\bbl@toload{%

4321 \bbl@xin@{//\bbl@opt@main//}{#1}%

4322 \ifin@\else

4323 \bbl@add@list\bbl@tempc{#1}%
4324 \fi}

4325 \let\bbl@toload\bbl@tempc

4326 \f1

4327 \edef\bbl@toload{\bbl@toload, 1\bbl@toload@last}

Finally, load the ‘ini‘ file or the pair ‘ini‘/ldf* file. Babel resorts to its own mechanism, not the
default one based on \ProcessOptions (which is still present to make some internal clean-up). First,
handle provide=! and friends (with a recursive call if they are present), and then provide=* and
friend. \count@is used as flag: 0 if ‘ini’, 1 if 1df".

4328 \def\AfterBabelLanguage#1{%

4329 \bbl@ifsamestring\CurrentOption{#1}{\global\bbl@add\bbl@afterlang}{}}
4330 \NewHook{babel/presets}

4331 \UseHook{babel/presets}

4332%

4333 \let\bbl@tempb\@empty

4334 \def\bbl@tempc#1/#2//#3//#4/#5\00{%

4335 \count@\z@

4336 \ifnum#2=\@m % if no \BabelDefinitionFile

4337 \ifnum#1=\z@ % not main. -- % if provide+=!, provide*=!
4338 \ifnum\bbl@ldfflag>\@ne\bbl@tempc 0/0//#3//#4/#3\@@
4339 \else\bbl@tempd{#1}{#2} {#3}{#4}{#5}%

4340 \fi

4341 \else % 10 = main -- % if provide=!, provide*=!

4342 \ifodd\bbl@ldfflag\bbl@tempc 10/0//#3//#4/#3\@@

4343 \else\bbl@tempd{#1} {#2} {#3} {#4}{#5}%

4344 \fi

4345 \fi

4346 \else

4347 \ifnum#1=\z@ % not main

4348 \ifnum\bbl@iniflag>\@ne\else % if @, provide

4349 \ifcase#2\count@\@ne\else\ifcase\bbl@engine\count@\@ne\fi\fi
4350 \fi

4351 \else % 10 = main

4352 \ifodd\bbl@iniflag\else % if provide+, provide*

4353 \ifcase#2\count@\@ne\else\ifcase\bbl@engine\count@\@ne\fi\fi
4354 \fi

4355 \fi

4356 \bbletempd{#1} {#2} {#3} {#4}{#5}%

4357 \fi}

Based on the value of \ count@, do the actual loading. If 1df’, we load the basic info from the ‘ini’ file
before.

4358 \def\bbl@tempd#1#2#3#4#5{%

4359 \DeclareOption{#3}{}%

4360 \ifcase\count@

4361 \bbl@exp{\\\bbl@add\\\bbl@tempb{%

4362 \\\@nameuse{bbl@preini@#3}%
4363 \\\bbl@ldfinit

4364 \def\\\CurrentOption{#3}%
4365 \\\babelprovide[@import=#4,\ifnum#1=\z@\else\bbl@opt@provide,main\fi]{#3}%
4366 \\\bbl@afterldf}}%

4367 \else

4368 \bbl@add\bbl@tempb{%

4369 \def\CurrentOption{#3}%

4370 \let\localename\CurrentOption
4371 \let\languagename\localename
4372 \def\BabelIniTag{#4}%

95

4373 \@nameuse{bbl@preldf@#3}%

4374 \begingroup

4375 \bbl@id@assign

4376 \bbl@read@ini{\BabelIniTag}0%

4377 \endgroup

4378 \bbl@load@language{#5}}%

4379 \fi}

4380 %

4381 \bbl@foreach\bbl@toload{\bbl@tempc#1\@@}

4382 \bbl@tempb

4383 \DeclareOption*{}

4384 \ProcessOptions

4385 %

4386 \bbl@exp{%

4387 \\\AtBeginDocument{\\\bbl@usehooks@lang{/}{begindocument}{{}}}}%
4388 \def\AfterBabellLanguage{\bbl@error{late-after-babel}{}{}{}}
4389 (/package)

6. The kernel of Babel

The kernel of the babel system is currently stored in babel.def. The file babel.def contains most of
the code. The file hyphen. cfg is a file that can be loaded into the format, which is necessary when
you want to be able to switch hyphenation patterns.

Because plain TgX users might want to use some of the features of the babel system too, care has to
be taken that plain TgX can process the files. For this reason the current format will have to be
checked in a number of places. Some of the code below is common to plain TgX and ETgX, some of it is
for the KTEX case only.

Plain formats based on etex (etex, xetex, luatex) don’t load hyphen. cfg but etex. src, which
follows a different naming convention, so we need to define the babel names. It presumes
language.def exists and it is the same file used when formats were created.

A proxy file for switch.def

4390 (xkernel)

4391 \let\bbl@onlyswitch\@empty

4392 \input babel.def

4393 \let\bbl@onlyswitch\@undefined
4394 (/kernel)

7. Error messages

They are loaded when \bll@error is first called. To save space, the main code just identifies them
with a tag, and messages are stored in a separate file. Since it can be loaded anywhere, you make
sure some catcodes have the right value, although those for \, *, **M, % and = are reset before loading
the file.

4395 (xerrors)

4396 \catcode \{=1 \catcode'\}=2 \catcode \#=6

4397 \catcode " \:=12 \catcode \,=12 \catcode \.=12 \catcode \-=12
4398 \catcode™\'=12 \catcode \ (=12 \catcode \)=12

4399 \catcode \@=11 \catcode \"=7

4400 %

4401 \1ifx\MessageBreak\@undefined

4402 \gdef\bbl@error@i#1#2{%

4403 \begingroup

4404 \newlinechar="\""J]

4405 \def\\{""J(babel) }%

4406 \errhelp{#2}\errmessage{\\#1}%
4407 \endgroup}

4408 \else

4409 \gdef\bbl@error@i#1#2{%

4410 \begingroup

4411 \def\\{\MessageBreak}%

4412 \PackageError{babel}{#1}{#2}%

96

4413 \endgroup}

4414\ fi

4415 \def\bbl@errmessage#1#2#3{%

4416 \expandafter\gdef\csname bbl@err@#l\endcsname##1##2##3{%
4417 \bbl@error@i{#2}{#3}}}

4418% Implicit #2#3#4:

4419 \gdef\bbl@error#l{\csname bbl@err@#l\endcsname}

4420 %

4421 \bbl@errmessage{not-yet-available}

4422 {Not yet available}%

4423 {Find an armchair, sit down and wait}

4424 \bbl@errmessage{bad-package-option}%
4425 {Bad option '#1=#2'. Either you have misspelled the\\%

4426 key or there is a previous setting of '#1'. Valid\\%
4427 keys are, among others, 'shorthands', 'main', 'bidi',\\%
4428 'strings', 'config', 'headfoot', 'safe', 'math'.}%

4429 {See the manual for further details.}
4430 \bbl@errmessage{base-on-the-fly}
4431 {For a language to be defined on the fly 'base'\\%

4432 is not enough, and the whole package must be\\%
4433 loaded. Either delete the 'base' option or\\%
4434 request the languages explicitly}%

4435 {See the manual for further details.}

4436 \bbl@errmessage{undefined-language}

4437 {You haven't defined the language '#1' yet.\\%

4438 Perhaps you misspelled it or your installation\\%

4439 is not complete}%

4440 {Your command will be ignored, type <return> to proceed}
4441 \bbl@errmessage{invalid-ini-name}

4442 {'#1' not valid with the 'ini' mechanism.\\%

4443 I think you want '#2' instead. You may continue,\\%
4444 but you should fix the name. See the babel manual\\%
4445 for the available locales with 'provide'}%

4446 {See the manual for further details.}

4447 \bbl@errmessage{shorthand-is-off}

4448 {I can't declare a shorthand turned off (\string#2)}

4449 {Sorry, but you can't use shorthands which have been\\%
4450 turned off in the package options}

4451 \bbl@errmessage{not-a-shorthand}

4452 {The character '\string #1' should be made a shorthand character;\\%
4453 add the command \string\useshorthands\string{#1\string} to
4454 the preamble.\\%

4455 I will ignore your instruction}%

4456 {You may proceed, but expect unexpected results}

4457 \bbl@errmessage{not-a-shorthand-b}

4458 {I can't switch '\string#2' on or off--not a shorthand\\%
4459 This character is not a shorthand. Maybe you made\\%
4460 a typing mistake?}%

4461 {I will ignore your instruction.}

4462 \bbl@errmessage{unknown-attribute}

4463 {The attribute #2 is unknown for language #1.}%

4464 {Your command will be ignored, type <return> to proceed}
4465 \bbl@errmessage{missing-group}

4466 {Missing group for string \string#1}%

4467 {You must assign strings to some category, typically\\%
4468 captions or extras, but you set none}

4469 \bbl@errmessage{only-lua-xe}

4470 {This macro is available only in LualLaTeX and XelLaTeX.}%
4471 {Consider switching to these engines.}

4472 \bbl@errmessage{only-lua}

4473 {This macro is available only in LualaTeX}%

4474 {Consider switching to that engine.}

4475 \bbl@errmessage{unknown-provide-key}

97

4476 {Unknown key '#1' in \string\babelprovide}%

4477 {See the manual for valid keys}%

4478 \bbl@errmessage{unknown-mapfont}

4479 {Option '\bbl@KVP@mapfont' unknown for\\%

4480 mapfont. Use 'direction'}%

4481 {See the manual for details.}

4482 \bbl@errmessage{no-ini-file}

4483 {There is no ini file for the requested language\\%
4484 (#1: \languagename). Perhaps you misspelled it or your\\%
4485 installation is not complete}%

4486 {Fix the name or reinstall babel.}

4487 \bbl@errmessage{digits-is-reserved}

4488 {The counter name 'digits' is reserved for mapping\\%
4489 decimal digits}%

4490 {Use another name.}

4491 \bbl@errmessage{limit-two-digits}

4492 {Currently two-digit years are restricted to the\\

4493 range 0-9999}%

4494 {There is little you can do. Sorry.}

4495 \bbl@errmessage{alphabetic-too-large}

4496 {Alphabetic numeral too large (#1)}%

4497 {Currently this is the limit.}

4498 \bbl@errmessage{no-ini-info}

4499 {I've found no info for the current locale.\\%

4500 The corresponding ini file has not been loaded\\%

4501 Perhaps it doesn't exist}%

4502 {See the manual for details.}

4503 \bbl@errmessage{unknown-ini-field}

4504 {Unknown field '#1' in \string\BCPdata.\\%

4505 Perhaps you misspelled it}%

4506 {See the manual for details.}

4507 \bbl@errmessage{unknown-locale-key}

4508 {Unknown key for locale '#2':\\%

4509 #3\\%

4510 \string#l will be set to \string\relax}%

4511 {Perhaps you misspelled it.}%

4512 \bbl@errmessage{adjust-only-vertical}

4513 {Currently, #1 related features can be adjusted only\\%
4514 in the main vertical list}%

4515 {Maybe things change in the future, but this is what it is.}
4516 \bbl@errmessage{layout-only-vertical}

4517 {Currently, layout related features can be adjusted only\\%
4518 in vertical mode}%

4519 {Maybe things change in the future, but this is what it is.}
4520 \bbl@errmessage{bidi-only-lua}

4521 {The bidi method 'basic' is available only in\\%

4522 luatex. I'll continue with 'bidi=default', so\\%
4523 expect wrong results.\\%

4524 Suggested actions:\\%

4525 * If possible, switch to luatex, as xetex is not\\%
4526 recommend anymore.\\

4527 * If you can’'t, try 'bidi=bidi' with xetex.\\%

4528 * With pdftex, only 'bidi=default' is available.}%
4529 {See the manual for further details.}

4530 \bbl@errmessage{multiple-bidi}

4531 {Multiple bidi settings inside a group\\%

4532 I'll insert a new group, but expect wrong results.\\%
4533 Suggested action:\\%
4534 * Add a new group where appropriate.}

4535 {See the manual for further details.}
4536 \bbl@errmessage{unknown-package-option}
4537 {Unknown option '\CurrentOption'.\\%
4538 Suggested actions:\\%

98

4539 * Make sure you haven’t misspelled it\\%

4540 * Check in the babel manual that it's supported\\%

4541 * If supported and it's a language, you may\\%

4542 \space\space need in some distributions a separate\\%

4543 \space\space installation\\%

4544 * If installed, check there isn’t an old\\%

4545 \space\space version of the required files in your system\\%
4546 * If it's an unsupported language, create it with\\%

4547 \string\babelprovide (see the manual)}

4548 {Valid options are, among others: shorthands=, KeepShorthandsActive,\\%
4549 activeacute, activegrave, noconfigs, safe=, main=, math=\\%
4550 headfoot=, strings=, config=, hyphenmap=, or a language name.}

4551 \bbl@errmessage{config-not-found}
4552 {Local config file '\bbl@opt@config.cfg' not found.\\%

4553 Suggested actions:\\%
4554 * Make sure you haven’t misspelled it in config=\\%
4555 * Check it exists and it’s in the correct path}%

4556 {Perhaps you misspelled it.}

4557 \bbl@errmessage{late-after-babel}

4558 {Too late for \string\AfterBabellLanguage}%

4559 {Languages have been loaded, so I can do nothing}
4560 \bbl@errmessage{double-hyphens-class}

4561 {Double hyphens aren't allowed in \string\babelcharclass\\%
4562 because it's potentially ambiguous}%

4563 {See the manual for further info}

4564 \bbl@errmessage{unknown-interchar}

4565 {'#1' for '\languagename' cannot be enabled.\\%
4566 Maybe there is a typo}%

4567 {See the manual for further details.}

4568 \bbl@errmessage{unknown-interchar-b}

4569 {'#1' for '\languagename' cannot be disabled.\\%
4570 Maybe there is a typo}%

4571 {See the manual for further details.}

4572 \bbl@errmessage{charproperty-only-vertical}

4573 {\string\babelcharproperty\space can be used only in\\%
4574 vertical mode (preamble or between paragraphs)}%
4575 {See the manual for further info}

4576 \bbl@errmessage{unknown-char-property}

4577 {No property named '#2'. Allowed values are\\%

4578 direction (bc), mirror (bmg), and linebreak (lb)}%
4579 {See the manual for further info}

4580 \bbl@errmessage{bad-transform-option}

4581 {Bad option '#1' in a transform.\\%

4582 I'll ignore it but expect more errors}%

4583 {See the manual for further info.}

4584 \bbl@errmessage{font-conflict-transforms}

4585 {Transforms cannot be re-assigned to different\\%
4586 fonts. The conflict is in '\bbl@kv@label'.\\%

4587 Apply the same fonts or use a different label}%
4588 {See the manual for further details.}

4589 \bbl@errmessage{transform-not-available}

4590 {'#1' for '\languagename' cannot be enabled.\\%
4591 Maybe there is a typo or it’'s a font-dependent transform}%
4592 {See the manual for further details.}

4593 \bbl@errmessage{transform-not-available-b}

4594 {'#1' for '\languagename' cannot be disabled.\\%
4595 Maybe there is a typo or it’s a font-dependent transform}%
4596 {See the manual for further details.}

4597 \bbl@errmessage{year-out-range}

4598 {Year out of range.\\%

4599 The allowed range is #1}%

4600 {See the manual for further details.}

4601 \bbl@errmessage{only-pdftex-lang}

99

4602 {The '#1' 1df style doesn't work with #2,\\%

4603 but you can use the ini locale instead.\\%
4604 Try adding 'provide=*' to the option list. You may\\%
4605 also want to set 'bidi=' to some valuel}%

4606 {See the manual for further details.}

4607 \bbl@errmessage{hyphenmins-args}

4608 {\string\babelhyphenmins\ accepts either the optional\\%
4609 argument or the star, but not both at the same time}%

4610 {See the manual for further details.}

4611 \bbl@errmessage{no-locale-for-meta}

4612 {There isn't currently a locale for the 'lang' requested\\%
4613 in the PDF metadata ('#1'). To fix it, you can\\%

4614 set explicitly a similar language (using the same\\%
4615 script) with the key main= when loading babel. If you\\%
4616 continue, I'll fallback to the 'nil' language, with\\%
4617 tag 'und' and script 'Latn', but expect a bad font\\%
4618 rendering with other scripts. You may also need set\\%
4619 explicitly captions and date, too}%

4620 {See the manual for further details.}
4621 (/errors)
4622 (*patterns)

8. Loading hyphenation patterns

The following code is meant to be read by iniTgX because it should instruct TgX to read hyphenation
patterns. To this end the docstrip option patterns is used to include this code in the file
hyphen. cfg. Code is written with lower level macros.

4623 <@Make sure ProvidesFile is defined@>

4624 \ProvidesFile{hyphen.cfg}[<@date@> v<@version@> Babel hyphens]
4625 \xdef\bbl@format{\jobname}

4626 \def\bbl@version{<@version@}

4627 \def\bbl@date{<@date@>}

4628 \1fx\AtBeginDocument\@undefined

4629 \def\@empty{}

4630 \ fi

4631 <@Define core switching macros@>

\process@line Each line in the file language.dat is processed by \process@line after it is read. The
first thing this macro does is to check whether the line starts with =. When the first token of a line is
an =, the macro \process@synonym is called; otherwise the macro \process@language will continue.

4632 \def\process@line#1#2 #3 #4 {%

4633 \ifx=#1%

4634 \process@synonym{#2}%

4635 \else

4636 \process@language{#1#2} {#3}{#4}%
4637 \fi

4638 \ignorespaces}

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token
register to begin with. \bbl@languages is also set to empty.

4639 \toks@{}
4640 \def\bbl@languages{}

When no languages have been loaded yet, the name following the = will be a synonym for
hyphenation register 0. So, it is stored in a token register and executed when the first pattern file has
been processed. (The \relax just helps to the \if below catching synonyms without a language.)

Otherwise the name will be a synonym for the language loaded last.

We also need to copy the hyphenmin parameters for the synonym.

4641 \def\process@synonym#1{%
4642 \ifnum\last@language=\m@ne
4643 \toks@\expandafter{\the\toks@\relax\process@synonym{#1}}%

100

4644 \else

4645 \expandafter\chardef\csname 1@#1\endcsname\last@language
4646 \wlog{\string\l@#1l=\string\language\the\last@language}%
4647 \expandafter\let\csname #lhyphenmins\expandafter\endcsname
4648 \csname\languagename hyphenmins\endcsname

4649 \let\bbl@elt\relax
4650 \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{\the\last@language}{}{}}%
4651 \fi}

\process@language The macro \process@language is used to process a non-empty line from the
‘configuration file’. It has three arguments, each delimited by white space. The first argument is the
‘name’ of a language; the second is the name of the file that contains the patterns. The optional third
argument is the name of a file containing hyphenation exceptions.

The first thing to do is call \addlanguage to allocate a pattern register and to make that register
‘active’. Then the pattern file is read.

For some hyphenation patterns it is needed to load them with a specific font encoding selected.
This can be specified in the file language.dat by adding for instance ‘: T1’ to the name of the
language. The macro \bbl@get@enc extracts the font encoding from the language name and stores it
in \bbl@hyph@enc. The latter can be used in hyphenation files if you need to set a behavior
depending on the given encoding (it is set to empty if no encoding is given).

Pattern files may contain assignments to \lefthyphenmin and \righthyphenmin. TgX does not keep
track of these assignments. Therefore we try to detect such assignments and store them in the
\(language)hyphenmins macro. When no assignments were made we provide a default setting.

Some pattern files contain changes to the \lccode en \uccode arrays. Such changes should remain
local to the language; therefore we process the pattern file in a group; the \patterns command acts
globally so its effect will be remembered.

Then we globally store the settings of \lefthyphenmin and \righthyphenmin and close the group.

When the hyphenation patterns have been processed we need to see if a file with hyphenation
exceptions needs to be read. This is the case when the third argument is not empty and when it does
not contain a space token. (Note however there is no need to save hyphenation exceptions into the
format.)

\bbl@languages saves a snapshot of the loaded languages in the form
\bbl@elt{(language-name)}{(number)} {(patterns-file)}{{exceptions-file)}. Note the last 2
arguments are empty in ‘dialects’ defined in language.dat with =. Note also the language name can
have encoding info.

Finally, if the counter \language is equal to zero we execute the synonyms stored.

4652 \def\process@language#1#2#3{%

4653 \expandafter\addlanguage\csname 1@#1l\endcsname
4654 \expandafter\language\csname l@#1l\endcsname
4655 \edef\languagename{#1}%

4656 \bbl@hook@everylanguage{#1}%

4657 % > luatex

4658 \bbl@get@enc#1: :\@@@

4659 \begingroup

4660 \lefthyphenmin\m@ne

4661 \bbl@hook@loadpatterns{#2}%

4662 % > luatex

4663 \ifnum\lefthyphenmin=\m@ne

4664 \else

4665 \expandafter\xdef\csname #lhyphenmins\endcsname{%
4666 \the\lefthyphenmin\the\righthyphenmin}%

4667 \fi

4668 \endgroup

4669 \def\bbl@tempa{#3}%

4670 \ifx\bbl@tempa\@empty\else

4671 \bbl@hook@loadexceptions{#3}%

4672 % > luatex

4673 \fi

4674 \let\bbl@elt\relax

4675 \edef\bbl@languages{%

4676 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{\bbl@tempa}}%
4677 \ifnum\the\language=\z@

101

4678 \expandafter\ifx\csname #lhyphenmins\endcsname\relax

4679 \set@hyphenmins\tw@\thr@e\relax

4680 \else

4681 \expandafter\expandafter\expandafter\set@hyphenmins
4682 \csname #lhyphenmins\endcsname

4683 \fi

4684 \the\toks@
4685 \toks@{}%
4686 \fi}

\bbl@get@enc
\bbl@hyph@enc The macro \bbl@get@enc extracts the font encoding from the language name and
stores it in \bbl@hyph@enc. It uses delimited arguments to achieve this.

4687 \def\bbl@get@enc#1:#2:#3\@a@{\def\bbl@hyph@enc{#2}}

Now, hooks are defined. For efficiency reasons, they are dealt here in a special way. Besides luatex,
format-specific configuration files are taken into account. loadkernel currently loads nothing, but
define some basic macros instead.

4688 \def\bbl@hook@everylanguage#1{}

4689 \def\bbl@hook@loadpatterns#1{\input #l\relax}

4690 \let\bbl@hook@loadexceptions\bbl@hook@loadpatterns

4691 \def\bbl@hook@loadkernel#1{%

4692 \def\addlanguage{\csname newlanguage\endcsname}%

4693 \def\adddialect##1##2{%

4694 \global\chardef##1##2\relax

4695 \wlog{\string##1 = a dialect from \string\language##2}}%
4696 \def\iflanguage##1{%

4697 \expandafter\ifx\csname l@##1\endcsname\relax

4698 \@nolanerr{##1}%

4699 \else

4700 \ifnum\csname l@##1\endcsname=\language

4701 \expandafter\expandafter\expandafter\@firstoftwo
4702 \else

4703 \expandafter\expandafter\expandafter\@secondoftwo
4704 \fi

4705 \fi}%

4706 \def\providehyphenmins##1##2{%

4707 \expandafter\ifx\csname ##lhyphenmins\endcsname\relax
4708 \@namedef {##1hyphenmins} {##2}%

4709 \fi}%

4710 \def\set@hyphenmins##1##2{%

4711 \lefthyphenmin##1\relax

4712 \righthyphenmin##2\relax}%

4713 \def\selectlanguage{%

4714 \errhelp{Selecting a language requires a package supporting it}%
4715 \errmessage{No multilingual package has been loaded}}%
4716 \let\foreignlanguage\selectlanguage

4717 \let\otherlanguage\selectlanguage

4718 \expandafter\let\csname otherlanguage*\endcsname\selectlanguage
4719 \def\bbl@usehooks##1##2{}%

4720 \def\setlocale{%

4721 \errhelp{Find an armchair, sit down and wait}%

4722 \errmessage{(babel) Not yet available}}%

4723 \let\uselocale\setlocale

4724 \let\locale\setlocale

4725 \let\selectlocale\setlocale

4726 \let\localename\setlocale

4727 \let\textlocale\setlocale

4728 \let\textlanguage\setlocale

4729 \let\languagetext\setlocale}

4730 \begingroup

4731 \def\AddBabelHook#1#2{%

4732 \expandafter\ifx\csname bbl@hook@#2\endcsname\relax

102

4733 \def\next{\toks1}%

4734 \else

4735 \def\next{\expandafter\gdef\csname bbl@hook@#2\endcsname####1}%
4736 \fi

4737 \next}

4738 \ifx\directlua\@undefined

4739 \ifx\XeTeXinputencoding\@undefined\else

4740 \input xebabel.def

4741 \fi

4742 \else

4743 \input luababel.def

4744 \fi

4745 \openinl = babel-\bbl@format.cfg
4746 \ifeofl

4747 \else

4748 \input babel-\bbl@format.cfg\relax
4749 \fi

4750 \closeinl

4751 \endgroup

4752 \bbl@hook@loadkernel{switch.def}

\readconfigfile The configuration file can now be opened for reading.
4753 \openinl = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The user will be informed
about this.

4754 \def\languagename{english}%

4755 \ifeofl

4756 \message{I couldn't find the file language.dat,\space
4757 I will try the file hyphen.tex}

4758 \input hyphen.tex\relax

4759 \chardef\l@english\z@

4760 \else

Pattern registers are allocated using count register \last@language. Its initial value is 0. The
definition of the macro \newlanguage is such that it first increments the count register and then
defines the language. In order to have the first patterns loaded in pattern register number 0 we
initialize \last@language with the value —1.

4761 \last@language\m@ne

We now read lines from the file until the end is found. While reading from the input, it is useful to
switch off recognition of the end-of-line character. This saves us stripping off spaces from the
contents of the control sequence.

4762 \loop

4763 \endlinechar\m@ne
4764 \readl to \bbl@line
4765 \endlinechar \""M

If the file has reached its end, exit from the loop here. If not, empty lines are skipped. Add 3 space
characters to the end of \bbl@line. This is needed to be able to recognize the arguments of
\process@line later on. The default language should be the very first one.

4766 \if T\ifeoflF\fi T\relax

4767 \ifx\bbl@line\@empty\else

4768 \edef\bbl@line{\bbl@line\space\space\space}%
4769 \expandafter\process@line\bbl@line\relax

4770 \fi

4771 \repeat

Check for the end of the file. We must reverse the test for \ifeof without \else. Then reactivate
the default patterns, and close the configuration file.

4772 \begingroup
4773 \def\bbl@elt#1#2#3#4{%
4774 \global\language=#2\relax

103

4775 \gdef\languagename{#1}%

4776 \def\bbl@el t##1##2##3##4{}}%
4777 \bbl@languages

4778 \endgroup

4779\ fi

4780 \closeinl

We add a message about the fact that babel is loaded in the format and with which language
patterns to the \everyjob register.

4781 \1f/\the\toks@/\else

4782 \errhelp{language.dat loads no language, only synonyms}
4783 \errmessage{Orphan language synonym}

4784\ f1i

Also remove some macros from memory and raise an error if \toks@ is not empty. Finally load
switch.def, but the latter is not required and the line inputting it may be commented out.

4785 \let\bbl@line\@undefined

4786 \let\process@line\@undefined

4787 \let\process@synonym\@undefined

4788 \let\process@language\@undefined

4789 \let\bbl@get@enc\@undefined

4790 \let\bbl@hyph@enc\@undefined

4791 \let\bbl@tempa\@undefined

4792 \let\bbl@hook@loadkernel\@undefined
4793 \let\bbl@hook@everylanguage\@undefined
4794 \let\bbl@hook@loadpatterns\@undefined
4795 \let\bbl@hook@loadexceptions\@undefined
4796 (/patterns)

Here the code for iniTgX ends.

9. luatex + xetex: common stuff

Add the bidi handler just before luaotfload, which is loaded by default by LaTeX. Just in case,
consider the possibility it has not been loaded. First, a couple of definitions related to bidi (although
default also applies to pdftex).

4797 ((*More package options)) =

4798 \chardef\bbl@bidimode\z@

4799 \DeclareOption{bidi=default}{\chardef\bbl@bidimode=\@ne}
4800 \DeclareOption{bidi=basic}{\chardef\bbl@bidimode=101 }
4801 \DeclareOption{bidi=basic-r}{\chardef\bbl@bidimode=102 }
4802 \DeclareOption{bidi=bidi}{\chardef\bbl@bidimode=201 }
4803 \DeclareOption{bidi=bidi-r}{\chardef\bbl@bidimode=202 }
4804 \DeclareOption{bidi=bidi-1}{\chardef\bbl@bidimode=203 }
4805 ((/More package options))

\babelfont With explicit languages, we could define the font at once, but we don’t. Just wait and see if
the language is actually activated. bbl@font replaces hardcoded font names inside \ . . family by the
corresponding macro \. .default.

4806 ((*Font selection)) =

4807 \bbl@trace{Font handling with fontspec}

4808 \AddBabelHook{babel-fontspec}{afterextras}{\bbl@switchfont}
4809 \AddBabelHook{babel-fontspec}{beforestart}{\bbl@ckeckstdfonts}
4810 \DisableBabelHook{babel-fontspec}

4811 \@onlypreamble\babelfont

4812 \1fx\NewDocumentCommand\@undefined\else % Not plain

4813 \NewDocumentCommand\babelfont{0{}mO{}m0{}}{%

4814 \bbl@bblfont@o[#1]{#2} [#3,#5]{#4}}

4815\ fi

4816 \newcommand\bbl@bblfont@o[2][]{% 1=langs/scripts 2=fam
4817 \ifx\fontspec\@undefined

4818 \usepackage{fontspec}%

104

4819 \fi

4820 \EnableBabelHook{babel-fontspec}%

4821 \edef\bbl@tempa{#1}%

4822 \def\bbl@tempb{#2}% Used by \bbl@bblfont

4823 \bbl@bblfont}

4824 \newcommand\bbl@bblfont[2][]{% 1l=features 2=fontname, @font=rm|sf|tt
4825 \bbl@ifunset{\bbl@tempb family}%

4826 {\bbl@providefam{\bbl@tempb}}%

4827 {}%

4828 % For the default font, just in case:

4829 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%
4830 \expandafter\bbl@ifblank\expandafter{\bbl@tempa}%

4831 {\bbl@csarg\edef{\bbl@tempb dflt@}{<>{#1}{#2}}% save bbl@rmdflt@
4832 \bbl@exp{%

4833 \let\<bbl@\bbl@tempb dflt@\languagename>\<bbl@\bbl@tempb dflt@>%
4834 \\\bbl@font@set\<bbl@\bbl@tempb dflt@\languagename>%

4835 \<\bbl@tempb default>\<\bbl@tempb family>}}%

4836 {\bbl@foreach\bbl@tempa{% i.e., bbl@rmdflt@lang / *scrt

4837 \bbl@csarg\def{\bbl@tempb dflt@##1}{<>{#1}{#2}}}}}%

If the family in the previous command does not exist, it must be defined. Here is how:

4838 \def\bbl@providefam#1{%

4839 \bbl@exp{%

4840 \\\newcommand\<#1ldefault>{}% Just define it
4841 \\\bbl@add@list\\\bbl@font@fams{#1}%

4842 \\\NewHook{#1family}%

4843 \\\DeclareRobustCommand\<#1family>{%

4844 \\\not@math@alphabet\<#1family>\relax

4845 % \\\prepare@family@series@update{#1}\<#ldefault>% TODO. Fails
4846 \\\fontfamily\<#ldefault>%

4847 \\\UseHook{#1family}%

4848 \\\selectfont}%

4849 \\\DeclareTextFontCommand{\<text#1>}{\<#lfamily>}}}

The following macro is activated when the hook babel- fontspec is enabled. But before, we define
a macro for a warning, which sets a flag to avoid duplicate them.

4850 \def\bbl@nostdfont#1{%
4851 \bbl@once{nostdfam-\f@family}%

4852 {\bbl@infowarn{The current font is not a babel standard family:\\%
4853 #1%

4854 \fontname\font\\%

4855 There is nothing intrinsically wrong, and you can\\%,

4856 ignore this message altogether if you do not need\\%

4857 this font. If they are used in the document, be aware\\%

4858 'babel' will not set Script and Language for it, so\\%

4859 you may consider defining a new family with \string\babelfont.\\%
4860 See the manual for further details about \string\babelfont.

4861 Reported}}

4862 {}}%

4863 \gdef\bbl@switchfont{%

4864 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%
4865 \bbl@exp{% e.g., Arabic -> arabic

4866 \lowercase{\edef\\\bbl@tempa{\bbl@cl{sname}}}}%

4867 \bbl@foreach\bbl@font@fams{%

4868 \bbl@ifunset{bbl@##1dflt@\languagename}% (1) language?

4869 {\bbl@ifunset{bbl@##1dflt@*\bbl@tempal}% (2) from script?

4870 {\bbl@ifunset{bbl@##1df1t@}% 2=F - (3) from generic?
4871 {}% 123=F - nothing!

4872 {\bbl@exp{% 3=T - from generic

4873 \global\let\<bbl@##1df1t@\languagename>%

4874 \<bbl@##1dflt@>}}1}%

4875 {\bbl@exp{% 2=T - from script

4876 \global\let\<bbl@##1dflt@\languagename>%

4877 \<bbl@##1dflt@*\bbl@tempa>}}}%

105

4878 {}}% 1=T - language, already defined
4879 \def\bbl@tempa{\bbl@nostdfont{}}%

4880 \bbl@foreach\bbl@font@fams{% don't gather with prev for

4881 \bbl@ifunset{bble##1dflt@\languagename}%

4882 {\bbl@cs{famrst@##1}%

4883 \global\bbl@csarg\let{famrst@##1}\relax}%

4884 {\bbl@exp{% order is relevant.

4885 \\\bbl@add\\\originalTeX{%

4886 \\\bbl@font@rst{\bbl@cl{##1df1t}}%

4887 \<##ldefault>\<##lfamily>{##1}}%

4888 \\\bbl@font@set\<bbl@##1df1t@\languagename>% the main part!
4889 \<##ldefault>\<##lfamily>}1}1%

4890 \bbl@ifrestoring{}{\bbl@tempa}}%

The following is executed at the beginning of the aux file or the document to warn about fonts not
defined with \babelfont.

4891 \ifx\f@family\@undefined\else % if latex
4892 \ifcase\bbl@engine % if pdftex
4893 \let\bbl@ckeckstdfonts\relax

4894 \else

4895 \def\bbl@ckeckstdfonts{%

4896 \begingroup

4897 \global\let\bbl@ckeckstdfonts\relax

4898 \let\bbl@tempa\@empty

4899 \bbl@foreach\bbl@font@fams{%

4900 \bbl@ifunset{bble##1dfl1t@}%

4901 {\@nameuse{##1family}%

4902 \bbl@csarg\gdef{WFF@\f@family}{}% Flag

4903 \bbl@exp{\\\bbl@add\\\bbl@tempa{* \<##lfamily>= \f@family\\\\%
4904 \space\space\fontname\font\\\\}}%

4905 \bbl@csarg\xdef{##1dflt@}{\fefamily}%

4906 \expandafter\xdef\csname ##ldefault\endcsname{\f@family}}%
4907 {}1%

4908 \ifx\bbl@tempa\@empty\else

4909 \bbl@infowarn{The following font families will use the default\\%
4910 settings for all or some languages:\\%

4911 \bbl@tempa

4912 There is nothing intrinsically wrong with it, but\\%

4913 'babel’ will no set Script and Language, which could\\%

4914 be relevant in some languages. If your document uses\\%

4915 these families, consider redefining them with \string\babelfont.\\%
4916 Reported}%s

4917 \fi

4918 \endgroup}

4919 \fi

4920 \fi

Now the macros defining the font with fontspec.

When there are repeated keys in fontspec, the last value wins. So, we just place the ini settings at
the beginning, and user settings will take precedence. We must deactivate temporarily
\bbl@mapselect because \selectfont is called internally when a font is defined.

For historical reasons, KTgX can select two different series (bx and b), for what is conceptually a
single one. This can lead to problems when a single family requires several fonts, depending on the
language, mainly because ‘substitutions’ with some combinations are not done consistently —
sometimes bx/sc is the correct font, but sometimes points to b/n, even if b/sc exists. So, some
substitutions are redefined (in a somewhat hackish way, by inspecting if the variant declaration
contains >ssub*).

4921 \def\bbl@font@set#1#2#3{% e.g., \bbl@rmdflt@lang \rmdefault \rmfamily
4922 \bbl@xin@{<>}{#1}%

4923 \ifin@

4924 \bbl@exp{\\\bbl@fontspec@set\\#1\expandafter\@gobbletwo#1\\#3}%
4925 \fi

4926 \bbl@exp{% '"Unprotected' macros return prev values
4927 \def\\#2{#1}% e.g., \rmdefault{\bbl@rmdflt@lang}

106

4928 \\\bbl@ifsamestring{#2}{\fefamily}%

4929 {\\#3%

4930 \\\bbl@ifsamestring{\f@series}{\bfdefault}{\\\bfseries}{}%
4931 \let\\\bbl@tempa\relax}%

4932 {}1}

Loaded locally, which does its job, but very must be global. The problem is how. This actually
defines a font predeclared with \babelfont, making sure Script and Language names are defined.
If they are not, the corresponding data in the ini file is used. The font is actually set temporarily to get
the family name (\f@family). There is also a hack because by default some replacements related to
the bold series are sometimes assigned to the wrong font (see issue #92).

4933 \def\bbl@fontspec@set#1#2#3#4{% eg \bbl@rmdflt@lang fnt-opt fnt-nme \xxfamily
4934 \let\bbl@tempe\bbl@mapselect

4935 \edef\bbl@tempb{\bbl@stripslash#4/}% Catcodes hack (better pass it).
4936 \bbl@exp{\\\bbl@replace\\\bbl@tempb{\bbl@stripslash\family/}{}}%
4937 \let\bbl@mapselect\relax

4938 \let\bbl@temp@fam#4% e.g., '\rmfamily', to be restored below
4939 \let#4\@empty % Make sure \renewfontfamily is valid

4940 \bbl@Eset@renderer

4941 \bbl@exp{%

4942 \let\\\bbl@temp@pfam\<\bbl@stripslash#4\space>% e.g., '\rmfamily '
4943 \<keys if exist:nnF>{fontspec-opentype}{Script/\bbl@cl{sname}}%

4944 {\\\newfontscript{\bbl@cl{sname}}{\bbl@cl{sotf}}}%

4945 \<keys if exist:nnF>{fontspec-opentype}{Language/\bbl@cl{lname}}%
4946 {\\\newfontlanguage{\bbl@cl{lname}}{\bbl@cl{lotf}}}%

4947 \\\renewfontfamily\\#4%

4948 [\bbl@cl{lsys},% xetex removes unknown features :-(

4949 \ifcase\bbl@engine\or RawFeature={family=\bbl@tempb},\fi

4950 #21}{#3}% i.e., \bbl@exp{..}{#3}

4951 \bbl@unset@renderer

4952 \begingroup

4953 #4%

4954 \xdef#1{\f@family}% e.g., \bbl@rmdflt@lang{FreeSerif(0)}
4955 \endgroup

4956 \bbl@xin@{\string>\string s\string s\string u\string b\string*}%
4957 {\expandafter\meaning\csname TU/#1/bx/sc\endcsname}%

4958 \ifin@

4959 \global\bbl@ccarg\let{TU/#1/bx/sc}{TU/#1/b/sc}%

4960 \fi
4961 \bbl@xin@{\string>\string s\string s\string u\string b\string*}%
4962 {\expandafter\meaning\csname TU/#1/bx/scit\endcsname}%

4963 \ifin@
4964 \global\bbl@ccarg\let{TU/#1/bx/scit}{TU/#1/b/scit}%
4965 \fi
4966 \let#4\bbl@temp@fam
4967 \bbl@exp{\let\<\bbl@stripslash#4\space>}\bbl@temp@pfam
4968 \let\bbl@mapselect\bbl@tempe}%
font@rst and famrst are only used when there is no global settings, to save and restore de
previous families. Not really necessary, but done for optimization.
4969 \def\bbl@font@rst#1#2#3#4{%
4970 \bbl@csarg\def{famrst@#4}{\bbl@font@set{#1}#2#3}}
The default font families. They are eurocentric, but the list can be expanded easily with
\babelfont.
4971 \def\bbl@font@fams{rm,sf, tt}
4972 ((/Font selection))

10. Hooks for XeTeX and LuaTeX

10.1. XeTeX

Unfortunately, the current encoding cannot be retrieved and therefore it is reset always to utf8,
which seems a sensible default.

107

Now, the code.

4973 (xxetex)

4974 \def\BabelStringsDefault{unicode}

4975 \let\xebbl@stop\relax

4976 \AddBabelHook{xetex}{encodedcommands}{%

4977
4978
4979
4980
4981
4982
4983

\def\bbl@tempa{#1}%
\ifx\bbl@tempa\@empty
\XeTeXinputencoding"bytes"%
\else
\XeTeXinputencoding"#1"%
\fi
\def\xebbl@stop{\XeTeXinputencoding"utf8"}}

4984 \AddBabelHook{xetex}{stopcommands}{%

4985
4986

\xebbl@stop
\let\xebbl@stop\relax}

4987 \def\bbl@input@classes{% Used in CJK intraspaces

4988
4989

\input{load-unicode-xetex-classes.tex}%
\let\bbl@input@classes\relax}

4990 \def\bbl@intraspace#l #2 #3\@a{%

4991
4992

\bbl@csarg\gdef{xeisp@\languagename}%
{\XeTeXlinebreakskip #lem plus #2em minus #3em\relax}}

4993 \def\bbl@intrapenalty#1\@@{%

4994
4995

\bbl@csarg\gdef{xeipn@\languagename}%
{\XeTeXlinebreakpenalty #l\relax}}

4996 \def\bbl@provide@intraspace{%

4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032

\bbl@xin@{/s}{/\bbl@cl{lnbrk}}%

\ifin@\else\bbl@xin@{/c}{/\bbl@cl{lnbrk}}\fi

\ifin@
\bbl@ifunset{bbl@intsp@\languagename}{}%

{\expandafter\ifx\csname bbl@intsp@\languagename\endcsname\@empty\else

\ifx\bbl@KVP@intraspace\@nnil
\bbl@exp{%
\\\bbl@intraspace\bbl@cl{intsp}\\\@@}%

\fi

\ifx\bbl@KVP@intrapenalty\@nnil

\bbl@intrapenalty0\@@
\fi
\fi

\ifx\bbl@KVP@intraspace\@nnil\else % We may override the ini

\expandafter\bbl@intraspace\bbl@KVP@intraspace\@@
\fi
\ifx\bbl@KVP@intrapenalty\@nnil\else
\expandafter\bbl@intrapenalty\bbl@KVP@intrapenalty\@@
\fi
\bbl@exp{%

\\\bbl@add\<extras\languagename>{%
\XeTeXlinebreaklocale "\bbl@cl{tbcp}"%
\<bbl@xeisp@\languagename>%
\<bbl@xeipn@\languagename>}%

\\\bbl@toglobal\<extras\languagename>%

\\\bbl@add\<noextras\languagename>{%
\XeTeXlinebreaklocale ""}%

\\\bbl@toglobal\<noextras\languagename>}%

\ifx\bbl@ispacesize\@undefined

\gdef\bbl@ispacesize{\bbl@cl{xeisp}}%

\ifx\AtBeginDocument\@notprerr
\expandafter\@secondoftwo % to execute right now

\fi

\AtBeginDocument{\bbl@patchfont{\bbl@ispacesize}}%

\fi}%
\fi}

5033 \1fx\DisableBabelHook\@undefined\endinput\fi
5034 \let\bbl@set@renderer\relax

108

5035 \let\bbl@unset@renderer\relax
5036 <@Font selection@>
5037 \def\bbl@provide@extra#l{}

Hack for unhyphenated line breaking. See \bbl@provide@lsys in the common code.

5038 \def\bbl@xenohyph@d{%
5039 \bbl@ifset{bbl@prehc@\languagename}%
5040 {\ifnum\hyphenchar\font=\defaulthyphenchar

5041 \iffontchar\font\bbl@cl{prehc}\relax

5042 \hyphenchar\font\bbl@cl{prehc}\relax

5043 \else\iffontchar\font"200B

5044 \hyphenchar\font"200B

5045 \else

5046 \bbl@warning

5047 {Neither 0 nor ZERO WIDTH SPACE are available\\%
5048 in the current font, and therefore the hyphen\\%
5049 will be printed. Try changing the fontspec's\\%
5050 'HyphenChar' to another value, but be aware\\%
5051 this setting is not safe (see the manual).\\%
5052 Reported}%

5053 \hyphenchar\font\defaulthyphenchar

5054 \fi\fi

5055 \fi}%

5056 {\hyphenchar\font\defaulthyphenchar}}

10.2. Support for interchar

xetex reserves some values for CJK (although they are not set in XELATEX), so we make sure they are
skipped. Define some user names for the global classes, too.

5057 \ifnum\xe@alloc@intercharclass<\thr@@

5058 \xe@alloc@intercharclass\thr@@

5059 \ i

5060 \chardef\bbl@xeclass@default@=\z@

5061 \chardef\bbl@xeclass@cjkideogram@=\@ne

5062 \chardef\bbl@xeclass@cjkleftpunctuation@=\tw@
5063 \chardef\bbl@xeclass@cjkrightpunctuation@=\thr@@
5064 \chardef\bbl@xeclass@boundary@=4095

5065 \chardef\bbl@xeclass@ignore@=4096

The machinery is activated with a hook (enabled only if actually used). Here \bbl@tempc is pre-set
with \bbl@usingxeclass, defined below. The standard mechanism based on \originalTeX to save,
set and restore values is used. \count@ stores the previous char to be set, except at the beginning (0)
and after \bbl@upto, which is the previous char negated, as a flag to mark a range.

5066 \AddBabelHook{babel-interchar}{beforeextras}{%
5067 \@nameuse{bbl@xechars@\languagename}}

5068 \DisableBabelHook{babel-interchar}

5069 \protected\def\bbl@charclass#1{%

5070 \ifnum\count@<\z@

5071 \count@-\count@

5072 \loop

5073 \bbl@exp{%

5074 \\\babel@savevariable{\XeTeXcharclass \Uchar\count@}}%
5075 \XeTeXcharclass\count@ \bbl@tempc

5076 \ifnum\count@< #1\relax

5077 \advance\count@\@ne

5078 \repeat

5079 \else

5080 \babel@savevariable{\XeTeXcharclass #1}%
5081 \XeTeXcharclass #1 \bbl@tempc

5082 \fi

5083 \count@ #1\relax}

Now the two user macros. Char classes are declared implicitly, and then the macro to be executed
at the babel-interchar hook is created. The list of chars to be handled by the hook defined above

109

has internally the form \bbl@usingxeclass\bbl@xeclass@punct@english\bbl@charclass{.}
\bbl@charclass{,} (etc.), where \bbl@usingxeclass stores the class to be applied to the
subsequent characters. The \ifcat part deals with the alternative way to enter characters as macros
(e.g., \}). As a special case, hyphens are stored as \bbl@upto, to deal with ranges.

5084 \newcommand\bbl@ifinterchar[1]{%

5085 \let\bbl@tempa\@gobble % Assume to ignore
5086 \edef\bbl@tempb{\zap@space#l \@empty}%

5087 \ifx\bbl@KVP@interchar\@nnil\else

5088 \bbl@replace\bbl@KVP@interchar{ }{,}%

5089 \bbl@foreach\bbl@tempb{%

5090 \bbl@xin@{,##1, }{,\bbl@KVP@interchar, }%
5091 \ifin@

5092 \let\bbl@tempa\@firstofone

5093 \fi}%

5094 \fi

5095 \bbl@tempa}

5096 \newcommand\IfBabelIntercharT[2]{%

5097 \bbl@carg\bbl@add{bbl@icsave@\CurrentOption}{\bbl@ifinterchar{#1}{#2}}}%
5098 \newcommand\babelcharclass[3]{%

5099 \EnableBabelHook{babel-interchar}%

5100 \bbl@csarg\newXeTeXintercharclass{xeclass@#2@#1}%

5101 \def\bbl@tempb##1{%

5102 \ifx##1\@empty\else

5103 \1fx##1-%

5104 \bbl@upto

5105 \else

5106 \bbl@charclass{%

5107 \ifcat\noexpand##1\relax\bbl@stripslash##1\else\string##1\fi}%
5108 \fi

5109 \expandafter\bbl@tempb

5110 \fi}%

5111 \bbl@ifunset{bbl@xechars@#1}%
5112 {\toks@{%

5113 \babel@savevariable\XeTeXinterchartokenstate
5114 \XeTeXinterchartokenstate\@ne

5115 }3%

5116 {\toks@\expandafter\expandafter\expandafter{%
5117 \csname bbl@xechars@#l\endcsname}}%

5118 \bbl@csarg\edef{xechars@#1}{%

5119 \the\toks@

5120 \bbl@usingxeclass\csname bbl@xeclass@#2@#1\endcsname
5121 \bbl@tempb#3\@empty}}

5122 \protected\def\bbl@usingxeclass#1{\count@\z@ \let\bbl@tempc#1}
5123 \protected\def\bbl@upto{%

5124 \ifnum\count@>\z@

5125 \advance\count@\@ne

5126 \count@-\count@

5127 \else\ifnum\count@=\z@

5128 \bbl@charclass{-}%

5129 \else

5130 \bbl@error{double-hyphens-class}{}{}{}%

5131 \fi\fi}

And finally, the command with the code to be inserted. If the language doesn’t define a class, then
use the global one, as defined above. For the definition there is a intermediate macro, which can be
‘disabled’ with \bbl@ic@(label)a(language).

5132 \def\bbl@ignoreinterchar{%

5133 \ifnum\language=\1l@nohyphenation
5134 \expandafter\@gobble

5135 \else

5136 \expandafter\@firstofone

5137 \fi}

5138 \newcommand\babelinterchar[5]1[]1{%

110

5139 \let\bbl@kv@label\@empty

5140 \bbl@forkv{#1}{\bbl@csarg\edef{kv@##1} {##2}}%

5141 \@namedef{\zap@space bbl@xeinter@\bbl@kv@label @#3@#4@#2 \@empty}%
5142 {\bbl@ignoreinterchar{#5}}%

5143 \bbl@csarg\let{ic@\bbl@kv@label @#2}\@firstofone

5144 \bbl@exp{\\\bbl@for\\\bbl@tempa{\zap@space#3 \@empty}}{%

5145 \bbl@exp{\\\bbl@for\\\bbl@tempb{\zap@space#4 \@empty}}{%

5146 \XeTeXinterchartoks

5147 \@nameuse{bbl@xeclass@\bbl@tempa @%

5148 \bbl@ifunset{bbl@xeclass@\bbl@tempa @#2}{}{#2}} %

5149 \@nameuse{bbl@xeclass@\bbl@tempb @%

5150 \bbl@ifunset{bbl@xeclass@\bbl@tempb @#2}{}{#2}} %

5151 = \expandafter{%

5152 \csname bbl@ic@\bbl@kv@label @#2\expandafter\endcsname
5153 \csname\zap@space bbl@xeinter@\bbl@kv@label

5154 @#3@#40@#2 \@empty\endcsname}}}}

5155 \DeclareRobustCommand\enablelocaleinterchar[1]{%

5156 \bbl@ifunset{bbl@ic@#1@\languagename}%

5157 {\bbl@error{unknown-interchar}{#1}{}{}}%

5158 {\bbl@csarg\let{ic@#1@\languagename}\@firstofone}}
5159 \DeclareRobustCommand\disablelocaleinterchar[1]{%

5160 \bbl@ifunset{bbl@ic@#1@\languagename}%

5161 {\bbl@error{unknown-interchar-b}{#1}{}{}}%

5162 {\bbl@csarg\let{ic@#1@\languagename}\@gobble}}
5163 { /xetex)

10.3. Layout

Note elements like headlines and margins can be modified easily with packages like fancyhdr,
typearea or titleps, and geometry.

\bbl@startskip and \bbl@endskip are available to package authors. Thanks to the TgX expansion
mechanism the following constructs are valid: \adim\bbl@startskip,
\advance\bbl@startskip\adim, \bbl@startskip\adim.

Consider txtbabel as a shorthand for tex—xet babel, which is the bidi model in both pdftex and
xetex.

5164 (:kxetex | texxet)
5165 \providecommand\bbl@provide@intraspace{}
5166 \bbl@trace{Redefinitions for bidi layout}

Finish here if there in no layout.

5167 \1fx\bbl@opt@layout\@nnil\else % if layout=..

5168 \IfBabelLayout{nopars}

5169 {}

5170 {\edef\bbl@opt@layout{\bbl@opt@layout.pars.}}%

5171 \def\bbl@startskip{\ifcase\bbl@thepardir\leftskip\else\rightskip\fi}
5172 \def\bbl@endskip{\ifcase\bbl@thepardir\rightskip\else\leftskip\fi}
5173 \1fnum\bbl@bidimode>\z@

5174 \IfBabelLayout{pars}

5175 {\def\@hangfrom#1{%

5176 \setbox\@tempboxa\hbox{{#1}}%
5177 \hangindent\ifcase\bbl@thepardir\wd\@tempboxa\else-\wd\@tempboxa\fi
5178 \noindent\box\@tempboxa}

5179 \def\raggedright{%

5180 \let\\\@centercr

5181 \bbl@startskip\z@skip

5182 \@rightskip\@flushglue

5183 \bbl@endskip\@rightskip

5184 \parindent\z@

5185 \parfillskip\bbl@startskip}
5186 \def\raggedleft{%

5187 \let\\\@centercr

5188 \bbl@startskip\@flushglue

5189 \bbl@endskip\z@skip

111

5190 \parindent\z@

5191 \parfillskip\bbl@endskip}}
5192 {}
5193 \ fi

5194 \IfBabellLayout{lists}
5195 {\bbl@sreplace\list

5196 {\@totalleftmargin\leftmargin}{\@totalleftmargin\bbl@listleftmargin}%
5197 \def\bbl@listleftmargin{%

5198 \ifcase\bbl@thepardir\leftmargin\else\rightmargin\fi}%
5199 \ifcase\bbl@engine

5200 \def\labelenumii{)\theenumii(}% pdftex doesn't reverse ()
5201 \def\p@enumiii{\p@enumii)\theenumii(}%

5202 \fi

5203 \bbl@sreplace\@verbatim

5204 {\leftskip\@totalleftmargin}%

5205 {\bbl@startskip\textwidth

5206 \advance\bbl@startskip-\linewidth}%

5207 \bbl@sreplace\@verbatim

5208 {\rightskip\z@skip}%

5209 {\bbl@endskip\z@skip}}%

5210 {}

5211 \IfBabelLayout{contents}

5212 {\bbl@sreplace\@dottedtocline{\leftskip}{\bbl@startskip}%

5213 \bbl@sreplace\@dottedtocline{\rightskip}{\bbl@endskip}}

5214 {}

5215 \IfBabelLayout{columns}

5216 {\bbl@sreplace\@outputdblcol{\hb@xt@\textwidth}{\bbl@outputhbox}%
5217 \def\bbl@outputhbox#1{%

5218 \hb@xt@\textwidth{%

5219 \hskip\columnwidth

5220 \hfil

5221 {\normalcolor\vrule \@width\columnseprule}%
5222 \hfil

5223 \hb@xt@\columnwidth{\box\@leftcolumn \hss}%
5224 \hskip-\textwidth

5225 \hb@xt@\columnwidth{\box\@outputbox \hss}%
5226 \hskip\columnsep

5227 \hskip\columnwidth}}}%

5228 {}

Implicitly reverses sectioning labels in bidi=basic, because the full stop is not in contact with L
numbers any more. I think there must be a better way.

5229 \IfBabellLayout{counters*}%
5230 {\bbl@add\bbl@opt@layout{.counters.}%
5231 \AddToHook{shipout/before}{%

5232 \let\bbl@tempa\babelsublr

5233 \let\babelsublr\@firstofone

5234 \let\bbl@save@thepage\thepage

5235 \protected@edef\thepage{\thepage}%
5236 \let\babelsublr\bbl@tempa}%

5237 \AddToHook{shipout/after}{%

5238 \let\thepage\bbl@save@thepage}}{}

5239 \IfBabelLayout{counters}%

5240 {\let\bbl@latinarabic=\@arabic

5241 \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%

5242 \let\bbl@asciiroman=\@roman

5243 \def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%
5244 \let\bbl@asciiRoman=\@Roman

5245 \def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}}{}
5246 \fi % end if layout

5247 { /xetex | texxet)

112

10.4. 8-bit TeX

Which start just above, because some code is shared with xetex. Now, 8-bit specific stuff. If just one
encoding has been declared, then assume no switching is necessary (1).

5248 (xtexxet)

5249 \def\bbl@provide@extra#l{%

5250 % == auto-select encoding ==

5251 \ifx\bbl@encoding@select@off\@empty\else
5252 \bbl@ifunset{bbl@encoding@#1}%

5253 {\def\@elt##1{,##1,1}%

5254 \edef\bbl@tempe{\expandafter\@gobbletwo\@fontenc@load@list}%
5255 \count@\z@

5256 \bbl@foreach\bbl@tempe{%

5257 \def\bbl@tempd{##1}% Save last declared

5258 \advance\count@\@ne}%

5259 \ifnum\count@>\@ne % (1)

5260 \getlocaleproperty*\bbl@tempa{#1}{identification/encodings}%
5261 \ifx\bbl@tempa\relax \let\bbl@tempa\@empty \fi

5262 \bbl@replace\bbl@tempa{ }{,}%

5263 \global\bbl@csarg\let{encoding@#1}\@empty

5264 \bbl@xin@{, \bbl@tempd, }{, \bbl@tempa, }%

5265 \ifin@\else % if main encoding included in ini, do nothing
5266 \let\bbl@tempb\relax

5267 \bbl@foreach\bbl@tempa{%

5268 \ifx\bbl@tempb\relax

5269 \bbl@xin@{,##1, }{,\bbl@tempe, }%

5270 \ifin@\def\bbl@tempb{##1}\fi

5271 \fi}%

5272 \ifx\bbl@tempb\relax\else

5273 \bbl@exp{%

5274 \global\<bbl@add>\<bbl@preextras@#1>{\<bbl@encoding@#1>}%
5275 \gdef\<bbl@encoding@#1>{%

5276 \\\babel@save\\\f@encoding

5277 \\\bbl@add\\\originalTeX{\\\selectfont}%

5278 \\\fontencoding{\bbl@tempb}%

5279 \\\selectfont}}%

5280 \fi

5281 \fi

5282 \fi}%

5283 {}%

5284 \fi}

5285 (/texxet)

10.5. LuaTeX

The loader for luatex is based solely on language.dat, which is read on the fly. The code shouldn’t be
executed when the format is build, so we check if \AddBabelHook is defined. Then comes a modified
version of the loader in hyphen. cfg (without the hyphenmins stuff, which is under the direct control
of babel).

The names \1&language) are defined and take some value from the beginning because all 1df files
assume this for the corresponding language to be considered valid, but patterns are not loaded
(except the first one). This is done later, when the language is first selected (which usually means
when the 1df finishes). If a language has been loaded, \bbl@hyphendata@(num) exists (with the
names of the files read).

The default setup preloads the first language into the format. This is intended mainly for ‘english’,
so that it’s available without further intervention from the user. To avoid duplicating it, the following
rule applies: if the “Oth” language and the first language in language.dat have the same name then
just ignore the latter. If there are new synonymous, the are added, but note if the language patterns
have not been preloaded they won’t at run time.

Other preloaded languages could be read twice, if they have been preloaded into the format. This is
not optimal, but it shouldn’t happen very often — with luatex patterns are best loaded when the
document is typeset, and the “Oth” language is preloaded just for backwards compatibility.

113

As of 1.1b, lua(e)tex is taken into account. Formerly, loading of patterns on the fly didn’t work in
this format, but with the new loader it does. Unfortunately, the format is not based on babel, and data
could be duplicated, because languages are reassigned above those in the format (nothing serious,
anyway). Note even with this format language.dat is used (under the principle of a single source),
instead of language.def.

Of course, there is room for improvements, like tools to read and reassign languages, which would
require modifying the language list, and better error handling.

We need catcode tables, but no format (targeted by babel) provide a command to allocate them
(although there are packages like ctablestack). FIX - This isn’t true anymore. For the moment, a
dangerous approach is used - just allocate a high random number and cross the fingers. To
complicate things, etex.sty changes the way languages are allocated.

This files is read at three places: (1) when plain.def, babel. sty starts, to read the list of available
languages from language.dat (for the base option); (2) at hyphen.cfg, to modify some macros; (3) in
the middle of plain.def and babel.sty, by babel.def, with the commands and other definitions for
luatex (e.g., \babelpatterns).

5286 (xluatex)

5287 \directlua{ Babel = Babel or {} } % DL2
5288 \1fx\AddBabelHook\@undefined % When plain.def, babel.sty starts
5289 \bbl@trace{Read language.dat}

5290 \ifx\bbl@readstream\@undefined

5291 \csname newread\endcsname\bbl@readstream
5292 \ fi

5293 \begingroup

5294 \toks@{}

5295 \count@\z@ % O=start, 1=0th, 2=normal
5296 \def\bbl@process@line#1#2 #3 #4 {%

5297 \ifx=#1%

5298 \bbl@process@synonym{#2}%

5299 \else

5300 \bbl@process@language{#1#2}{#3}{#4}%
5301 \fi

5302 \ignorespaces}

5303 \def\bbl@manylang{%

5304 \ifnum\bbl@last>\@ne

5305 \bbl@info{Non-standard hyphenation setup}%
5306 \fi

5307 \let\bbl@manylang\relax}

5308 \def\bbl@process@language#1#2#3{%

5309 \ifcase\count@

5310 \@ifundefined{zth@#1}{\count@\tw@}{\count@\@ne}%
5311 \or

5312 \count@\tw@

5313 \fi

5314 \ifnum\count@=\tw@

5315 \expandafter\addlanguage\csname 1@#1l\endcsname
5316 \language\allocationnumber

5317 \chardef\bbl@last\allocationnumber

5318 \bbl@manylang

5319 \let\bblEelt\relax

5320 \xdef\bbl@languages{%

5321 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{#3}}%
5322 \fi

5323 \the\toks@

5324 \toks@{}}

5325 \def\bbl@process@synonym@aux#1#2{%

5326 \global\expandafter\chardef\csname l@#1\endcsname#2\relax
5327 \let\bbl@elt\relax

5328 \xdef\bbl@languages{%

5329 \bbl@languages\bbl@elt{#1}{#2}{}{}}}%

5330 \def\bbl@process@synonym#1{%

5331 \ifcase\count@

5332 \toks@\expandafter{\the\toks@\relax\bbl@process@synonym{#1}}%
5333 \or

114

5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372

\@ifundefined{zth@#1}{\bbl@process@synonym@aux{#1}{0}}{}%
\else
\bbl@process@synonym@aux{#1}{\the\bbl@last}%
\fi}
\ifx\bbl@languages\@undefined % Just a (sensible?) guess
\chardef\l@english\z@
\chardef\1l@USenglish\z@
\chardef\bbl@last\z@
\global\@namedef{bbl@hyphendata@d}{{hyphen.tex}{}}
\gdef\bbl@languages{%
\bbl@elt{english}{0}{hyphen.tex}{}%
\bbl@elt{USenglish}{0}{}{}}
\else
\global\let\bbl@languages@format\bbl@languages
\def\bbl@elt#1#2#3#4{% Remove all except language 0
\ifnum#2>\z@\else
\noexpand\bbleelt{#1} {#2} {#3}{#4}%
\fi}%
\xdef\bbl@languages{\bbl@languages}%
\fi
\def\bbl@elt#1#2#3#4{\@namedef{zth@#1}{}} % Define flags
\bbl@languages
\openin\bbl@readstream=1language.dat
\ifeof\bbl@readstream
\bbl@warning{I couldn't find language.dat. No additional\\%
patterns loaded. Reported}%
\else
\loop
\endlinechar\m@ne
\read\bbl@readstream to \bbl@line
\endlinechar \""M
\if T\ifeof\bbl@readstream F\fi T\relax
\ifx\bbl@line\@empty\else
\edef\bbl@line{\bbl@line\space\space\space}%
\expandafter\bbl@process@line\bbl@line\relax
\fi
\repeat
\fi
\closein\bbl@readstream

5373 \endgroup

5374 \bbl@trace{Macros for reading patterns files}

5375 \def\bbl@get@enc#1:#2:#3\@e@{\def\bbl@hyph@enc{#2}}
5376 \1fx\babelcatcodetablenum\@undefined

5377 \ifx\newcatcodetable\@undefined

5378 \def\babelcatcodetablenum{5211}

5379 \def\bbl@pattcodes{\numexpr\babelcatcodetablenum+1\relax}
5380 \else

5381 \newcatcodetable\babelcatcodetablenum

5382 \newcatcodetable\bbl@pattcodes

5383 \fi

5384 \else

5385 \def\bbl@pattcodes{\numexpr\babelcatcodetablenum+1\relax}
5386 \ i

5387 \def\bbl@luapatterns#1#2{%

5388 \bbl@get@enc#1: :\@e@

5389 \setbox\z@\hbox\bgroup

5390 \begingroup

5391 \savecatcodetable\babelcatcodetablenum\relax

5392 \initcatcodetable\bbl@pattcodes\relax

5393 \catcodetable\bbl@pattcodes\relax

5394 \catcode \#=6 \catcode \$=3 \catcode \&=4 \catcode \"=7
5395 \catcode \ =8 \catcode \{=1 \catcode \}=2 \catcode \~=13
5396 \catcode ' \@=11 \catcode \""I=10 \catcode \""J=12

115

5397 \catcode \<=12 \catcode \>=12 \catcode *=12 \catcode \.=12

5398 \catcode \-=12 \catcode \/=12 \catcode \[=12 \catcode \]=12
5399 \catcode \ =12 \catcode \'=12 \catcode \"=12

5400 \input #1l\relax

5401 \catcodetable\babelcatcodetablenum\relax

5402 \endgroup

5403 \def\bbl@tempa{#2}%

5404 \ifx\bbl@tempa\@empty\else

5405 \input #2\relax

5406 \fi

5407 \egroup}%

5408 \def\bbl@patterns@lua#1l{%

5409 \language=\expandafter\ifx\csname 1@#1:\f@encoding\endcsname\relax
5410 \csname l@#1l\endcsname

5411 \edef\bbl@tempa{#1}%

5412 \else

5413 \csname 1@#1:\f@encoding\endcsname

5414 \edef\bbl@tempa{#1:\f@encoding}%

5415 \fi\relax

5416 \@namedef{lu@texhyphen@loaded@\the\language}{}% Temp
5417 \@ifundefined{bbl@hyphendata@\the\language}%

5418 {\def\bbl@el t##1##2##3##4{%

5419 \ifnum##2=\csname 1@\bbl@tempa\endcsname % #2=spanish, dutch:0TLl...
5420 \def\bbl@tempb{##3}%

5421 \ifx\bbl@tempb\@empty\else % if not a synonymous
5422 \def\bbl@tempc{{##3} {##4}}%

5423 \fi

5424 \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%

5425 \fi}%

5426 \bbl@languages

5427 \@ifundefined{bbl@hyphendata@\the\language}%

5428 {\bbl@info{No hyphenation patterns were set for\\%
5429 language '\bbl@tempa'. Reported}}%

5430 {\expandafter\expandafter\expandafter\bbl@luapatterns
5431 \csname bbl@hyphendata@\the\language\endcsname}}{}}

5432 \endinput\fi
Here ends \ifx\AddBabelHook\@undefined. A few lines are only read by HYPHEN.CFG.

5433 \1fx\DisableBabelHook\@undefined
5434 \AddBabelHook{luatex}{everylanguage}{%
5435 \def\process@language##1##2##3{%

5436 \def\process@line#### 1####2 ####3 ####4 {}}}

5437 \AddBabelHook{luatex}{loadpatterns}{%

5438 \input #1l\relax

5439 \expandafter\gdef\csname bbl@hyphendata@\the\language\endcsname
5440 {{#1}{}}}

5441 \AddBabelHook{luatex}{loadexceptions}{%

5442 \input #I1\relax

5443 \def\bbl@tempb##1##2 {{##1}{#1}}%

5444 \expandafter\xdef\csname bbl@hyphendata@\the\language\endcsname
5445 {\expandafter\expandafter\expandafter\bbl@tempb

5446 \csname bbl@hyphendata@\the\language\endcsname}}

5447 \endinput\fi

Here stops reading code for HYPHEN.CFG. The following is read the 2nd time it’s loaded. First, global
declarations for lua.

5448 \begingroup

5449 \catcode \%=12

5450 \catcode™\'=12

5451 \catcode \"=12

5452 \catcode™\:=12

5453 \directlua{

5454 Babel.locale props = Babel.locale props or {}
5455 function Babel.lua error(e, a)

116

5456 tex.print([[\noexpand\csname bbl@error\endcsname{]]

5457 e .. "H'" .. (@aor ") .. "M}

5458 end

5459

5460 function Babel.bytes(line)

5461 return line:gsub("(.)",

5462 function (chr) return unicode.utf8.char(string.byte(chr)) end)
5463 end

5464

5465 function Babel.priority in_callback(name,description)
5466 for i,v in ipairs(luatexbase.callback descriptions(name)) do
5467 if v == description then return i end

5468 end

5469 return false

5470 end

5471

5472 function Babel.begin process input()

5473 if luatexbase and luatexbase.add to callback then

5474 luatexbase.add to callback('process input buffer',
5475 Babel.bytes, 'Babel.bytes')
5476 else

5477 Babel.callback = callback.find('process input buffer')
5478 callback.register('process input buffer',Babel.bytes)
5479 end

5480 end

5481 function Babel.end_process_input ()

5482 if luatexbase and luatexbase.remove from callback then
5483 luatexbase.remove from callback('process input buffer', 'Babel.bytes')
5484 else

5485 callback.register('process input buffer',Babel.callback)
5486 end

5487 end

5488

5489 function Babel.str to nodes(fn, matches, base)

5490 local n, head, last

5491 if fn == nil then return nil end

5492 for s in string.utfvalues(fn(matches)) do

5493 if base.id == 7 then

5494 base = base.replace

5495 end

5496 n = node.copy(base)

5497 n.char =5

5498 if not head then

5499 head = n

5500 else

5501 last.next = n

5502 end

5503 last = n

5504 end

5505 return head

5506 end

5507

5508 Babel.linebreaking = Babel.linebreaking or {}
5509 Babel.linebreaking.before = {}

5510 Babel.linebreaking.after = {}

5511 Babel.locale = {}

5512 function Babel.linebreaking.add before(func, pos)

5513 tex.print([[\noexpand\csname bbl@luahyphenate\endcsname]l)
5514 if pos == nil then

5515 table.insert(Babel.linebreaking.before, func)

5516 else

5517 table.insert(Babel.linebreaking.before, pos, func)

5518 end

117

5519 end
5520 function Babel.linebreaking.add after(func)

5521 tex.print([[\noexpand\csname bbl@luahyphenate\endcsname]])
5522 table.insert(Babel.linebreaking.after, func)

5523 end

5524

5525 function Babel.addpatterns(pp, 19)
5526 local lg = lang.new(1lg)

5527 local pats = lang.patterns(lg) or ''

5528 lang.clear patterns(lg)

5529 for p in pp:gmatch('["%s]+') do

5530 ss = "'

5531 for i in string.utfcharacters(p:gsub('sd', '')) do

5532 ss = 58S .. '%d?' .. 1

5533 end

5534 sS = ss:gsub('"%%d%?%."', '%%.') .. '%d?'

5535 SS = 55:gsub('%.%%d%?$', '%%."')

5536 pats, n = pats:gsub('%s' .. ss .. '%s', ' ' p.. " ")
5537 if n == 0 then

5538 tex.sprint(

5539 [[\string\csname\space bbl@info\endcsname{New pattern:]]
5540 .oop . L0311

5541 pats = pats .. ' ' .. p

5542 else

5543 tex.sprint(

5544 [[\string\csname\space bbl@info\endcsname{Renew pattern: 1]
5545 ..op .. LD

5546 end

5547 end

5548 lang.patterns(lg, pats)

5549 end

5550

5551 Babel.characters = Babel.characters or {}
5552 Babel.ranges = Babel.ranges or {}
5553 function Babel.hlist has bidi(head)

5554 local has bidi = false

5555 local ranges = Babel.ranges

5556 for item in node.traverse(head) do

5557 if item.id == node.id'glyph' then

5558 local itemchar = item.char

5559 local chardata = Babel.characters[itemchar]
5560 local dir = chardata and chardata.d or nil
5561 if not dir then

5562 for nn, et in ipairs(ranges) do

5563 if itemchar < et[1l] then

5564 break

5565 elseif itemchar <= et[2] then

5566 dir = et[3]

5567 break

5568 end

5569 end

5570 end

5571 if dir and (dir == 'al' or dir == 'r') then
5572 has bidi = true

5573 end

5574 end

5575 end

5576 return has_bidi

5577 end

5578 function Babel.set chranges b (script, chrng)
5579 if chrng == '' then return end

5580 texio.write('Replacing ' .. script .. ' script ranges')

5581 Babel.script blocks[script] = {}

118

5582 for s, e in string.gmatch(chrng..' ', '(.-)%.%.(.-)%s') do
5583 table.insert(

5584 Babel.script blocks[script], {tonumber(s,16), tonumber(e,16)})
5585 end

5586 end

5587

5588 function Babel.discard_sublr(str)

5589 if str:find([[\string\indexentry]]) and

5590 str:find([[\string\babelsublr]]) then

5591 str = str:gsub([[\string\babelsublr%s*(%b{})11,
5592 function(m) return m:sub(2,-2) end)
5593 end

5594 return str

5595 end

5596 }

5597 \endgroup

5598 \ifx\newattribute\@undefined\else % Test for plain
5599 \newattribute\bbl@attr@locale % DL4

5600 \directlua{ Babel.attr locale = luatexbase.registernumber'bbl@attr@locale' }
5601 \AddBabelHook{luatex}{beforeextras}{%

5602 \setattribute\bbl@attr@locale\localeid}

5603 \fi

5604 %

5605 \def\BabelStringsDefault{unicode}

5606 \Llet\luabbl@stop\relax

5607 \AddBabelHook{luatex}{encodedcommands}{%

5608 \def\bbl@tempa{utf8}\def\bbl@tempb{#1}%

5609 \ifx\bbl@tempa\bbl@tempb\else

5610 \directlua{Babel.begin process input()}%
5611 \def\luabbl@stop{%
5612 \directlua{Babel.end process input()}}%

5613 \fil}%

5614 \AddBabelHook{luatex}{stopcommands}{%

5615 \luabbl@stop

5616 \let\luabbl@stop\relax}

5617 %

5618 \AddBabelHook{luatex}{patterns}{%

5619 \@ifundefined{bbl@hyphendata@\the\language}%
5620 {\def\bbl@el t##1##2##3##4{%

5621 \ifnum##2=\csname 1@#2\endcsname % #2=spanish, dutch:0TLl...
5622 \def\bbl@tempb{##3}%

5623 \ifx\bbl@tempb\@empty\else % if not a synonymous
5624 \def\bbl@tempc{{##3} {##4}}%

5625 \fi

5626 \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%

5627 \fi}%

5628 \bbl@languages

5629 \@ifundefined{bbl@hyphendata@\the\language}%

5630 {\bbl@info{No hyphenation patterns were set for\\%
5631 language '#2'. Reported}}%

5632 {\expandafter\expandafter\expandafter\bbl@luapatterns
5633 \csname bbl@hyphendata@\the\language\endcsname}}{}%
563¢ \@ifundefined{bbl@patterns@}{}{%

5635 \begingroup

5636 \bbl@xin@{, \number\language, }{,\bbl@pttnlist}%

5637 \ifin@\else

5638 \ifx\bbl@patterns@\@empty\else

5639 \directlua{ Babel.addpatterns(

5640 [[\bbl@patterns@]l], \number\language) }%

5641 \fi

5642 \@ifundefined{bbl@patterns@#1}%

5643 \@empty

5644 {\directlua{ Babel.addpatterns(

119

5645 [[\space\csname bbl@patterns@#l\endcsname]l],

5646 \number\language) }}%

5647 \xdef\bbl@pttnlist{\bbl@pttnlist\number\language, }%
5648 \fi

5649 \endgroup}%

5650 \bbl@exp{%

5651 \bbl@ifunset{bbl@prehc@\languagename}{}%

5652 {\\\bbl@ifblank{\bbl@cs{prehc@\languagename}}{}%
5653 {\prehyphenchar=\bbl@cl{prehc}\relax}}}}

\babelpatterns This macro adds patterns. Two macros are used to store them: \bbl@patterns@ for
the global ones and \bbl@patterns@(language) for language ones. We make sure there is a space
between words when multiple commands are used.

5654 \@onlypreamble\babelpatterns

5655 \AtEndOfPackage{%

5656 \newcommand\babelpatterns[2][\@empty]{%
5657 \ifx\bbl@patterns@\relax

5658 \let\bbl@patterns@\@empty

5659 \fi

5660 \ifx\bbl@pttnlist\@empty\else

5661 \bbl@warning{%

5662 You must not intermingle \string\selectlanguage\space and\\%
5663 \string\babelpatterns\space or some patterns will not\\%
5664 be taken into account. Reported}%

5665 \fi

5666 \ifx\@empty#1%

5667 \protectede@edef\bbl@patterns@{\bbl@patterns@\space#2}%
5668 \else

5669 \edef\bbl@tempb{\zap@space#1l \@empty}%

5670 \bbl@for\bbl@tempa\bbl@tempb{%

5671 \bbl@fixname\bbl@tempa

5672 \bbl@iflanguage\bbl@tempa{%

5673 \bbl@csarg\protected@edef{patterns@\bbl@tempa}{%

5674 \@ifundefined{bbl@patterns@\bbl@tempa}%

5675 \@empty

5676 {\csname bbl@patterns@\bbl@tempa\endcsname\space}%
5677 #2}}}%

5678 \fi}}

10.6. Southeast Asian scripts

First, some general code for line breaking, used by \babelposthyphenation.

Replace regular (i.e., implicit) discretionaries by spaceskips, based on the previous glyph (which I
think makes sense, because the hyphen and the previous char go always together). Other
discretionaries are not touched. See Unicode UAX 14.

5679 \def\bbl@intraspace#l #2 #3\@e{%
5680 \directlua{

5681 Babel.intraspaces = Babel.intraspaces or {}

5682 Babel.intraspaces['\csname bbl@sbcp@\languagename\endcsname'] = %
5683 {b =#1, p=#2, m = #3}

5684 Babel.locale props[\the\localeid].intraspace = %

5685 {b =#1, p=#2, m = #3}

5686)

5687 \def\bbl@intrapenalty#1\@@{%
5688 \directlua{

5689 Babel.intrapenalties = Babel.intrapenalties or {}

5690 Babel.intrapenalties['\csname bbl@sbcp@\languagename\endcsname'] = #1
5691 Babel.locale props[\the\localeid].intrapenalty = #1

5692 }+}

5693 \begingroup
5694 \catcode \%=12
5695 \catcode " \&=14

120

5696 \catcode \'=12

5697 \catcode ' \~=12

5698 \gdef\bbl@seaintraspace{&

5699 \let\bbl@seaintraspace\relax
5700 \directlua{

5701 Babel.sea enabled = true

5702 Babel.sea ranges = Babel.sea ranges or {}

5703 function Babel.set chranges (script, chrng)

5704 local ¢ = 0

5705 for s, e in string.gmatch(chrng..' ', '(.-)%.%.(.-)%s') do
5706 Babel.sea ranges[script..c]={tonumber(s,16), tonumber(e,16)}
5707 c=c+1

5708 end

5709 end

5710 function Babel.sea disc to space (head)

5711 local sea ranges = Babel.sea ranges

5712 local last_char = nil

5713 local quad = 655360 &% 10 pt = 655360 = 10 * 65536
5714 for item in node.traverse(head) do

5715 local i = item.id

5716 if i == node.id'glyph' then

5717 last_char = item

5718 elseif i == 7 and item.subtype == 3 and last char
5719 and last char.char > 0x0C99 then

5720 quad = font.getfont(last char.font).size

5721 for 1g, rg in pairs(sea ranges) do

5722 if last char.char > rg[1] and last char.char < rg[2] then
5723 1g = lg:sub(1l, 4) &% Remove trailing number of, e.g., Cyrll
5724 local intraspace = Babel.intraspaces[lg]

5725 local intrapenalty = Babel.intrapenalties[1lg]
5726 local n

5727 if intrapenalty ~= 0 then

5728 n = node.new(14, 0) &% penalty

5729 n.penalty = intrapenalty

5730 node.insert before(head, item, n)

5731 end

5732 n = node.new(12, 13) &s (glue, spaceskip)
5733 node.setglue(n, intraspace.b * quad,

5734 intraspace.p * quad,

5735 intraspace.m * quad)

5736 node.insert before(head, item, n)

5737 node.remove(head, item)

5738 end

5739 end

5740 end

5741 end

5742 end

5743 }&

5744 \bbl@luahyphenate}

10.7. CJK line breaking

Minimal line breaking for CJK scripts, mainly intended for simple documents and short texts as a
secondary language. Only line breaking, with a little stretching for justification, without any attempt
to adjust the spacing. It is based on (but does not strictly follow) the Unicode algorithm.

We first need a little table with the corresponding line breaking properties. A few characters have
an additional key for the width (fullwidth vs. halfwidth), not yet used. There is a separate file, defined
below.

5745 \catcode \%=14
5746 \gdef\bbl@cjkintraspace{%
5747 \let\bbl@cjkintraspace\relax

5748
5749

\d

irectlua{
require('babel-data-cjk.lua')

121

5750 Babel.cjk enabled = true

5751 function Babel.cjk linebreak(head)

5752 local GLYPH = node.id'glyph'

5753 local last char = nil

5754 local quad = 655360 % 10 pt = 655360 = 10 * 65536
5755 local last class = nil

5756 local last lang = nil

5757 for item in node.traverse(head) do

5758 if item.id == GLYPH then

5759 local lang = item.lang

5760 local LOCALE = node.get attribute(item,

5761 Babel.attr locale)

5762 local props = Babel.locale props[LOCALE] or {}
5763 local class = Babel.cjk class[item.char].c
5764 if props.cjk quotes and props.cjk quotes[item.char] then
5765 class = props.cjk quotes[item.char]

5766 end

5767 if class == 'cp' then class = 'cl' %)] as CL
5768 elseif class == 'id' then class = 'I'

5769 elseif class == 'cj' then class = 'I' % loose
5770 end

5771 local br =0

5772 if class and last class and Babel.cjk breaks[last class][class] then
5773 br = Babel.cjk breaks[last class][class]
5774 end

5775 if br == 1 and props.linebreak == 'c' and
5776 lang ~= \the\l@nohyphenation\space and
5777 last lang ~= \the\l@nohyphenation then
5778 local intrapenalty = props.intrapenalty
5779 if intrapenalty ~= 0 then

5780 local n = node.new(14, 0) % penalty
5781 n.penalty = intrapenalty

5782 node.insert before(head, item, n)

5783 end

5784 local intraspace = props.intraspace

5785 local n = node.new(12, 13) % (glue, spaceskip)
5786 node.setglue(n, intraspace.b * quad,

5787 intraspace.p * quad,

5788 intraspace.m * quad)

5789 node.insert_before(head, item, n)

5790 end

5791 if font.getfont(item.font) then

5792 quad = font.getfont(item.font).size

5793 end

5794 last class = class

5795 last lang = lang

5796 else % if penalty, glue or anything else

5797 last class = nil

5798 end

5799 end

5800 lang.hyphenate(head)

5801 end

5802 }%

5803 \bbl@luahyphenate}

5804 \gdef\bbl@luahyphenate{%

5805 \let\bbl@luahyphenate\relax

5806 \directlua{

5807 luatexbase.add to callback('hyphenate',

5808 function (head, tail)

5809 if Babel.linebreaking.before then

5810 for k, func in ipairs(Babel.linebreaking.before) do
5811 func(head)

5812 end

122

5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831

end
lang.hyphenate(head)
if Babel.cjk enabled then
Babel.cjk linebreak(head)
end
if Babel.linebreaking.after then
for k, func in ipairs(Babel.linebreaking.after) do
func(head)
end
end
if Babel.set hboxed then
Babel.set hboxed(head)
end
if Babel.sea enabled then
Babel.sea disc to space(head)
end
end,
'Babel.hyphenate')

5832 \endgroup

5833 %

5834 \def\bbl@provide@intraspace{%

5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863

\bbl@ifunset{bbl@intsp@\languagename}{}%

{\expandafter\ifx\csname bbl@intsp@\languagename\endcsname\@empty\else
\bbl@xin@{/c}{/\bbl@cl{lnbrk}}%

\ifin@ % cjk
\bbl@cjkintraspace
\directlua{

Babel.locale props = Babel.locale props or {}
Babel.locale props[\the\localeid].linebreak =
}%
\bbl@exp{\\\bbl@intraspace\bbl@cl{intsp}\\\@@}%
\ifx\bbl@KVP@intrapenalty\@nnil
\bbl@intrapenalty0\@@
\fi
\else % sea
\bbl@seaintraspace
\bbl@exp{\\\bbl@intraspace\bbl@cl{intsp}\\\@@}%
\directlua{
Babel.sea ranges = Babel.sea ranges or {}
Babel.set chranges('\bbl@cl{sbcp}',
"\bbl@cl{chrng}")

C

}%
\ifx\bbl@KVP@intrapenalty\@nnil
\bbl@intrapenalty0\@@
\fi
\fi
\fi
\ifx\bbl@KVP@intrapenalty\@nnil\else
\expandafter\bbl@intrapenalty\bbl@KVP@intrapenalty\@@
\fi}}

10.8. Arabic justification

WIP. \bbl@arabicjust is executed with both elongated an kashida. This must be fine tuned. The
attribute kashida is set by transforms with kashida.

5864 \ifnum\bbl@bidimode>100 \ifnum\bbl@bidimode<200
5865 \def\bblar@chars{%

5866
5867
5868

0628,0629,062A,062B,062C,062D,062E,062F,0630,0631,0632,0633,%
0634,0635,0636,0637,0638,0639,063A,063B,063C,063D,063E,063F,
0640,0641,0642,0643,0644,0645,0646,0647,0649}

%

5869 \def\bblar@elongated{%

5870

0626,0628,062A,062B,0633,0634,0635,0636,063B,%

123

5871 063C,063D,063E,063F,0641,0642,0643,0644,0646,%

5872 0649,064A}

5873 \begingroup

5874 \catcode® =11 \catcode :=11

5875 \gdef\bblar@nofswarn{\gdef\msg warning:nnx##1##2##3{}}
5876 \endgroup

5877 \gdef\bbl@arabicjust{%

5878 \let\bbl@arabicjust\relax

5879 \newattribute\bblar@kashida

5880 \directlua{ Babel.attr kashida = luatexbase.registernumber'bblar@kashida' }%
5881 \bblar@kashida=\z@

5882 \bbl@patchfont{{\bbl@parsejalt}}%

5883 \directlua{

5884 Babel.arabic.elong map = Babel.arabic.elong map or {}
5885 Babel.arabic.elong map[\the\localeid] = {}

5886 luatexbase.add to callback('post linebreak filter',

5887 Babel.arabic.justify, 'Babel.arabic.justify')

5888 luatexbase.add to callback('hpack filter',

5889 Babel.arabic.justify hbox, 'Babel.arabic.justify hbox"')
5890 }1}%

Save both node lists to make replacement.

5891 \def\bblar@fetchjalt#1#2#3#4{%
5892 \bbl@exp{\\\bbl@foreach{#1}}{%
5893 \bbl@ifunset{bblar@JE@##1}%

5894 {\setbox\z@\hbox{\textdir TRT ~""""200d\char"##1#2}}%
5895 {\setbox\z@\hbox{\textdir TRT ~"""200d\char"\@nameuse{bblar@IE@##1}#2}}%
5896 \directlua{%

5897 local last = nil

5898 for item in node.traverse(tex.box[0].head) do

5899 if item.id == node.id'glyph' and item.char > 0x600 and
5900 not (item.char == 0x200D) then

5901 last = item

5902 end

5903 end

5904 Babel.arabic.#3['##1#4'] = last.char

5905 11}

Elongated forms. Brute force. No rules at all, yet. The ideal: look at jalt table. And perhaps other
tables (falt?, cswh?). What about kaf? And diacritic positioning?

5906 \gdef\bbl@parsejalt{%

5907 \ifx\addfontfeature\@undefined\else

5908 \bbl@xin@{/e}{/\bbl@cl{lnbrk}}%

5909 \ifin@

5910 \directlua{%

5911 if Babel.arabic.elong map[\the\localeid][\fontid\font] == nil then
5912 Babel.arabic.elong map[\the\localeid][\fontid\font] = {}

5913 tex.print([[\string\csname\space bbl@parsejalti\endcsname]])
5914 end

5915 }
5916 \fi
5917 \fi}
5918 \gdef\bbl@parsejalti{%
5919 \begingroup

o°

5920 \let\bbl@parsejalt\relax % To avoid infinite loop
5921 \edef\bbl@tempb{\fontid\font}%
5922 \bblar@nofswarn

5923 \bblar@fetchjalt\bblar@elongated{}{from}{}%

5924 \bblar@fetchjalt\bblar@chars{~"""064a}{from}{a}% Alef maksura
5925 \bblar@fetchjalt\bblar@chars{~*""0649}{from}{y}% Yeh

5926 \addfontfeature{RawFeature=+jalt}%

5927 % \@namedef{bblar@JE@0643}{06AA}% todo: catch medial kaf

5928 \bblar@fetchjalt\bblar@elongated{}{dest}{}%

5929 \bblar@fetchjalt\bblar@chars{~"""064a}{dest}{a}%

124

5930 \bblar@fetchjalt\bblar@chars{""""0649}{dest}{y}%
5931 \directlua{%

5932 for k, v in pairs(Babel.arabic.from) do

5933 if Babel.arabic.dest[k] and

5934 not (Babel.arabic.from[k] == Babel.arabic.dest[k]) then
5935 Babel.arabic.elong map[\the\localeid][\bbl@tempb]

5936 [Babel.arabic.from[k]] = Babel.arabic.dest[k]

5937 end

5938 end

5939 1%

5940 \endgroup}
The actual justification (inspired by CHICKENIZE).

5941 \begingroup

5942 \catcode #=11

5943 \catcode ~=11

5944 \directlua{

5945

5946 Babel.arabic = Babel.arabic or {}

5947 Babel.arabic.from = {}

5948 Babel.arabic.dest = {}

5949 Babel.arabic.justify factor = 0.95

5950 Babel.arabic.justify enabled = true

5951 Babel.arabic.kashida limit = -1

5952

5953 function Babel.arabic.justify(head)

5954 if not Babel.arabic.justify enabled then return head end
5955 for line in node.traverse id(node.id'hlist', head) do
5956 Babel.arabic.justify hlist(head, line)

5957 end

5958 % In case the very first item is a line (eg, in \vbox):
5959 while head.prev do head = head.prev end

5960 return head

5961 end

5962

5963 function Babel.arabic.justify hbox(head, gc, size, pack)
5964 local has inf = false

5965 1if Babel.arabic.justify enabled and pack == 'exactly' then
5966 for n in node.traverse id(12, head) do

5967 if n.stretch_order > 0 then has_inf = true end

5968 end

5969 if not has_inf then

5970 Babel.arabic.justify hlist(head, nil, gc, size, pack)
5971 end

5972 end

5973 return head

5974 end

5975

5976 function Babel.arabic.justify hlist(head, line, gc, size, pack)
5977 local d, new

5978 local k_list, k item, pos_inline

5979 local width, width new, full, k curr, wt pos, goal, shift
5980 local subst done = false

5981 local elong map = Babel.arabic.elong map

5982 local cnt

5983 local last line

5984 local GLYPH = node.id'glyph'

5985 local KASHIDA = Babel.attr kashida

5986 local LOCALE = Babel.attr locale

5987
5988 if line == nil then
5989 line = {}

5990 line.glue sign =1

125

5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053

line.glue order = 0
line.head = head
line.shift = 0
line.width = size

end

% Exclude last line.

if (line.next ~= nil and line.glue_order == 0) then
elongs = {} % Stores elongated candidates of each line
k list = {} % And all letters with kashida

pos inline = 0 % Not yet used

for n in node.traverse id(GLYPH, line.head) do
pos_inline = pos inline + 1 % To find where it is. Not used.

% Elongated glyphs
if elong map then
local locale = node.get attribute(n, LOCALE)
if elong map[locale] and elong map[locale][n.font] and
elong map[locale][n.font][n.char] then
table.insert(elongs, {node = n, locale = locale})
node.set_attribute(n.prev, KASHIDA, 0)
end
end

% Tatwil. First create a list of nodes marked with kashida. The

% rest of nodes can be ignored. The list of used weigths is build

% when transforms with the key kashida= are declared.

if Babel.kashida wts then
local k wt = node.get attribute(n, KASHIDA)
if k. wt > 0 then % todo. parameter for multi inserts

table.insert(k list, {node = n, weight = k wt, pos = pos inline})

end

end

end % of node.traverse id

if #elongs == 0 and #k list == 0 then goto next line end
full = line.width

shift = line.shift

goal = full * Babel.arabic.justify factor % A bit crude
width = node.dimensions(line.head) % The 'natural' width

% == Elongated ==
% Original idea taken from 'chikenize'
while (#elongs > 0 and width < goal) do
subst done = true
local x = #elongs
local curr = elongs[x].node
local oldchar = curr.char
curr.char = elong map[elongs[x].locale][curr.font][curr.char]
width = node.dimensions(line.head) % Check if the line is too wide
% Substitute back if the line would be too wide and break:
if width > goal then
curr.char = oldchar
break
end
% If continue, pop the just substituted node from the list:
table.remove(elongs, x)
end

% == Tatwil ==
% Traverse the kashida node list so many times as required, until

126

6054 % the line if filled. The first pass adds a tatweel after each

6055 % node with kashida in the line, the second pass adds another one,
6056 % and so on. In each pass, add first the kashida with the highest
6057 % weight, then with lower weight and so on.

6058 if #k list == 0 then goto next line end

6059

6060 width = node.dimensions(line.head) % The 'natural' width
6061 k_curr = #k_list % Traverse backwards, from the end

6062 wt pos =1

6063

6064 while width < goal do

6065 subst done = true

6066 k_item = k_list[k curr].node

6067 if k_list[k _curr].weight == Babel.kashida_wts[wt_pos] then
6068 d = node.copy(k item)

6069 d.char = 0x0640

6070 d.yoffset = 0 % TODO. From the prev char. But 0 seems safe.
6071 d.xoffset = 0

6072 line.head, new = node.insert after(line.head, k item, d)
6073 width_new = node.dimensions(line.head)

6074 if width > goal or width == width new then

6075 node.remove(line.head, new) % Better compute before
6076 break

6077 end

6078 if Babel.fix_diacr then

6079 Babel.fix_diacr(k_item.next)

6080 end

6081 width = width_new

6082 end

6083 if k curr == 1 then

6084 k_curr = #k_list

6085 wt pos = (wt pos >= table.getn(Babel.kashida wts)) and 1 or wt pos+l
6086 else

6087 k curr = k curr - 1

6088 end

6089 end

6090

6091 % Limit the number of tatweel by removing them. Not very efficient,
6092 % but it does the job in a quite predictable way.

6093 if Babel.arabic.kashida_limit > -1 then

6094 cnt = 0

6095 for n in node.traverse id(GLYPH, line.head) do

6096 if n.char == 0x0640 then

6097 cnt = cnt + 1

6098 if cnt > Babel.arabic.kashida limit then

6099 node.remove(line.head, n)

6100 end

6101 else

6102 cnt = 0

6103 end

6104 end

6105 end

6106

6107 rinext line::

6108

6109 % Must take into account marks and ins, see luatex manual.
6110 % Have to be executed only if there are changes. Investigate
6111 % what's going on exactly.

6112 if subst done and not gc then

6113 d = node.hpack(line.head, full, 'exactly')

6114 d.shift = shift

6115 node.insert before(head, line, d)

6116 node. remove(head, line)

127

6117 end

6118 end % if process line

6119 end

6120 }

6121 \endgroup

6122 \fi\fi % ends Arabic just block: \ifnum\bbl@bidimode>100...

10.9. Common stuff

First, a couple of auxiliary macros to set the renderer according to the script. This is done by patching
temporarily the low-level fontspec macro containing the current features set with
\defaultfontfeatures. Admittedly this is somewhat dangerous, but that way the latter command
still works as expected, because the renderer is set just before other settings. In xetex they are set to
\relax.

6123 \def\bbl@scr@node@list{%

6124 ,Armenian,Coptic,Cyrillic,Georgian,,Glagolitic,Gothic,%
6125 ,Greek,Latin,0ld Church Slavonic Cyrillic,}

6126 \1fnum\bbl@bidimode=102 % bidi-r

6127 \bbl@add\bbl@scr@node@list{Arabic,Hebrew,Syriac}
6128 \ i

6129 \def\bbl@set@renderer{%

6130 \bbl@xin@{\bbl@cl{sname}}{\bbl@scr@node@list}%
6131 \ifin@

6132 \let\bbl@unset@renderer\relax

6133 \else

6134 \bbleexp{%

6135 \def\\\bbl@unset@renderer{%

6136 \def\<g fontspec default fontopts clist>{%

6137 \[g_ fontspec default fontopts clist]}}%

6138 \def\<g fontspec default fontopts clist>{%

6139 Renderer=Harfbuzz,\[g fontspec default fontopts clist]}}%
6140 \fi}

6141 <@Font selection@>

10.10. Automatic fonts and ids switching

After defining the blocks for a number of scripts (must be extended and very likely fine tuned), we
define a the function Babel.locale map, which just traverse the node list to carry out the
replacements. The table loc_to_scr stores the script range for each locale (whose id is the key),
copied from this table (so that it can be modified on a locale basis); there is an intermediate table
named chr_to_loc built on the fly for optimization, which maps a char to the locale. This locale is
then used to get the \language as stored in locale props, as well as the font (as requested). In the
latter table a key starting with / maps the font from the global one (the key) to the local one (the
value). Maths are skipped and discretionaries are handled in a special way.

There are two situations where the replacement is not carried out: either the letters option has
been set and the character is not a letter (in the TgX sense), or the current script is the same as the
new one.

6142 \directlua{% DL6

6143 Babel.script blocks = {

6144 ['dflt'] {},

6145 ['Arab'] = {{0x0600, OxO06FF}, {0x08A0, Ox08FF}, {0x0750, Ox077F},
6146 {OxFE70, OXFEFF}, {OxFB50, OxFDFF}, {Ox1EE00, Ox1EEFF}},
6147 ['Armn'] = {{0x0530, Ox058F}},

6148 ['Beng'] = {{06x0980, OxO9FF}},

6149 ['Cher'] = {{0x13A0, Ox13FF}, {OxAB70, OxABBF}},

6150 ['Copt'] = {{Ox03E2, OxO3EF}, {0x2C80, Ox2CFF}, {0x102E0, 0x102FF}},
6151 ['Cyrl'] = {{Ox0400, Ox04FF}, {0x0500, Ox052F}, {0x1C80, Ox1C8F},
6152 {Ox2DEO, Ox2DFF}, {0OxA640, OxA69F}},

6153 ['Deva'] = {{06x0900, 0x097F}, {OxA8EO, OxA8FF}},

6154 ['Ethi'] = {{0x1200, Ox137F}, {0x1380, Ox139F}, {0x2D80, Ox2DDF},
6155 {O0xABOO, OxAB2F}},

6156 ['Geor'] = {{0x10A0, Ox1OFF}, {0x2D00G, Ox2D2F}},

128

6157 % Don't follow strictly Unicode, which places some Coptic letters in
6158 % the 'Greek and Coptic' block

6159 ['Grek'] = {{0x0370, O0x03E1l}, {0x03F0Q, Ox03FF}, {0x1F00, Ox1FFF}},
6160 ['Hans'] {{0x2E80, Ox2EFF}, {0x3000, 0x303F}, {0x31C0O, Ox31EF},

6161 {0x3300, Ox33FF}, {0x3400, 0x4DBF}, {0x4E00, OX9FFF},
6162 {OxF900, OxFAFF}, {OxFE30, OxFE4F}, {OxFF0O, OXFFEF},
6163 {0x20000, 0x2A6DF}, {0x2A700, 0x2B73F},

6164 {0x2B740, 0x2B81F}, {0x2B820, Ox2CEAF},

6165 {0x2CEBO, Ox2EBEF}, {0x2F800, Ox2FAlF}},

6166 ['Hebr'] = {{0x0590, OxO5FF},

6167 {OxFB1F, OxFB4E}}, % <- Includes some <reserved>

6168 ['Jpan'] = {{0x3000, Ox303F}, {0x3040, Ox309F}, {O0x30A0, Ox30FF},
6169 {O0x4EQ0, Ox9FAF}, {OxFFOO, OXFFEF}},

6170 ['Khmr'] = {{06x1780, Ox17FF}, {0x19EO, Ox19FF}},

6171 ['Knda']l = {{0x0C80, OxOCFF}},

6172 ['Kore'] = {{0x1100, Ox11FF}, {0x3000, O0x303F}, {0x3130, Ox318F},
6173 {0x4E00, Ox9FAF}, {0xA960, 0xA97F}, {06xAC00, OxD7AF},
6174 {0xD7B0, OxD7FF}, {OxFF00, OXFFEF}},

6175 ['Laoo'] = {{OxOE80, OXOQEFF}},

6176 ['Latn'] = {{0x0000, 0x007F}, {0x0080, Ox00FF}, {06x0100, Ox017F},
6177 {0x0180, 0x024F}, {06x1E00, OX1EFF}, {06x2C60, 0x2C7F},
6178 {0xA720, OxA7FF}, {0xAB30, OxAB6F}},

6179 ['Mahj'] = {{0x11150, Ox1117F}},

6180 ['Mlym'] = {{0x0D0O, OxOD7F}},

6181 ['Mymr'] = {{0x1000, 0x109F}, {0xAA60, OxAA7F}, {OxA9EQ, OxA9FF}},
6182 ['Orya'] = {{0Ox0B0O, OxOB7F}},

6183 ['Sinh'] = {{0x0D80, OxODFF}, {06x111E0, Ox111FF}},

6184 ['Syrc'] = {{0x0700, 0x074F}, {0x0860, O0x086F}},

6185 ['Taml'] = {{Ox0B80, OxOBFF}},

6186 ['Telu'] = {{Ox0C00, OxOC7F}},

6187 ['Tfng'] = {{Ox2D30, Ox2D7F}},

6188 ['Thai'] = {{OxOE00, OXOE7F}},

6189 ['Tibt'] = {{OxOF00, OXOFFF}},

6190 ['Vaii'] = {{OxA500, OxA63F}},

6191 ['Yiii'] = {{OxAG00, OxA48F}, {0xA490, OxA4CF}}

6192 }

6193

6194 Babel.script blocks.Cyrs = Babel.script blocks.Cyrl
6195Babel.script blocks.Hant = Babel.script blocks.Hans

6196 Babel.script blocks.Kana = Babel.script blocks.Jpan

6197

6198 function Babel.locale map(head)

6199 if not Babel.locale mapped then return head end

6200

6201 local LOCALE = Babel.attr locale

6202 local GLYPH = node.id('glyph')

6203 local inmath = false

6204 local toloc_ save

6205 for item in node.traverse(head) do

6206 local toloc

6207 if not inmath and item.id == GLYPH then

6208 % Optimization: build a table with the chars found
6209 if Babel.chr to loc[item.char] then

6210 toloc = Babel.chr to loc[item.char]

6211 else

6212 for lc, maps in pairs(Babel.loc to scr) do

6213 for , rg in pairs(maps) do

6214 if item.char >= rg[1l] and item.char <= rg[2] then
6215 Babel.chr to loc[item.char] = lc

6216 toloc = lc

6217 break

6218 end

6219 end

129

6220 end

6221 % Treat composite chars in a different fashion, because they
6222 % 'inherit' the previous locale.

6223 if (item.char >= 0x0300 and item.char <= 0x036F) or
6224 (item.char >= 0x1ABO and item.char <= Ox1AFF) or
6225 (item.char >= 0x1DCO and item.char <= Ox1DFF) then
6226 Babel.chr to loc[item.char] = -2000

6227 toloc = -2000

6228 end

6229 if not toloc then

6230 Babel.chr_to_loc[item.char] = -1000

6231 end

6232 end

6233 if toloc == -2000 then

6234 toloc = toloc_save

6235 elseif toloc == -1000 then

6236 toloc = nil

6237 end

6238 if toloc and Babel.locale props[toloc] and

6239 Babel.locale props[toloc].letters and

6240 tex.getcatcode(item.char) \string~= 11 then

6241 toloc = nil

6242 end

6243 if toloc and Babel.locale props[toloc].script

6244 and Babel.locale props[node.get attribute(item, LOCALE)].script
6245 and Babel.locale props[toloc].script ==

6246 Babel.locale props[node.get attribute(item, LOCALE)].script then
6247 toloc = nil

6248 end

6249 if toloc then

6250 if Babel.locale props[toloc].lg then

6251 item.lang = Babel.locale props[toloc].lg

6252 node.set attribute(item, LOCALE, toloc)

6253 end

6254 if Babel.locale_props[toloc]['/'..item.font] then

6255 item.font = Babel.locale props[toloc]['/'..item.font]
6256 end

6257 end

6258 toloc save = toloc

6259 elseif not inmath and item.id == 7 then % Apply recursively
6260 item.replace = item.replace and Babel.locale map(item.replace)
6261 item.pre = item.pre and Babel.locale map(item.pre)
6262 item.post = item.post and Babel.locale map(item.post)
6263 elseif item.id == node.id'math' then

6264 inmath = (item.subtype == 0)

6265 end

6266 end

6267 return head

6268 end

6269 }

The code for \babelcharproperty is straightforward. Just note the modified lua table can be
different.

6270 \newcommand\babelcharproperty[1]{%
6271 \count@=#1\relax

6272 \ifvmode

6273 \expandafter\bbl@chprop

6274 \else
6275 \bbl@error{charproperty-only-vertical}{}{}{}%
6276 \fi}

6277 \newcommand\bbl@chprop[3][\the\count@] {%
6278 \@tempcnta=#1\relax
6279 \bbl@ifunset{bbl@chprop@#2}% {unknown-char-property}

130

6280 {\bbl@error{unknown-char-property}{}{#2}{}}%
6281 {}%

6282 \loop

6283 \bbl@cs{chprop@#2}{#3}%

6284 \ifnum\count@<\@tempcnta

6285 \advance\count@\@ne
6286 \repeat}
6287 %

6288 \def\bbl@chprop@direction#1{%

6289 \directlua{

6290 Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}
6291 Babel.characters[\the\count@]['d'] = "'#1'

6292 }}

6293 \let\bbl@chprop@bc\bbl@chprop@direction

6294 %

6295 \def\bbl@chprop@mirror#1{%

6296 \directlua{

6297 Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}
6298 Babel.characters[\the\count@]['m'] = '\number#l'

6299 }}

6300 \ let\bbl@chprop@bmg\bbl@chprop@mirror

6301 %

6302 \def\bbl@chprop@linebreak#1{%

6303 \directlua{

6304 Babel.cjk characters[\the\count@] = Babel.cjk characters[\the\count@] or {}
6305 Babel.cjk characters[\the\count@]['c'] = '#1'

6306 }}

6307 \let\bbl@chprop@lb\bbl@chprop@linebreak

6308 %

6309 \def\bbl@chprop@locale#1{%

6310 \directlua{

6311 Babel.chr to loc = Babel.chr to loc or {}

6312 Babel.chr to loc[\the\count@] =

6313 \bbl@ifblank{#1}{-1000}{\the\bbl@cs{id@@#1}}\space
6314 }}

Post-handling hyphenation patterns for non-standard rules, like ff to ff-f. There are still some
issues with speed (not very slow, but still slow). The Lua code is below.

6315 \directlua{% DL7
6316 Babel.nohyphenation = \the\l@nohyphenation
6317 }

Now the TgX high level interface, which requires the function defined above for converting strings
to functions returning a string. These functions handle the {n} syntax. For example, pre={1}{1}-
becomes function(m) return m[1]..m[1]..'-"' end, where m are the matches returned after
applying the pattern. With a mapped capture the functions are similar to
function(m) return Babel.capt map(m[1],1) end, where the last argument identifies the
mapping to be applied tom[1]. The way it is carried out is somewhat tricky, but the effect in not
dissimilar to lua load - save the code as string in a TeX macro, and expand this macro at the
appropriate place. As \directlua does not take into account the current catcode of @ we just avoid
this character in macro names (which explains the internal group, too).

6318 \begingroup

6319 \catcode \~=12

6320 \catcode \%=12

6321 \catcode \&=14

6322 \catcode\ =12

6323 \gdef\babelprehyphenation{&%

6324 \@ifnextchar[{\bbl@settransform{0}}{\bbl@settransform{0}[]}}
6325 \gdef\babelposthyphenation{&%s

6326 \@ifnextchar[{\bbl@settransform{1}}{\bbl@settransform{1}[1}}
6327 %

6328 \gdef\bbl@settransform#1[#2]#3#4#5{&%

6329 \ifcase#l

6330 \bbl@activateprehyphen

131

6331 \or

6332 \bbl@activateposthyphen

6333 \fi

6334 \begingroup

6335 \def\babeltempa{\bbl@add@list\babeltempb}&%

6336 \let\babeltempb\@empty

6337 \def\bbl@tempa{#5}&%

6338 \bbl@replace\bbl@tempa{,}{ ,}&% TODO. Ugly trick to preserve {}
6339 \expandafter\bbl@foreach\expandafter{\bbl@tempa}{&%

6340 \bbl@ifsamestring{##1}{remove}&%

6341 {\bbl@add@list\babeltempb{nil}}&%

6342 {\directlua{

6343 local rep = [=[##1]=]

6344 local three args = '%s*=%s*([%-%d%.%a{}|]+)%s+([%-%d%.%a{}|]+)%s+([%-%d%.%a{}|]1+)"
6345 &5 Numeric passes directly: kern, penalty...

6346 rep = rep:gsub('"%s*(remove)%s*$', 'remove = true')

6347 rep = rep:gsub('"%s*(insert)%s*,', 'insert = true, ')

6348 rep = rep:gsub('"%s*(after)%s*,', 'after = true, ')

6349 rep = rep:gsub('(string)%s*=%s*(["%s,]1*)', Babel.capture func)
6350 rep = rep:gsub('node%s*=%s*(%a+)%s*(%a*)', Babel.capture node)
6351 rep = rep:gsub('(norule)' .. three args,

6352 ‘norule = {' .. '%2, %3, %4' .. '}")

6353 if #1 == 0 or #1 == 2 then

6354 rep = rep:gsub('(space)' .. three args,

6355 'space = {' .. '%2, %3, %4' .. '}")

6356 rep = rep:gsub('(spacefactor)' .. three args,

6357 'spacefactor = {' .. '%2, %3, %4' .. '}")

6358 rep = rep:gsub('(kashida)%s*=%s*(["%s,]*)"', Babel.capture kashida)
6359 &% Transform values

6360 rep, n = rep:gsub('{([%a%-%.1+)|([%a% %.]+)}"',

6361 function(v,d)

6362 return string.format (

6363 "{\the\csname bbl@id@@#3\endcsname, "%s",%s}",

6364 v,

6365 load('return Babel.locale props'..

6366 '[\the\csname bbl@id@@#3\endcsname].' .. d)())
6367 end)

6368 rep, n = rep:gsub('{([%a%-%.1+) | ([%-%d%.1+)}",

6369 "{\the\csname bbl@id@@#3\endcsname, "%1",%2}")

6370 end

6371 if #1 == 1 then

6372 rep = rep:gsub('(no)%s*=%s*(["%s,]*)', Babel.capture func)
6373 rep = rep:gsub("(pre)%s*=%s*(["%s,]1*)"', Babel.capture func)
6374 rep = rep:gsub('(post)%s*=%s*(["%s,]1*)', Babel.capture func)
6375 end

6376 tex.print([[\string\babeltempa{{]l] .. rep .. [[}}1])

6377 }1318%

6378 \bbl@foreach\babeltempb{&%

6379 \bbl@forkv{{##1}}{&%

6380 \in@{,####1,}{,nil,step,data, remove,insert,string,no,pre,no,&%

6381 post,penalty, kashida, space,spacefactor,kern,node,after,norule, }&%
6382 \ifin@\else

6383 \bbl@error{bad-transform-option}{####1}{}{}&%

6384 \fi}}&%

6385 \let\bbl@kv@attribute\relax

6386 \let\bbl@kv@label\relax

6387 \let\bbl@kv@fonts\@empty

6388 \let\bbl@kv@prepend\relax

6389 \bbl@forkv{#2}{\bbl@csarg\edef{kva##1} {##2}}&%

6390 \ifx\bbl@kv@fonts\@empty\else\bbl@settransfont\fi

6391 \ifx\bbl@kv@attribute\relax

6392 \ifx\bbl@kv@label\relax\else

6393 \bbl@exp{\\\bbl@trim@def\\\bbl@kv@fonts{\bbl@kv@fonts}}&%

132

6394 \bbl@replace\bbl@kv@fonts{ }{,}&%

6395 \edef\bbl@kv@attribute{bbl@ATR@\bbl@kv@label @#3@\bbl@kv@fonts}&%
6396 \count@\z@

6397 \def\bbl@e L t##1##2##3{&%

6398 \bbl@ifsamestring{#3,\bbl@kv@label} {##1,##2}&%

6399 {\bbl@ifsamestring{\bbl@kv@fonts} {##3}&%

6400 {\count@\@ne}&%

6401 {\bbl@error{font-conflict-transforms}{}{}{}}}&%
6402 {}}&%

6403 \bbl@transfont@list

6404 \ifnum\count@=\z@

6405 \bbl@exp{\global\\\bbl@add\\\bbl@transfont@list

6406 {\\\bbl@elt{#3}{\bbl@kv@label}{\bbl@kv@fonts}}}&%
6407 \fi

6408 \bbl@ifunset{\bbl@kv@attribute}&%s

6409 {\global\bbl@carg\newattribute{\bbl@kv@attribute}}&%
6410 {}&%

6411 \global\bbl@carg\setattribute{\bbl@kv@attribute}\@ne

6412 \fi

6413 \else

6414 \edef\bbl@kv@attribute{\expandafter\bbl@stripslash\bbl@kv@attribute}&%s
6415 \fi

6416 \directlua{

6417 local lbkr = Babel.linebreaking.replacements[#1]

6418 local u = unicode.utf8

6419 local id, attr, label

6420 if #1 == 0 then

6421 id = \the\csname bbl@id@e@#3\endcsname\space

6422 else

6423 id = \the\csname 1@#3\endcsname\space

6424 end

6425 \ifx\bbl@ekv@attribute\relax

6426 attr = -1

6427 \else

6428 attr = luatexbase.registernumber'\bbl@kv@attribute'

6429 \fi

6430 \ifx\bbl@kv@label\relax\else &% Same refs:

6431 label = [==[\bbl@kv@label]==

6432 \fi

6433 &%s Convert pattern:

6434 local patt = string.gsub([==[#4]==], '%s', '')

6435 if #1 == 0 then

6436 patt = string.gsub(patt, '[', ' ')

6437 end

6438 if not u.find(patt, '()', nil, true) then

6439 patt = '()' .. patt .. '()'

6440 end

6441 patt = string.gsub(patt, '%(%)%"', '~()')

6442 patt = string.gsub(patt, '%$%(%)', '()$')

6443 patt = u.gsub(patt, '{(.)}"',

6444 function (n)

6445 return '%' .. (tonumber(n) and (tonumber(n)+1l) or n)
6446 end)

6447 patt = u.gsub(patt, '{(%x%x%x%x+)}',

6448 function (n)

6449 return u.gsub(u.char(tonumber(n, 16)), '(%p)', '%%%1l')
6450 end)

6451 lbkr[id] = lbkr[id] or {}

6452 table.insert(lbkr[id], \ifx\bbl@kv@prepend\relax\else 1,\fi
6453 { label=label, attr=attr, pattern=patt, replace={\babeltempb} })
6454 }8%

6455 \endgroup}
6456 \endgroup

133

6457 %

6458 \let\bbl@transfont@list\@empty

6459 \def\bbl@settransfont{%

6460 \global\let\bbl@settransfont\relax % Execute only once
6461 \gdef\bbl@transfont{%

6462 \def\bbl@e U t#### Li###2####3{%

6463 \bbl@ifblank{####3}%

6464 {\count@\tw@}% Do nothing if no fonts

6465 {\count@\z@

6466 \bbl@vforeach{####3}{%

6467 \def\bbl@tempd {########1}%

6468 \edef\bbl@tempe{\bbl@transfam/\f@series/\f@shape}%
6469 \ifx\bbl@tempd\bbl@tempe

6470 \count@\@ne

6471 \else\ifx\bbl@tempd\bbl@transfam

6472 \count@\@ne

6473 \fi\fi}%

6474 \ifcase\count@

6475 \bbl@csarg\unsetattribute{ ATR####20#### 1QH####3}%
6476 \or

6477 \bbl@csarg\setattribute{ATR@####2Q####10####3}\@ne
6478 \fi}}%

6479 \bbl@transfont@list}%

6480 \AddToHook{selectfont}{\bbl@transfont}% Hooks are global.
6481 \gdef\bbl@transfam{-unknown-}%

6482 \bbl@foreach\bbl@font@fams{%

6483 \AddToHook{##1family}{\def\bbl@transfam{##1}}%

6484 \bbl@ifsamestring{\@nameuse{##ldefault}}\familydefault

6485 {\xdef\bbl@transfam{##1}}%
6486 {11}
6487 %

6488 \DeclareRobustCommand\enablelocaletransform[1]{%

6489 \bbl@ifunset{bbl@ATR@#1@\languagename @}%

6490 {\bbleerror{transform-not-available}{#1}{}{}}%

6491 {\bbl@csarg\setattribute{ATR@#1@\languagename @}\@ne}}
6492 \DeclareRobustCommand\disablelocaletransform[1]{%

6493 \bbl@ifunset{bbl@ATR@#1@\languagename @}%

6494 {\bbleerror{transform-not-available-b}{#1}{}{}}%

6495 {\bbl@csarg\unsetattribute{ATR@#1@\languagename @}}}

The following two macros load the Lua code for transforms, but only once. The only difference is in
add after and add before.

6496 \def\bbl@activateposthyphen{%

6497 \let\bbl@Eactivateposthyphen\relax
6498 \ifx\bblEattr@hboxed\@undefined
6499 \newattribute\bbl@attr@hboxed

6500 \fi
6501 \directlua{
6502 require('babel-transforms.lua')

6503 Babel.linebreaking.add after(Babel.post hyphenate replace)
6504 }}

6505 \def\bbl@activateprehyphen{%

6506 \let\bbl@activateprehyphen\relax

6507 \ifx\bbl@attr@hboxed\@undefined

6508 \newattribute\bbl@attr@hboxed

6509 \fi
6510 \directlua{
6511 require('babel-transforms.lua')

6512 Babel.linebreaking.add before(Babel.pre hyphenate replace)

6513 }}

6514 \newcommand\SetTransformValue[3]{%

6515 \directlua{

6516 Babel.locale props[\the\csname bbl@id@@#1l\endcsname].vars["#2"] = #3

134

6517 }}

The code in babel-transforms. lua prints at some points the current string being transformed.
This macro first make sure this file is loaded. Then, activates temporarily this feature and typeset
inside a box the text in the argument.

6518 \newcommand\ShowBabelTransforms[1]{%
6519 \bbl@activateprehyphen

6520 \bbl@activateposthyphen

6521 \begingroup

6522 \directlua{ Babel.show transforms = true }%
6523 \setbox\z@\vbox{#1}%
6524 \directlua{ Babel.show transforms = false }%

6525 \endgroup}

The following experimental (and unfinished) macro applies the prehyphenation transforms for the
current locale to a string (characters and spaces) and processes it in a fully expandable way (among
other limitations, the string can’t contain]==1). The way it operates is admittedly rather
cumbersome: it converts the string to a node list, processes it, and converts it back to a string. The lua
code is in the lua file below.

6526 \newcommand\localeprehyphenation[1]{%
6527 \directlua{ Babel.string prehyphenation([==[#1]==], \the\localeid) }}

10.11Bidi

As a first step, add a handler for bidi and digits (and potentially other processes) just before
luaoftload is applied, which is loaded by default by BIgX. Just in case, consider the possibility it has
not been loaded.

6528 \def\bbl@activate@preotf{%
6529 \let\bbl@activate@preotf\relax % only once
6530 \directlua{

6531 function Babel.pre otfload v(head)

6532 if Babel.numbers and Babel.digits mapped then
6533 head = Babel.numbers(head)

6534 end

6535 if Babel.bidi enabled then

6536 head = Babel.bidi(head, false, dir)

6537 end

6538 return head

6539 end

6540 %

6541 function Babel.pre otfload h(head, gc, sz, pt, dir)
6542 if Babel.numbers and Babel.digits mapped then
6543 head = Babel.numbers(head)

6544 end

6545 if Babel.bidi enabled then

6546 head = Babel.bidi(head, false, dir)

6547 end

6548 return head

6549 end

6550 %

6551 luatexbase.add to callback('pre linebreak filter',
6552 Babel.pre otfload v,

6553 'Babel.pre otfload v',

6554 Babel.priority in callback('pre linebreak filter',
6555 'luaotfload.node processor') or nil)

6556 %

6557 luatexbase.add to callback('hpack filter',

6558 Babel.pre otfload h,

6559 'Babel.pre otfload h',

6560 Babel.priority in callback('hpack filter',
6561 'luaotfload.node processor') or nil)

6562 }}

135

The basic setup. The output is modified at a very low level to set the \bodydir to the \pagedir.
Sadly, we have to deal with boxes in math with basic, so the \bbl@mathboxdir hack is activated every
math with the package option bidi=. The hack for the PUA is no longer necessary with basic (24.8),
but it’s kept in basic-r.

6563 \breakafterdirmode=1

6564 \1fnum\bbl@bidimode>\@ne % Any bidi= except default (=1)
6565 \let\bbl@beforeforeign\leavevmode

6566 \AtEndOfPackage{\EnableBabelHook{babel-bidi}}

6567 \RequirePackage{luatexbase}

6568 \bbl@activate@preotf

6569 \directlua{

6570 require('babel-data-bidi.lua')

6571 \ifcase\expandafter\@gobbletwo\the\bbl@bidimode\or

6572 require('babel-bidi-basic.lua')

6573 \or

6574 require('babel-bidi-basic-r.lua')

6575 table.insert(Babel.ranges, {0xE000, OxF8FF, 'on'})

6576 table.insert(Babel.ranges, {0xF0000, OxFFFFD, 'on'})
6577 table.insert(Babel.ranges, {0x100000, 0x10FFFD, 'on'})
6578 \fi}

6579 \newattribute\bbl@attr@dir

6580 \directlua{ Babel.attr dir = luatexbase.registernumber'bbl@attr@dir' }
6581 \bbl@exp{\output{\bodydir\pagedir\the\output}}

6582 \f1i

6583 %

6584 \chardef\bbl@thetextdir\z@

6585 \chardef\bbl@thepardir\z@

6586 \def\bbl@setluadir#1#2{% 1=\text/pardirection 2=01/1r/2al:
6587 \ifcase#2\relax

6588 \ifcase#l\else#1=\z@\fi

6589 \else

6590 \ifcase#l#1=\@ne\fi

6591 \fi}

\bbl@attr@dir stores the directions with a mask: . .00PPTT, with masks 0xC (PP is the par dir) and
0x3 (TT is the text dir). These macro names are shared by the 3 engines, with different definitions.

6592 \def\bbl@thedir{0}

6593 \def\bbl@textdir#1{%

6594 \bbl@setluadir\textdirection{#1}%

6595 \chardef\bbl@thetextdir#l\relax

6596 \edef\bbl@thedir{\the\numexpr\bbl@thepardir*4+#1}%

6597 \setattribute\bbl@attr@dir{\numexpr\bbl@thepardir*4+#1}}
6598 \def\bbl@pardir#1{% Used twice

6599 \bbl@setluadir\pardirection{#1}%

6600 \chardef\bbl@thepardir#l\relax}

6601 \def\bbl@bodydir{\bbl@setluadir\bodydirection}% Used once
6602 \def\bbl@dirparastext{\pardirection=\textdirection\relax}% Used once

RTL text inside math needs special attention. It affects not only to actual math stuff, but also to
‘tabular?, which is based on a fake math.

6603 \ifnum\bbl@bidimode>\z@ % Any bidi=

6604 \def\bbl@insidemath{0}%

6605 \def\bbl@everymath{\def\bbl@insidemath{1}}

6606 \def\bbl@everydisplay{\def\bbl@insidemath{2}}

6607 \frozen@everymath\expandafter{%

6608 \expandafter\bbl@everymath\the\frozen@everymath}

6609 \frozen@everydisplay\expandafter{%

6610 \expandafter\bbl@everydisplay\the\frozen@everydisplay}
6611 \AtBeginDocument{

6612 \directlua{

6613 function Babel.math box dir(head)

6614 if not (token.get macro('bbl@insidemath') == '0') then
6615 if Babel.hlist has bidi(head) then

136

6616 local d = node.new(node.id'dir")

6617 d.dir = '+TRT'

6618 for item in node.traverse(head) do

6619 if item.id == 11 or item.id == node.id'glyph' then
6620 head = node.insert before(head, item, d)

6621 break

6622 end

6623 end

6624 local inmath = false

6625 for item in node.traverse(head) do

6626 if item.id == 11 then

6627 inmath = (item.subtype == 0)

6628 elseif not inmath then

6629 node.set attribute(item,

6630 Babel.attr dir, token.get macro('bbl@thedir'))

6631 end

6632 end

6633 end

6634 end

6635 return head

6636 end

6637 luatexbase.add to callback("hpack filter", Babel.math box dir,
6638 "Babel.math_box_dir", 0)

6639 if Babel.unset atdir then

6640 luatexbase.add to callback("pre linebreak filter", Babel.unset atdir,
6641 "Babel.unset_atdir")

6642 luatexbase.add to callback("hpack filter", Babel.unset atdir,
6643 "Babel.unset atdir")

6644 end

6645 }1}%

6646 \f1

Experimental. Tentative name.

6647 \DeclareRobustCommand\localebox[1]{%
6648 {\def\bbl@insidemath{0}%
6649 \mbox{\foreignlanguage{\languagename}{#1}}}}

10.12Layout

Unlike xetex, luatex requires only minimal changes for right-to-left layouts, particularly in
monolingual documents (the engine itself reverses boxes — including column order or headings —,
margins, etc.) with bidi=basic, without having to patch almost any macro where text direction is
relevant.

Still, there are three areas deserving special attention, namely, tabular, math, and graphics, text
and intrinsically left-to-right elements are intermingled. 've made some progress in graphics, but
they’re essentially hacks; I’ve also made some progress in ‘tabular‘, but when I decided to tackle
math (both standard math and ‘amsmath‘) the nightmare began. I'm still not sure how ‘amsmath*
should be modified, but the main problem is that, boxes are “generic” containers that can hold text,
math, and graphics (even at the same time; remember that inline math is included in the list of text
nodes marked with ’'math’ (11) nodes too).

\@hangfrom is useful in many contexts and it is redefined always with the layout option.

There are, however, a number of issues when the text direction is not the same as the box direction
(as set by \bodydir), and when \parbox and \hangindent are involved. Fortunately, latest releases
of luatex simplify a lot the solution with \shapemode.

With the issue #15 I realized commands are best patched, instead of redefined. With a few lines, a
modification could be applied to several classes and packages. Now, tabular seems to work (at least
in simple cases) with array, tabularx, hhline, colortbl, longtable, booktabs, etc. However, dcolumn still
fails.

6650 \bbl@trace{Redefinitions for bidi layout}
6651 %

6652 ((x*More package options)) =

6653 \chardef\bbl@egnpos\z@

6654 \DeclareOption{leqno}{\chardef\bbl@eqnpos\@ne}

137

6655 \DeclareOption{fleqgn}{\chardef\bbl@egnpos\tw@}
6656 ((/More package options))

6657 %

6658 \1fnum\bbl@bidimode>\z@ % Any bidi=

6659 \matheqdirmode\@ne % A luatex primitive
6660 \mathemptydisplaymode\@ne % Another

6661 \let\bbl@egnodir\relax

6662 \def\bbl@eqdel{()}

6663 \def\bbl@egnum{%

6664 {\normalfont\normalcolor

6665 \expandafter\@firstoftwo\bbl@eqdel
6666 \theequation

6667 \expandafter\@secondoftwo\bbl@eqdel}}

6668 \def\bbl@puteqno#1{\eqno\hbox{#1}}
6669 \def\bbl@putlegno#1{\leqgno\hbox{#1}}
6670 \def\bbl@eqno@flip#1{%

6671 \ifdim\predisplaysize=-\maxdimen

6672 \egno

6673 \hb@xt@.01pt{%

6674 \hb@xt@\displaywidth{\hss{#1\glet\bbl@upset\@currentlabel}}\hss}%
6675 \else

6676 \legno\hbox{#1\glet\bbl@upset\@currentlabel}%

6677 \fi

6678 \bbl@exp{\def\\\@currentlabel{\ [bbl@upset]}}}
6679 \def\bbl@legno@flip#1{%

6680 \ifdim\predisplaysize=-\maxdimen

6681 \legno

6682 \hb@xt@.01pt{%

6683 \hss\hb@xt@\displaywidth{{#1\glet\bbl@upset\@currentlabel}\hss}}%
6684 \else

6685 \egno\hbox{#1\glet\bbl@upset\@currentlabel}%

6686 \fi

6687 \bbl@exp{\def\\\@currentlabel{\ [bbl@upset]}}}

6688 %

6689 \AtBeginDocument{%

6690 \ifx\bbl@noamsmath\relax\else

6691 \ifx\maketag@e@\@undefined % Normal equation, egnarray

6692 \AddToHook{env/equation/begin}{%

6693 \ifnum\bbl@thetextdir>\z@

6694 \def\bbl@mathboxdir{\def\bbl@insidemath{1}}%

6695 \let\@egnnum\bbl@egnum

6696 \edef\bbl@eqgnodir{\noexpand\bbl@textdir{\the\bbl@thetextdir}}%
6697 \chardef\bbl@thetextdir\z@

6698 \bbl@add\normalfont{\bbl@eqnodir}%

6699 \ifcase\bbl@eqgnpos

6700 \let\bbl@putegno\bbl@eqgno@flip

6701 \or

6702 \let\bbl@putegno\bbl@legno@flip

6703 \fi

6704 \fi}%

6705 \ifnum\bbl@egnpos=\tw@\else

6706 \def\endequation{\bbl@putegno{\@eqgnnum}$$\@ignoretrue}%s

6707 \fi

6708 \AddToHook{env/eqnarray/begin}{%

6709 \ifnum\bbl@thetextdir>\z@

6710 \def\bbl@mathboxdir{\def\bbl@insidemath{1}}%

6711 \edef\bbl@eqgnodir{\noexpand\bbl@textdir{\the\bbl@thetextdir}}%
6712 \chardef\bbl@thetextdir\z@

6713 \bbl@add\normalfont{\bbl@eqnodir}%

6714 \ifnum\bbl@egnpos=\@ne

6715 \def\@egnnum{%

6716 \setbox\z@\hbox{\bbl@egnum}%

6717 \hbox t00.01lpt{\hss\hbox to\displaywidth{\box\z@\hss}}}%

138

6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780

\else
\let\@egnnum\bbl@egnum
\fi
\fi}
% Hack for wrong vertical spacing with \[\]. YA luatex bug?:
\expandafter\bbl@sreplace\csname] \endcsname{$$}{\egno\kern.001pt$$}%
\expandafter\bbl@sreplace\csname] \endcsname
{\dollardollar@end}{\eqno\kern.001pt\dollardollar@end}%
\else % amstex
\bbl@exp{% Hack to hide maybe undefined conditionals:
\chardef\bbl@eqnpos=0%
\<iftagsleft@1\<else>\<if@flegn>2\<fi>\<fi>\relax}%
\ifnum\bbl@egnpos=\@ne
\let\bbl@ams@lap\hbox
\else
\let\bbl@ams@lap\1llap
\fi
\ExplSyntax0On % Required by \bbl@sreplace with \intertext@
\bbl@sreplace\intertext@{\normalbaselines}%
{\normalbaselines
\ifx\bbl@egnodir\relax\else\bbl@pardir\@ne\bbl@egnodir\fi}%
\ExplSyntax0ff
\def\bbl@ams@tagbox#1#2{#1{\bbl@eqgnodir#2}}% #l=hbox|@lap|flip
\ifx\bbl@ams@lap\hbox % legno
\def\bbl@ams@flip#1{%
\hbox to 0.01pt{\hss\hbox to\displaywidth{{#1}\hss}}}%
\else % egno
\def\bbl@ams@flip#1{%
\hbox to 0.01lpt{\hbox to\displaywidth{\hss{#1}}\hss}}%
\fi
\def\bbl@ams@preset#1{%
\def\bbl@mathboxdir{\def\bbl@insidemath{1}}%
\ifnum\bbl@thetextdir>\z@
\edef\bbl@egnodir{\noexpand\bbl@textdir{\the\bbl@thetextdir}}%
\bbl@sreplace\textdef@{\hbox}{\bbl@ams@tagbox\hbox}%
\bbl@sreplace\maketag@a@{\hbox}{\bbl@ams@tagbox#1}%
\fi}%
\ifnum\bbl@egnpos=\tw@\else
\def\bbl@ams@equation{%
\def\bbl@mathboxdir{\def\bbl@insidemath{1}}%
\ifnum\bbl@thetextdir>\z@
\edef\bbl@egnodir{\noexpand\bbl@textdir{\the\bbl@thetextdir}}%
\chardef\bbl@thetextdir\z@
\bbl@add\normalfont{\bbl@eqnodir}%
\ifcase\bbl@eqgnpos
\def\veqno##1##2{\bbl@eqno@f lip{##1##2}}%
\or
\def\veqno##1##2{\bbl@leqno@f lip{##1##2}}%
\fi
\fi}%
\AddToHook{env/equation/begin}{\bbl@ams@equation}%
\AddToHook{env/equation*/begin}{\bbl@ams@equation}%
\fi
\AddToHook{env/cases/begin}{\bbl@ams@preset\bbl@ams@lap}%
\AddToHook{env/multline/begin}{\bbl@ams@preset\hbox}%
\AddToHook{env/gather/begin}{\bbl@ams@preset\bbl@ams@lap}%
\AddToHook{env/gather*/begin}{\bbl@ams@preset\bbleams@lap}%
\AddToHook{env/align/begin}{\bbl@ams@preset\bbl@ams@lap}s%
\AddToHook{env/align*/begin}{\bbl@ams@preset\bbl@ams@lap}%
\AddToHook{env/alignat/begin}{\bbl@ams@preset\bblEams@lap}%
\AddToHook{env/alignat*/begin}{\bbl@ams@preset\bbl@ams@lap}%
\AddToHook{env/eqnalign/begin}{\bbl@ams@preset\hbox}%
% Hackish, for proper alignment. Don’t ask me why it works!:

139

6781 \bbl@exp{% Avoid a 'visible' conditional

6782 \\\AddToHook{env/align*/end}{\<iftag@>\<else>\\\tag*{}\<fi>}%
6783 \\\AddToHook{env/alignat*/end}{\<iftag@>\<else>\\\tag*{}\<fi>}}%
6784 \AddToHook{env/flalign/begin}{\bbl@ams@preset\hbox}%

6785 \AddToHook{env/split/before}{%

6786 \def\bbl@mathboxdir{\def\bbl@insidemath{1}}%

6787 \ifnum\bbl@thetextdir>\z@

6788 \bbl@ifsamestring\@currenvir{equation}%

6789 {\ifx\bbl@ams@lap\hbox % legno

6790 \def\bbl@ams@flip#1{%

6791 \hbox to 0.0lpt{\hbox to\displaywidth{{#1}\hss}\hss}}%
6792 \else

6793 \def\bbl@ams@flip#1{%

6794 \hbox to 0.01pt{\hss\hbox to\displaywidth{\hss{#1}}}}%
6795 \fi}%

6796 {}%

6797 \fi}%

6798 \fi\fi}

6799 \ fi

Declarations specific to lua, called by \babelprovide.

6800 \def\bbl@provide@extra#l{%

6801 % == onchar ==

6802 \ifx\bbl@KVP@onchar\@nnil\else
6803 \bbl@luahyphenate

6804 \bbl@exp{%

6805 \\\AddToHook{env/document/before}{%

6806 {\let\\\bbl@ifrestoring\\\@firstoftwo

6807 \\\select@language{#1}{}}}}%

6808 \directlua{

6809 if Babel.locale mapped == nil then

6810 Babel.locale mapped = true

6811 Babel.linebreaking.add before(Babel.locale map, 1)

6812 Babel.loc to scr = {}

6813 Babel.chr to loc = Babel.chr _to loc or {}

6814 end

6815 Babel.locale props[\the\localeid].letters = false

6816 1%

6817 \bbl@xin@{ letters }{ \bbl@KVP@onchar\space}%

6818 \ifin@

6819 \directlua{

6820 Babel.locale props[\the\localeid].letters = true

6821 1%

6822 \fi

6823 \bbl@xin@{ ids }{ \bbl@KVP@onchar\space}%

6824 \ifin@

6825 \ifx\bbl@starthyphens\@undefined % Needed if no explicit selection

6826 \AddBabelHook{babel-onchar}{beforestart}{{\bbl@starthyphens}}%

6827 \fi

6828 \bbl@exp{\\\bbl@add\\\bbl@starthyphens

6829 {\\\bbl@patterns@lua{\languagename}}}%

6830 \directlua{

6831 if Babel.script blocks['\bbl@cl{sbcp}'] then

6832 Babel.loc to scr[\the\localeid] = Babel.script blocks['\bbl@cl{sbcp}']
6833 Babel.locale props[\the\localeid].lg = \the\@nameuse{l@\languagename}\space
6834 end

6835 1%

6836 \fi

6837 \bbl@xin@{ fonts }{ \bbl@KVP@onchar\space}%

6838 \ifin@

6839 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%
6840 \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%
6841 \directlua{

140

6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904

if Babel.script blocks['\bbl@cl{shbcp}'] then
Babel.loc to scr[\the\localeid] =
Babel.script blocks['\bbl@cl{sbcp}']
end}%
\ifx\bbl@mapselect\@undefined
\AtBeginDocument{%
\bbl@patchfont{{\bbl@mapselect}}%
{\selectfont}}%
\def\bbl@mapselect{%
\let\bbl@mapselect\relax
\edef\bbl@prefontid{\fontid\font}}%
\def\bbl@mapdir##1{%
\begingroup
\setbox\z@\hbox{% Force text mode
\def\languagename{##1}%
\let\bbl@ifrestoring\@firstoftwo % To avoid font warning
\bbl@switchfont
\ifnum\fontid\font>\z@ % A hack, for the pgf nullfont hack
\directlua{
Babel.locale props[\the\csname bbl@id@e##1\endcsname]%
['/\bbl@prefontid'] = \fontid\font\space}%
\fi}%
\endgroup}%
\fi
\bbl@exp{\\\bbl@add\\\bbl@mapselect{\\\bbl@mapdir{\languagename}}}%
\fi
\fi
% == mapfont ==
% For bidi texts, to switch the font based on direction. Deprecated
\ifx\bbl@KVP@mapfont\@nnil\else
\bbl@ifsamestring{\bbl@KVP@mapfont}{direction}{}%
{\bbl@error{unknown-mapfont}{}{}{}}%
\bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%
\bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%
\ifx\bbl@mapselect\@undefined
\AtBeginDocument{%
\bbl@patchfont{{\bbl@mapselect}}%
{\selectfont}}%
\def\bbl@mapselect{%
\let\bbl@mapselect\relax
\edef\bbl@prefontid{\fontid\font}}%
\def\bbl@mapdir##1{%
{\def\languagename{##1}%
\let\bbl@ifrestoring\@firstoftwo % avoid font warning
\bbl@switchfont
\directlua{Babel. fontmap
[\the\csname bblewdir@##1\endcsname]%
[\bbl@prefontid]=\fontid\font}}}%
\fi
\bbl@exp{\\\bbl@add\\\bbl@mapselect{\\\bbl@mapdir{\languagename}}}%
\fi
% == Line breaking: CJK quotes ==
\ifcase\bbl@engine\or
\bbl@xin@{/c}{/\bbl@cl{lnbrk}}%
\ifin@
\bbl@ifunset{bbl@quote@\languagename}{}%
{\directlua{
Babel.locale props[\the\localeid].cjk quotes = {}
local c¢s = 'op'
for ¢ in string.utfvalues(%
[[\csname bbl@quote@\languagename\endcsname]]l) do
if Babel.cjk characters[c].c == 'qu' then
Babel.locale props[\the\localeid].cjk quotes[c] = cs

141

6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967

end
cs = (cs == "'op') and 'cl' or 'op'
end

I}

\fi
% == Counters: mapdigits ==
% Native digits
\ifx\bbl@KVP@mapdigits\@nnil\else
\bbl@ifunset{bbl@dgnat@\languagename}{}%
{\bbl@activate@preotf
\directlua{
Babel.digits mapped = true
Babel.digits = Babel.digits or {}
Babel.digits[\the\localeid] =
table.pack(string.utfvalue('\bbl@cl{dgnat}'))
if not Babel.numbers then
function Babel.numbers (head)
local LOCALE = Babel.attr locale
local GLYPH = node.id'glyph'
local inmath = false
for item in node.traverse(head) do
if not inmath and item.id == GLYPH then
local temp = node.get attribute(item, LOCALE)
if Babel.digits[temp] then
local chr = item.char
if chr > 47 and chr < 58 then
item.char = Babel.digits[temp][chr-47]

end
end
elseif item.id == node.id'math' then
inmath = (item.subtype == 0)
end
end
return head
end
end
1%
\fi
% == transforms ==

\ifx\bbl@KVP@transforms\@nnil\else
\def\bbl@elt##1##2##3{%
\in@{$transforms.}{$##1}%
\ifin@
\def\bbl@tempa{##1}%
\bbl@replace\bbl@tempa{transforms.}{}%
\bbl@carg\bbl@transforms{babel\bbl@tempa} {##2} {##3}%
\fi}%
\bblEexp{%
\\\bbl@ifblank{\bbl@cl{dgnat}}%
{\let\\\bbl@tempa\relax}%
{\def\\\bbl@tempa{%
\\\bbl@elt{transforms.prehyphenation}%
{digits.native.1.0}{([0-9])}%
\\\bbl@elt{transforms.prehyphenation}%
{digits.native.l.1}{string={1\string|0123456789\string|\bbl@cl{dgnat}}}}}}%
\ifx\bbl@tempa\relax\else
\toks@\expandafter\expandafter\expandafter{%s
\csname bbl@inidata@\languagename\endcsname}%
\bbl@csarg\edef{inidata@\languagename}{%
\unexpanded\expandafter{\bbl@tempa}%
\the\toks@}%
\fi

142

6968 \csname bbl@inidata@\languagename\endcsname
6969 \bbl@release@transforms\relax % \relax closes the last item.
6970 \fi}

Start tabular here:

6971 \def\localerestoredirs{%
6972 \ifcase\bbl@thetextdir

6973 \ifnum\textdirection=\z@\else\textdirection=\z@\fi

6974 \else

6975 \ifnum\textdirection=\@ne\else\textdirection=\@ne\fi

6976 \fi

6977 \ifcase\bbl@thepardir

6978 \ifnum\pardirection=\z@\else\pardirection=\z@\bodydirection=\z@\fi
6979 \else

6980 \ifnum\pardirection=\@ne\else\pardirection=\@ne\bodydirection=\@ne\fi
6981 \fi}

6982 %

6983 \IfBabelLayout{tabular}%

6984 {\chardef\bbl@tabular@mode\tw@}% All RTL

6985 {\IfBabellLayout{notabular}%

6986 {\chardef\bbl@tabular@mode\z@}%

6987 {\chardef\bbl@tabular@mode\@ne}}% Mixed, with LTR cols
6988 %

6989 \1fnum\bbl@bidimode>\@ne % Any lua bidi= except default=1
6990 % Redefine: vrules mess up dirs (why?).

6991 \AtBeginDocument{\def\@arstrut{\relax\copy\@arstrutbox}}%
6992 \ifcase\bbl@tabular@mode\or % 1 = Mixed - default

6993 \let\bbl@parabefore\relax

6994 \AddToHook{para/before}{\bbl@parabefore}

6995 \AtBeginDocument{%

6996 \bbl@replace\@tabular{$}{$%

6997 \def\bbl@insidemath{0}%

6998 \def\bbl@parabefore{\localerestoredirs}}%

6999 \ifnum\bbl@tabular@mode=\@ne

7000 \bbl@ifunset{@tabclassz}{}{%

7001 \bbl@exp{% Hide conditionals

7002 \\\bbl@sreplace\\\@tabclassz

7003 {\<ifcase>\\\@chnum}%

7004 {\\\localerestoredirs\<ifcase>\\\@chnum}}}%

7005 \@ifpackageloaded{colortbl}%

7006 {\bbl@sreplace\@classz

7007 {\hbox\bgroup\bgroup}{\hbox\bgroup\bgroup\localerestoredirs}}%
7008 {\@ifpackageloaded{array}%

7009 {\bbl@exp{% Hide conditionals

7010 \\\bbl@sreplace\\\@classz

7011 {\<ifcase>\\\@chnum}%

7012 {\bgroup\\\localerestoredirs\<ifcase>\\\@chnum}%
7013 \\\bbl@sreplace\\\@classz

7014 {\\\do@row@strut\<fi>}{\\\do@row@strut\<fi>\egroup}}}%
7015 {}}%

7016 \fi}%

7017 \or % 2 = All RTL - tabular
7018 \let\bbl@parabefore\relax
7019 \AddToHook{para/before}{\bbl@parabefore}%

7020 \AtBeginDocument{%

7021 \@ifpackageloaded{colortbl}%

7022 {\bbl@replace\@tabular{$}{$%

7023 \def\bbl@insidemath{0}%

7024 \def\bbl@parabefore{\localerestoredirs}}%

7025 \bbl@sreplace\@classz

7026 {\hbox\bgroup\bgroup}{\hbox\bgroup\bgroup\localerestoredirs}}%
7027 {}}%

7028 \fi

143

Very likely the \output routine must be patched in a quite general way to make sure the \bodydir
is set to \pagedir. Note outside \output they can be different (and often are). For the moment, two
ad hoc changes.

7029 \AtBeginDocument{%
7030 \@ifpackageloaded{multicol}%

7031 {\toks@\expandafter{\multi@column@out}%

7032 \edef\multi@column@out{\bodydir\pagedir\the\toks@}}%

7033 {}%

7034 \@ifpackageloaded{paracol}%

7035 {\edef\pcol@output{%

7036 \bodydir\pagedir\unexpanded\expandafter{\pcol@output}}}%
7037 {}}%

7038 \ fi

Finish here if there in no layout.
7039 \ifx\bbl@opt@layout\@nnil\endinput\fi

OMEGA provided a companion to \mathdir (\nextfakemath) for those cases where we did not want
it to be applied, so that the writing direction of the main text was left unchanged. \bbl@nextfake is
an attempt to emulate it, because luatex has removed it without an alternative. Used in tabular,
\underline and \LaTeX. Also, \hangindent does not honour direction changes by default, so we
need to redefine \@hangf rom.

7040 \1fnum\bbl@bidimode>\z@ % Any bidi=
7041 \def\bbl@nextfake#1{% non-local changes, use always inside a group!
7042 \bbl@exp{%

7043 \mathdir\the\bodydir

7044 #1% Once entered in math, set boxes to restore values
7045 \def\\\bbl@insidemath{0}%

7046 \<ifmmode>%

7047 \everyvbox{%

7048 \the\everyvbox

7049 \bodydir\the\bodydir

7050 \mathdir\the\mathdir

7051 \everyhbox{\the\everyhbox}%
7052 \everyvbox{\the\everyvbox}}%
7053 \everyhbox{%

7054 \the\everyhbox

7055 \bodydir\the\bodydir

7056 \mathdir\the\mathdir

7057 \everyhbox{\the\everyhbox}%
7058 \everyvbox{\the\everyvbox}}%
7059 \<fi>}}%

7060 \IfBabelLayout{nopars}

7061 {}

7062 {\edef\bbl@opt@layout{\bbl@opt@layout.pars.}}%
7063 \IfBabelLayout{pars}

7064 {\def\@hangfrom#1{%

7065 \setbox\@tempboxa\hbox{{#1}}%

7066 \hangindent\wd\@tempboxa

7067 \ifnum\pagedirection=\pardirection\else
7068 \shapemode\@ne

7069 \fi

7070 \noindent\box\@tempboxa}}

70711 {}

7072 \ f1

7073 %

7074 \IfBabelLayout{tabular}

7075 {\let\bbl@OL@@tabular\@tabular

7076 \bbl@replace\@tabular{$}{\bbl@nextfake$}%

7077 \let\bbl@NL@@tabular\@tabular

7078 \AtBeginDocument{%

7079 \ifx\bbleNL@@tabular\@tabular\else

7080 \bbl@exp{\\\in@{\\\bbl@nextfake}{\[@tabular]}}%

144

7081 \ifin@\else

7082 \bbl@replace\@tabular{$}{\bbl@nextfake$}%
7083 \fi

7084 \let\bbl@NL@@tabular\@tabular

7085 \fi}}

7086 {}

7087 %

7088 \IfBabellLayout{lists}

7089 {\let\bbl@OL@list\list

7090 \bbl@sreplace\list{\parshape}{\bbl@listparshape}%
7091 \let\bbl@NL@list\list

7092 \def\bbl@listparshape#1#2#3{%

7093 \parshape #1 #2 #3 %

7094 \ifnum\pagedirection=\pardirection\else
7095 \shapemode\ tw@

7096 \fi}}

7097 {}

7098 %

7099 \IfBabelLayout{graphics}
7100 {\let\bbl@pictresetdir\relax
7101 \def\bbl@pictsetdir#1{%

7102 \ifcase\bbl@thetextdir

7103 \let\bbl@pictresetdir\relax

7104 \else

7105 \ifcase#1\bodydir TLT % Remember this sets the inner boxes

7106 \or\textdir TLT

7107 \else\bodydir TLT \textdir TLT

7108 \fi

7109 % \(text|par)dir required in pgf:

7110 \def\bbl@pictresetdir{\bodydir TRT\pardir TRT\textdir TRT\relax}%
7111 \fi}%

7112 \AddToHook{env/picture/begin}{\bbl@pictsetdir\tw@}%
7113 \directlua{

7114 Babel.get picture dir = true

7115 Babel.picture has bidi = 0

7116 %

7117 function Babel.picture dir (head)

7118 if not Babel.get picture dir then return head end
7119 if Babel.hlist has bidi(head) then

7120 Babel.picture_has bidi =1

7121 end

7122 return head

7123 end

7124 luatexbase.add to callback("hpack filter", Babel.picture dir,
7125 "Babel.picture dir")

7126 }%

7127 \AtBeginDocument{%

7128 \def\LS@rot{%

7129 \setbox\@outputbox\vbox{%

7130 \hbox dir TLT{\rotatebox{90}{\box\@outputbox}}}}%
7131 \long\def\put (#1,#2)#3{%

7132 \@killglue

7133 % Try:

7134 \ifx\bbl@pictresetdir\relax

7135 \def\bbl@tempc{0}%

7136 \else

7137 \directlua{

7138 Babel.get picture dir = true

7139 Babel.picture has bidi = 0

7140 }%

7141 \setbox\z@\hb@xt@\z@{%

7142 \@defaultunitsset\@tempdimc{#1}\unitlength
7143 \kern\@tempdimc

145

7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181

#3\hss}%
\edef\bbl@tempc{\directlua{tex.print(Babel.picture has bidi)}}%
\fi
% Do:
\@defaultunitsset\@tempdimc{#2}\unitlength
\raise\@tempdimc\hb@xt@\z@{%
\@defaultunitsset\@tempdimc{#1}\unitlength
\kern\@tempdimc
{\ifnum\bbl@tempc>\z@\bbl@pictresetdir\fi#3}\hss}%
\ignorespaces}%
\MakeRobust\put}%
\AtBeginDocument
{\AddToHook{cmd/diagbox@pict/before}{\let\bbl@pictsetdir\@gobble}%
\ifx\pgfpicture\@undefined\else
\AddToHook{env/pgfpicture/begin}{\bbl@pictsetdir\@ne}s
\bblEadd\pgfinterruptpicture{\bbl@pictresetdir}%
\bbl@add\pgfsys@beginpicture{\bbl@pictsetdir\z@}%
\fi
\ifx\tikzpicture\@undefined\else
\AddToHook{env/tikzpicture/begin}{\bbl@pictsetdir\tw@}%
\bbl@add\tikz@atbegin@node{\bbl@pictresetdir}%
\bbl@sreplace\tikz{\begingroup}{\begingroup\bbl@pictsetdir\tw@}%
\bbl@sreplace\tikzpicture{\begingroup}{\begingroup\bbl@pictsetdir\tw@}s
\fi
\ifx\tcolorbox\@undefined\else
\def\tcb@drawing@env@begin{%
\csname tcb@before@\tcb@split@state\endcsname
\bbl@pictsetdir\tw@
\begin{\kvtcb@graphenv}%
\tcb@bbdraw
\tcb@apply@graph@patches}%
\def\tcb@drawing@env@end{%
\end{\kvtcb@graphenv}%
\bbl@pictresetdir
\csname tcb@after@\tcb@split@state\endcsname}%
\fi
1
{}

Implicitly reverses sectioning labels in bidi=basic-1, because the full stop is not in contact with L
numbers any more. I think there must be a better way. Assumes bidi=basic, but there are some
additional readjustments for bidi=default.

7182 \IfBabelLayout{counters*}%

7183
7184
7185
7186
7187

{\bbl@add\bbl@opt@layout{.counters.}%
\directlua{
luatexbase.add to callback("process output buffer",
Babel.discard sublr , "Babel.discard sublr") }%
H

7188 \IfBabelLayout{counters}%

7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202

{\let\bbl@OL@@textsuperscript\@textsuperscript
\bbl@sreplace\@textsuperscript{\m@th}{\m@th\mathdir\pagedir}%
\let\bbl@latinarabic=\@arabic
\let\bbl@OL@@arabic\@arabic
\def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%
\@ifpackagewith{babel}{bidi=default}%

{\let\bbl@asciiroman=\@roman
\let\bbl@OL@@roman\@roman
\def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%
\let\bbl@asciiRoman=\@Roman
\let\bbl@OL@@roman\@Roman
\def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}%
\let\bbl@OL@labelenumii\labelenumii
\def\labelenumii{)\theenumii(}%

146

7203 \let\bbl@OL@p@enumiii\p@enumiii
7204 \def\p@enumiii{\p@enumii)\theenumii(}}{}}{}

Some KTEX macros use internally the math mode for text formatting. They have very little in
common and are grouped here, as a single option.

7205 \IfBabelLayout{extras}%
7206 {\bbl@ncarg\let\bbl@OL@underline{underline }%
7207 \bbl@carg\bbl@sreplace{underline }%

7208 {$\@@underline}{\bgroup\bbl@nextfake$\@@underline}%
7209 \bbl@carg\bbl@sreplace{underline }%
7210 {\m@th$}{\m@th$\egroup}s

7211 \let\bbl@0OL@LaTeXe\LaTeXe
7212 \DeclareRobustCommand{\LaTeXe}{\mbox{\m@th

7213 \if b\expandafter\@car\f@series\@nil\boldmath\fi

7214 \babelsublr{%

7215 \LaTeX\kern.15em2\bbl@nextfake$ {\textstyle\varepsilon}$}}}}
7216 {}

7217 { /luatex)

10.13Lua: transforms

After declaring the table containing the patterns with their replacements, we define some auxiliary
functions: str_to nodes converts the string returned by a function to a node list, taking the node at
base as a model (font, language, etc.); fetch word fetches a series of glyphs and discretionaries,
which patternis matched against (if there is a match, it is called again before trying other patterns,
and this is very likely the main bottleneck).

post hyphenate replace is the callback applied after lang.hyphenate. This means the automatic
hyphenation points are known. As empty captures return a byte position (as explained in the luatex
manual), we must convert it to a utf8 position. With first, the last byte can be the leading byte in a
utf8 sequence, so we just remove it and add 1 to the resulting length. With last we must take into
account the capture position points to the next character. Here word head points to the starting node
of the text to be matched.

7218 (xtransforms)
7219 Babel.linebreaking. replacements = {}

7220 Babel.linebreaking.replacements[0] = {} -- pre

7221 Babel.linebreaking.replacements[1] = {} -- post

7222

7223 function Babel.tovalue(v)

7224 if type(v) == 'table' then

7225 return Babel.locale props[v[1l]].vars[v[2]] or v[3]
7226 else

7227 return v

7228 end

7229 end

7230

7231 Babel.attr _hboxed = luatexbase.registernumber'bbl@attr@hboxed’
7232

7233 function Babel.set hboxed(head, gc)
7234 for item in node.traverse(head) do

7235 node.set attribute(item, Babel.attr hboxed, 1)
7236 end

7237 return head

7238 end

7239

7240 Babel. fetch subtext = {}

7241

7242 Babel.ignore pre char = function(node)

7243 return (node.lang == Babel.nohyphenation)
7244 end

7245

7246 Babel.show transforms = false

7247

7248 - - Merging both functions doesn't seen feasible, because there are too

147

7249 - - many differences.

7250 Babel. fetch_subtext[0] = function(head)
7251 local word string = "'

7252 local word nodes = {}

7253 local lang

7254 local item = head

7255 local inmath = false

7256
7257 while item do

7258

7259 if item.id == 11 then

7260 inmath = (item.subtype == 0)

7261 end

7262

7263 if inmath then

7264 -- pass

7265

7266 elseif item.id == 29 then

7267 local locale = node.get attribute(item, Babel.attr locale)
7268

7269 if lang == locale or lang == nil then

7270 lang = lang or locale

7271 if Babel.ignore _pre_char(item) then

7272 word string = word string .. Babel.us char

7273 else

7274 if node.has_attribute(item, Babel.attr_hboxed) then
7275 word string = word string .. Babel.us char

7276 else

7277 word string = word string .. unicode.utf8.char(item.char)
7278 end

7279 end

7280 word _nodes[#word nodes+1] = item

7281 else

7282 break

7283 end

7284

7285 elseif item.id == 12 and item.subtype == 13 then

7286 if node.has attribute(item, Babel.attr hboxed) then

7287 word string = word string .. Babel.us char

7288 else

7289 word string = word string .. '

7290 end

7291 word nodes[#word nodes+1] = item

7292

7293 -- Ignore leading unrecognized nodes, too.

7294 elseif word_string ~= '' then

7295 word string = word string .. Babel.us char

7296 word nodes[#word nodes+1] = item -- Will be ignored
7297 end

7298

7299 item = item.next

7300 end

7301

7302 -- Here and above we remove some trailing chars but not the
7303 -- corresponding nodes. But they aren't accessed.

7304 1if word string:sub(-1) == ' ' then

7305 word string = word string:sub(1l,-2)

7306 end

7307 if Babel.show transforms then texio.write nl(word string) end
7308 word string = unicode.utf8.gsub(word string, Babel.us char .. '+$', ''")
7309 return word string, word nodes, item, lang

7310 end

7311

148

7312 Babel. fetch subtext[1] = function(head)

7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374

local word_string = '
local word nodes = {}
local lang

local item = head
local inmath = false

while item do

if item.id == 11 then
inmath = (item.subtype == 0)
end

if inmath then
-- pass

elseif item.id == 29 then
if item.lang == lang or lang == nil then
lang = lang or item.lang
if node.has_attribute(item, Babel.attr_hboxed) then

word string = word string .. Babel.us char

elseif (item.char == 124) or (item.char == 61) then -- not =, not |
word_string = word_string .. Babel.us_char

else
word string = word string .. unicode.utf8.char(item.char)

end

word nodes[#word nodes+1] = item

else
break

end

elseif item.id == 7 and item.subtype == 2 then
if node.has attribute(item, Babel.attr hboxed) then

word_string = word_string .. Babel.us_char
else

word string = word string .. '='
end

word nodes[#word nodes+1] = item

elseif item.id == 7 and item.subtype == 3 then
if node.has attribute(item, Babel.attr hboxed) then

word string = word string .. Babel.us char
else

word string = word string .. '|'
end

word nodes[#word nodes+1] = item

-- (1) Go to next word if nothing was found, and (2) implicitly
-- remove leading USs.
elseif word string == '' then

-- pass

-- This is the responsible for splitting by words.
elseif (item.id == 12 and item.subtype == 13) then

break
else

word_string = word_string .. Babel.us_char

word nodes[#word nodes+1l] = item -- Will be ignored
end

item = item.next
end

149

7375 if Babel.show transforms then texio.write nl(word string) end

7376 word string = unicode.utf8.gsub(word string, Babel.us char .. '+$', '')
7377 return word string, word nodes, item, lang

7378 end

7379

7380 function Babel.pre hyphenate replace(head)
7381 Babel.hyphenate replace(head, 0)

7382 end

7383

7384 function Babel.post hyphenate replace(head)
7385 Babel.hyphenate replace(head, 1)

7386 end

7387

7388 Babel.us_char = string.char(31)

7389

7390 function Babel.hyphenate replace(head, mode)
7391 local u = unicode.utf8

7392 local lbkr = Babel.linebreaking.replacements[mode]
7393 local tovalue = Babel.tovalue

7394

7395 local word head = head

7396

7397 if Babel.show transforms then

7398 texio.write nl('\n==== Showing ' (mode == 0 and 'pre' or 'post') .. 'hyphenation ====')
7399 end

7400

7401 while true do -- for each subtext block

7402

7403 local w, w nodes, nw, lang = Babel.fetch subtext[mode](word head)
7404

7405 if Babel.debug then

7406 print()

7407 print((mode == 0) and '@EEE<' or 'GEEE>', w)

7408 end

7409

7410 if nw == nil and w == '' then break end

7411

7412 if not lang then goto next end

7413 if not lbkr[lang] then goto next end

7414

7415 -- For each saved (pre|post)hyphenation. TODO. Reconsider how
7416 -- loops are nested.

7417 for k=1, #lbkr[lang] do

7418 local p = lbkr[lang][k].pattern

7419 local r = lbkr[lang][k].replace

7420 local attr = lbkr[lang][k].attr or -1

7421

7422 if Babel.debug then

7423 print('*****' p, mode)

7424 end

7425

7426 -- This variable is set in some cases below to the first *byte*
7427 -- after the match, either as found by u.match (faster) or the
7428 -- computed position based on sc if w has changed.

7429 local last match = 0

7430 local step = 0

7431

7432 -- For every match.

7433 while true do

7434 if Babel.debug then

7435 print('=====")

7436 end

7437 local new -- used when inserting and removing nodes

150

7438 local dummy node -- used by after

7439
7440 local matches = { u.match(w, p, last match) }

7441

7442 if #matches < 2 then break end

7443

7444 -- Get and remove empty captures (with ()'s, which return a
7445 -- number with the position), and keep actual captures

7446 -- (from (...)), if any, in matches.

7447 local first = table.remove(matches, 1)

7448 local last = table.remove(matches, #matches)

7449 -- Non re-fetched substrings may contain \31, which separates
7450 -- subsubstrings.

7451 if string.find(w:sub(first, last-1), Babel.us char) then break end
7452

7453 local save last = last -- with A()BC()D, points to D

7454

7455 -- Fix offsets, from bytes to unicode. Explained above.

7456 first = u.len(w:sub(1, first-1)) + 1

7457 last = u.len(w:sub(l, last-1)) -- now last points to C

7458

7459 -- This loop stores in a small table the nodes

7460 -- corresponding to the pattern. Used by 'data' to provide a
7461 -- predictable behavior with 'insert' (w_nodes is modified on
7462 -- the fly), and also access to 'remove'd nodes.

7463 local sc = first-1 -- Used below, too

7464 local data nodes = {}

7465

7466 local enabled = true

7467 for g = 1, last-first+l do

7468 data nodes[q] = w nodes[sc+q]

7469 if enabled

7470 and attr > -1

7471 and not node.has attribute(data nodes[q], attr)

7472 then

7473 enabled = false

7474 end

7475 end

7476

7477 -- This loop traverses the matched substring and takes the
7478 -- corresponding action stored in the replacement list.

7479 -- sc = the position in substr nodes / string

7480 -- rc = the replacement table index

7481 local rc = 0

7482

7483 - ------ TODO. dummy node?

7484 while rc < last-first+l or dummy node do -- for each replacement
7485 if Babel.debug then

7486 print('..... ', rc+ 1)

7487 end

7488 sc =sc+1

7489 rc=rc+1

7490

7491 if Babel.debug then

7492 Babel.debug hyph(w, w nodes, sc, first, last, last match)
7493 local ss = "'

7494 for itt in node.traverse(head) do

7495 if itt.id == 29 then

7496 ss = sS .. unicode.utf8.char(itt.char)

7497 else

7498 ss =ss .. "{'" .. itt.id .. '}'

7499 end

7500 end

151

7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563

print(¥k ok >k >k ok ok >k ok ok okookoskoskokokokok ! , SS)

end

local crep = r[rc]

local item = w nodes[sc]

local item base = item

local placeholder = Babel.us char
local d

if crep and crep.data then
item base = data nodes[crep.data]
end

if crep then
step = crep.step or step
end

if crep and crep.after then
crep.insert = true
if dummy node then
item = dummy node
else -- TODO. if there is a node after?
d = node.copy(item base)
head, item = node.insert after(head, item, d)
dummy_node = item
end
end

if crep and not crep.after and dummy node then
node.remove(head, dummy node)
dummy node = nil

end

if not enabled then
last match = save last

goto next
elseif crep and next(crep) == nil then -- = {}
if step == 0 then
last match = save last -- Optimization
else

last match = utf8.offset(w, sc+step)
end
goto next

elseif crep == nil or crep.remove then
node.remove(head, item)
table.remove(w nodes, sc)
w = u.sub(w, 1, sc-1) .. u.sub(w, sc+l)
sc = sc - 1 -- Nothing has been inserted.
last match = utf8.offset(w, sc+l+step)
goto next

elseif crep and crep.kashida then
node.set attribute(item,
Babel.attr kashida,
crep.kashida)
last match = utf8.offset(w, sc+l+step)
goto next

elseif crep and crep.string then
local str = crep.string(matches)

152

7564 if str == '' then -- Gather with nil

7565 node.remove(head, item)

7566 table.remove(w nodes, sc)

7567 w = u.sub(w, 1, sc-1) .. u.sub(w, sc+l)

7568 sc = sc - 1 -- Nothing has been inserted.

7569 else

7570 local loop first = true

7571 for s in string.utfvalues(str) do

7572 d = node.copy(item base)

7573 d.char = s

7574 if loop_first then

7575 loop first = false

7576 head, new = node.insert before(head, item, d)

7577 if sc == 1 then

7578 word head = head

7579 end

7580 w_nodes[sc] = d

7581 w = u.sub(w, 1, sc-1) .. u.char(s) .. u.sub(w, sc+l)
7582 else

7583 sc=sc+1

7584 head, new = node.insert before(head, item, d)

7585 table.insert(w nodes, sc, new)

7586 w = u.sub(w, 1, sc-1) .. u.char(s) .. u.sub(w, sc)
7587 end

7588 if Babel.debug then

7589 print('..... ', 'str')

7590 Babel.debug hyph(w, w nodes, sc, first, last, last match)
7591 end

7592 end -- for

7593 node.remove(head, item)

7594 end -- if "'

7595 last match = utf8.offset(w, sc+l+step)

7596 goto next

7597

7598 elseif mode == 1 and crep and (crep.pre or crep.no or crep.post) then
7599 d = node.new(7, 3) -- (disc, regular)

7600 d.pre = Babel.str to nodes(crep.pre, matches, item base)
7601 d.post = Babel.str to nodes(crep.post, matches, item base)
7602 d.replace = Babel.str _to nodes(crep.no, matches, item base)
7603 d.attr = item_base.attr

7604 if crep.pre == nil then -- TeXbook p96

7605 d.penalty = tovalue(crep.penalty) or tex.hyphenpenalty
7606 else

7607 d.penalty = tovalue(crep.penalty) or tex.exhyphenpenalty
7608 end

7609 placeholder = '|'

7610 head, new = node.insert before(head, item, d)

7611

7612 elseif mode == 0 and crep and (crep.pre or crep.no or crep.post) then
7613 -- ERROR

7614

7615 elseif crep and crep.penalty then

7616 d = node.new(14, 0) -- (penalty, userpenalty)

7617 d.attr = item base.attr

7618 d.penalty = tovalue(crep.penalty)

7619 head, new = node.insert before(head, item, d)

7620

7621 elseif crep and crep.space then

7622 -- 655360 = 10 pt = 10 * 65536 sp

7623 d = node.new(12, 13) -- (glue, spaceskip)

7624 local quad = font.getfont(item base.font).size or 655360
7625 node.setglue(d, tovalue(crep.space[l]) * quad,

7626 tovalue(crep.space[2]) * quad,

153

7627 tovalue(crep.space[3]) * quad)

7628 if mode == 0 then

7629 placeholder = ' '

7630 end

7631 head, new = node.insert before(head, item, d)

7632

7633 elseif crep and crep.norule then

7634 -- 655360 = 10 pt = 10 * 65536 sp

7635 d = node.new(2, 3) -- (rule, empty) = \no*rule

7636 local quad = font.getfont(item base.font).size or 655360
7637 d.width = tovalue(crep.norule[1l]) * quad

7638 d.height = tovalue(crep.norule[2]) * quad

7639 d.depth = tovalue(crep.norule[3]) * quad

7640 head, new = node.insert before(head, item, d)

7641

7642 elseif crep and crep.spacefactor then

7643 d = node.new(12, 13) -- (glue, spaceskip)

7644 local base font = font.getfont(item base.font)

7645 node.setglue(d,

7646 tovalue(crep.spacefactor[1]) * base font.parameters['space'],
7647 tovalue(crep.spacefactor[2]) * base font.parameters['space stretch'l],
7648 tovalue(crep.spacefactor[3]) * base font.parameters['space shrink'])
7649 if mode == 0 then

7650 placeholder = ' '

7651 end

7652 head, new = node.insert before(head, item, d)

7653

7654 elseif mode == 0 and crep and crep.space then

7655 -- ERROR

7656

7657 elseif crep and crep.kern then

7658 d = node.new(13, 1) -- (kern, user)

7659 local quad = font.getfont(item base.font).size or 655360
7660 d.attr = item_base.attr

7661 d.kern = tovalue(crep.kern) * quad

7662 head, new = node.insert before(head, item, d)

7663

7664 elseif crep and crep.node then

7665 d = node.new(crep.node[1l], crep.node[2])

7666 d.attr = item_base.attr

7667 head, new = node.insert before(head, item, d)

7668

7669 end -- i.e., replacement cases

7670

7671 -- Shared by disc, space(factor), kern, node and penalty.
7672 if sc == 1 then

7673 word head = head

7674 end

7675 if crep.insert then

7676 w = u.sub(w, 1, sc-1) .. placeholder .. u.sub(w, sc)
7677 table.insert(w _nodes, sc, new)

7678 last = last + 1

7679 else

7680 w_nodes[sc] = d

7681 node.remove(head, item)

7682 w = u.sub(w, 1, sc-1) .. placeholder .. u.sub(w, sc+l)
7683 end

7684

7685 last match = utf8.offset(w, sc+l+step)

7686

7687 rinext::

7688

7689 end -- for each replacement

154

7690

7691 if Babel.show_transforms then texio.write nl('> ' .. w) end
7692 if Babel.debug then

7693 print('..... o)

7694 Babel.debug hyph(w, w nodes, sc, first, last, last match)
7695 end

7696

7697 if dummy node then

7698 node.remove(head, dummy node)

7699 dummy_node = nil

7700 end

7701

7702 end -- for match

7703

7704 end -- for patterns

7705

7706 rinext::

7707 word head = nw

7708 end -- for substring

7709

7710 if Babel.show transforms then texio.write nl(string.rep('-', 32) ‘\n') end
7711 return head

7712 end

7713

7714 - - This table stores capture maps, numbered consecutively

7715 Babel. capture maps = {}

7716

7717 function Babel.esc_hex_to_char(h)

7718 1if tex.getcatcode(tonumber(h, 16)) ~= 11 and

7719 tex.getcatcode(tonumber(h, 16)) ~= 12 then

7720 return string.format([[\Uchar"%X 11, tonumber(h,16))

7721 else

7722 return unicode.utf8.char(tonumber(h, 16))

7723 end

7724 end

7725

7726 - - The following functions belong to the next macro

7727 function Babel.capture func(key, cap)

7728 local ret = "[[" .. cap:gsub('{([0-91)}", "11..m[%1]..[[") .. "1I"
7729 local cnt

7730 local u = unicode.utf8

7731 ret = u.gsub(ret, '{(%x%x%x%x+)}', '\x01%1\x04')

7732 ret, cnt = ret:gsub('{([0 9] [C[~]1+)](.-)}", Babel.capture func_map)
7733 ret = u.gsub(ret, '\XOL(%X%X%X%X+)\x04' Babel.esc _hex to char)
7734 ret = ret:gsub("%[%[%]%]%.%.", '')

7735 ret = ret:gsub("%.%.o[o[%]o]", ')

7736 return key .. [[=function(m) return 1] .. ret .. [[end]]

7737 end

7738

7739 function Babel.capt map(from, mapno)
return Babel.capture maps[mapno][from] or from
7741 end

7740

7742

7743 - - Handle the {n|abc|ABC} syntax in captures
7744 function Babel.capture func _map(capno, from, to)
local u = unicode.utf8

7745
7746
7747
7748
7749
7750
7751
7752

fro

to

m

= u.gsub(from, '\Xx01(%Xx%x%Xx%x+)\x04"',
function (n)

return u.char(tonumber(n, 16))
end)
u.gsub(to, '\XOL(%x%x%x%x+)\x04"',
function (n)

return u.char(tonumber(n, 16))

155

7753 end)

7754 local froms = {}

7755 for s in string.utfcharacters(from) do

7756 table.insert(froms, s)

7757 end

7758 local cnt =1

7759 table.insert(Babel.capture maps, {})

7760 local mlen = table.getn(Babel.capture maps)
7761 for s in string.utfcharacters(to) do

7762 Babel.capture maps[mlen][froms[cnt]] = s

7763 cnt = cnt + 1

7764 end

7765 return "]]..Babel.capt map(m[" .. capno .. "],"
7766 (mlen) .. ").." .. "[["

7767 end

7768

7769 - - Create/Extend reversed sorted list of kashida weights:
7770 function Babel.capture kashida(key, wt)

7771wt = tonumber(wt)

7772 if Babel.kashida_wts then

7773 for p, g in ipairs(Babel.kashida wts) do
7774 if wt == q then

7775 break

7776 elseif wt > q then

7777 table.insert(Babel.kashida wts, p, wt)
7778 break

7779 elseif table.getn(Babel.kashida wts) == p then
7780 table.insert(Babel.kashida wts, wt)
7781 end

7782 end

7783 else

7784 Babel.kashida wts = { wt }

7785 end

7786 return ‘'kashida = ' .. wt

7787 end

7788

7789 function Babel.capture node(id, subtype)
7790 local sbt = 0

7791 for k, v in pairs(node.subtypes(id)) do
7792 if v == subtype then sbt = k end

7793 end

7794 return 'node = {' .. node.id(id) .. ', ' .. sbt .. '}’
7795 end

7796

7797 - - Experimental: applies prehyphenation transforms to a string (letters
7798 - - and spaces).

7799 function Babel.string prehyphenation(str, locale)

7800 local n, head, last, res

7801 head = node.new(8, 0) -- dummy (hack just to start)

7802 last = head

7803 for s in string.utfvalues(str) do

7804 if s == 20 then

7805 n = node.new(12, 0)

7806 else

7807 n = node.new(29, 0)

7808 n.char = s

7809 end

7810 node.set_attribute(n, Babel.attr_locale, locale)
7811 last.next = n

7812 last = n

7813 end

7814 head = Babel.hyphenate replace(head, 0)
7815 res = "'

156

7816 for n in node.traverse(head) do

7817 if n.id == 12 then

7818 res = res .. "'

7819 elseif n.id == 29 then

7820 res = res .. unicode.utf8.char(n.char)
7821 end

7822 end

7823 tex.print(res)

7824 end

7825 (/transforms)

10.14Lua: Auto bidi with basic and basic-r

The file babel-data-bidi.lua currently only contains data. It is a large and boring file and it is not
shown here (see the generated file), but here is a sample:

o°

[0x25]={d="et '},
[0x26]={d='on"'},
[0x27]={d='on"},
[0x28]={d="on', m=0x29},
[0x29]={d="on', m=0x28},
[0x2A]={d="'on"},
[0x2B]={d="'es"'},
[0x2C]={d="cs"'},

o® o° o° o°

o°

o° o°

o°

For the meaning of these codes, see the Unicode standard.

Now the basic-r bidi mode. One of the aims is to implement a fast and simple bidi algorithm, with
a single loop. I managed to do it for R texts, with a second smaller loop for a special case. The code is
still somewhat chaotic, but its behavior is essentially correct. I cannot resist copying the following
text from Emacs bidi. c (which also attempts to implement the bidi algorithm with a single loop):

Arrrgh!! The UAX#9 algorithm is too deeply entrenched in the assumption of batch-style
processing [...]. May the fleas of a thousand camels infest the armpits of those who design
supposedly general-purpose algorithms by looking at their own implementations, and fail to
consider other possible implementations!

Well, it took me some time to guess what the batch rules in UAX#9 actually mean (in other word,
what they do and why, and not only how), but I think (or I hope) I’'ve managed to understand them.

In some sense, there are two bidi modes, one for numbers, and the other for text. Furthermore,
setting just the direction in R text is not enough, because there are actually two R modes (set
explicitly in Unicode with RLM and ALM). In babel the dir is set by a higher protocol based on the
language/script, which in turn sets the correct dir (<1>, <r> or <al>).

From UAX#9: “Where available, markup should be used instead of the explicit formatting
characters”. So, this simple version just ignores formatting characters. Actually, most of that annex is
devoted to how to handle them.

BD14-BD16 are not implemented. Unicode (and the W3C) are making a great effort to deal with
some special problematic cases in “streamed” plain text. I don’t think this is the way to go - particular
issues should be fixed by a high level interface taking into account the needs of the document. And
here is where luatex excels, because everything related to bidi writing is under our control.

7826 (xbasic-r)

7827 Babel.bidi enabled = true

7828

7829 require('babel-data-bidi.lua')

7830

7831 local characters = Babel.characters
7832 local ranges = Babel.ranges

7833

7834 local DIR = node.id("dir")

7835

7836 Local function dir mark(head, from, to, outer)

7837 dir = (outer == 'r') and 'TLT' or 'TRT' -- i.e., reverse

7838 local d = node.new(DIR)

157

7839 d.dir = '+' .. dir
7840 node.insert before(head, from, d)
7841 d = node.new(DIR)

7842 d.dir = '-' ., dir

7843 node.insert after(head, to, d)

7844 end

7845

7846 function Babel.bidi(head, ispar)

7847 local first n, last n -- first and last char with nums

7848 local last es -- an auxiliary 'last' used with nums
7849 local first_d, last_d -- first and last char in L/R block

7850 local dir, dir_real

Next also depends on script/lang (<al>/<r>). To be set by babel. tex.pardir is dangerous, could be
(re)set but it should be changed only in vmode. There are two strong’s — strong = 1/al/r and
strong lr =1/r (there must be a better way):

7851 local strong = ('TRT' == tex.pardir) and 'r' or 'l'
7852 local strong lr = (strong == 'l') and 'l' or 'r'
7853 local outer = strong

7854

7855 local new dir = false

7856 local first dir = false

7857 local inmath = false

7858

7859 local last_lr

7860

7861 local type n = "'

7862

7863 for item in node.traverse(head) do

7864

7865 -- three cases: glyph, dir, otherwise

7866 if item.id == node.id'glyph'

7867 or (item.id == 7 and item.subtype == 2) then
7868

7869 local itemchar

7870 if item.id == 7 and item.subtype == 2 then
7871 itemchar = item.replace.char

7872 else

7873 itemchar = item.char

7874 end

7875 local chardata = characters[itemchar]

7876 dir = chardata and chardata.d or nil

7877 if not dir then

7878 for nn, et in ipairs(ranges) do

7879 if itemchar < et[1l] then

7880 break

7881 elseif itemchar <= et[2] then

7882 dir = et[3]

7883 break

7884 end

7885 end

7886 end

7887 dir = dir or 'l'

7888 if inmath then dir = ('TRT' == tex.mathdir) and 'r' or 'l' end

Next is based on the assumption babel sets the language and switches the script with its dir. We
treat a language block as a separate Unicode sequence. The following piece of code is executed at the
first glyph after a ‘dir’ node. We don’t know the current language until then. This is not exactly true,
as the math mode may insert explicit dirs in the node list, so, for the moment there is a hack by brute
force (just above).

7889 if new dir then
7890 attr dir = 0
7891 for at in node.traverse(item.attr) do
7892 if at.number == Babel.attr dir then

158

7893 attr dir = at.value & 0x3

7894 end

7895 end

7896 if attr dir == 1 then

7897 strong = 'r'

7898 elseif attr dir == 2 then

7899 strong = 'al'

7900 else

7901 strong = 'l'

7902 end

7903 strong_lr = (strong == 'l') and 'l' or 'r'
7904 outer = strong 1lr

7905 new dir = false

7906 end

7907

7908 if dir == 'nsm' then dir = strong end -- Wl

Numbers. The dual <al>/<r> system for R is somewhat cumbersome.

7909 dir real = dir -- We need dir real to set strong below
7910 if dir == 'al' then dir = 'r' end -- W3
By W2, there are no <en> <et> <es> if strong == {(al), only <an>. Therefore, there are not <et en>

nor <en et>, W5 can be ignored, and W6 applied:

7911 if strong == 'al' then

7912 if dir == 'en' then dir = 'an' end -- W2
7913 if dir == 'et' or dir == 'es' then dir = 'on' end -- W6
7914 strong_lr = 'r' -- W3
7915 end

Once finished the basic setup for glyphs, consider the two other cases: dir node and the rest.

7916 elseif item.id == node.id'dir' and not inmath then
7917 new_dir = true

7918 dir = nil

7919 elseif item.id == node.id'math' then

7920 inmath = (item.subtype == 0)

7921 else

7922 dir = nil -- Not a char

7923 end

Numbers in R mode. A sequence of <en>, <et>, <an>, <es> and <cs> is typeset (with some rules) in L
mode. We store the starting and ending points, and only when anything different is found (including
nil, i.e., a non-char), the textdir is set. This means you cannot insert, say, a whatsit, but this is what I
would expect (with luacolor you may colorize some digits). Anyway, this behavior could be changed
with a switch in the future. Note in the first branch only <an> is relevant if <al>.

7924 if dir == 'en' or dir == 'an' or dir == 'et' then

7925 if dir ~= 'et' then

7926 type n = dir

7927 end

7928 first n = first n or item

7929 last_n = last_es or item

7930 last_es = nil

7931 elseif dir == 'es' and last n then -- W3+W6

7932 last_es = item

7933 elseif dir == 'cs' then -- it's right - do nothing
7934 elseif first n then -- & if dir = any but en, et, an, es, cs, inc nil
7935 if strong lr == 'r' and type n ~= '' then

7936 dir mark(head, first n, last n, 'r')

7937 elseif strong lr == 'l' and first d and type n == 'an' then
7938 dir mark(head, first n, last n, 'r')

7939 dir mark(head, first d, last d, outer)

7940 first d, last d = nil, nil

7941 elseif strong lr == 'l' and type n ~= '' then

7942 last_d = last_n

7943 end

159

7944 type n =
7945 first n, last n = nil, nil
7946 end

RtextinL, or L textin R. Order of dir_ mark’s are relevant: d goes outside n, and therefore it’s
emitted after. See dir mark to understand why (but is the nesting actually necessary or is a flat dir
structure enough?). Only L, R (and AL) chars are taken into account — everything else, including
spaces, whatsits, etc., are ignored:

7947 if dir == 'l' or dir == 'r' then

7948 if dir ~= outer then

7949 first d = first d or item

7950 last d = item

7951 elseif first d and dir ~= strong_1lr then
7952 dir mark(head, first d, last d, outer)
7953 first d, last d = nil, nil

7954 end

7955 end

Mirroring. Each chunk of text in a certain language is considered a “closed” sequence. If <r on r>
and <l on 1>, it’s clearly <r> and <I>, resptly, but with other combinations depends on outer. From all
these, we select only those resolving <on> — <r>. At the beginning (when last 1lr isnil) of an R text,
they are mirrored directly. Numbers in R mode are processed. It should not be done, but it doesn’t
hurt.

7956 if dir and not last 1r and dir ~= 'l' and outer == 'r' then
7957 item.char = characters[item.char] and

7958 characters[item.char].m or item.char

7959 elseif (dir or new dir) and last_lr ~= item then

7960 local mir = outer .. strong_lr .. (dir or outer)

7961 if mir == 'rrr' or mir == 'lrr' or mir == 'rrl' or mir == 'rlr' then
7962 for ch in node.traverse(node.next(last 1lr)) do

7963 if ch == item then break end

7964 if ch.id == node.id'glyph' and characters[ch.char] then
7965 ch.char = characters[ch.char].m or ch.char

7966 end

7967 end

7968 end

7969 end

Save some values for the next iteration. If the current node is ‘dir’, open a new sequence. Since dir
could be changed, strong is set with its real value (dir_real).

7970 if dir == 'l' or dir == 'r' then

7971 last_1r = item

7972 strong = dir _real -- Don't search back - best save now
7973 strong lr = (strong == 'l') and 'l' or 'r'

7974 elseif new dir then

7975 last lr = nil

7976 end

7977 end

Mirror the last chars if they are no directed. And make sure any open block is closed, too.

7978 if last 1r and outer == 'r' then

7979 for ch in node.traverse id(node.id'glyph', node.next(last 1r)) do
7980 if characters[ch.char] then

7981 ch.char = characters[ch.char].m or ch.char
7982 end

7983 end

7984 end

7985 if first n then

7986 dir_mark(head, first n, last_n, outer)

7987 end

7988 if first d then

7989 dir_mark(head, first d, last_d, outer)

7990 end

160

In boxes, the dir node could be added before the original head, so the actual head is the previous
node.

7991 return node.prev(head) or head
7992 end
7993 (/basic-r)

And here the Lua code for bidi=basic:

7994 (xbasic)

7995 -- e.g., Babel.fontmap[l][<prefontid>]=<dirfontid>
7996

7997 Babel. fontmap = Babel.fontmap or {}

7998 Babel. fontmap[0] = {} -- 1
7999 Babel. fontmap[1l] = {} --r
8000 Babel. fontmap[2] = {} -- al/an

8001
8002 -- To cancel mirroring. Also OML, OMS, U?

8003 Babel.symbol fonts = Babel.symbol fonts or {}

8004 Babel.symbol fonts[font.id('tenln')] = true

8005 Babel.symbol fonts[font.id('tenlnw')] = true

8006 Babel.symbol fonts[font.id('tencirc')] = true

8007 Babel.symbol fonts[font.id('tencircw')] = true

8008

8009 Babel.bidi enabled = true

8010 Babel.mirroring enabled = true

8011

8012 require('babel-data-bidi.lua')

8013

8014 Local characters = Babel.characters

8015 Local ranges = Babel.ranges

8016

8017 local DIR = node.id('dir")

8018 Local GLYPH = node.id('glyph')

8019

8020 local function insert implicit(head, state, outer)
8021 local new state = state

8022 1if state.sim and state.eim and state.sim ~= state.eim then

8023 dir = ((outer == 'r') and 'TLT' or 'TRT') -- i.e., reverse
8024 local d = node.new(DIR)

8025 d.dir = '+' .. dir

8026 node.insert before(head, state.sim, d)

8027 local d = node.new(DIR)

8028 d.dir = '-' .. dir

8029 node.insert after(head, state.eim, d)

8030 end

8031 new state.sim, new state.eim = nil, nil
8032 return head, new state

8033 end

8034

8035 Local function insert numeric(head, state)
8036 local new

8037 local new state = state

8038 1if state.san and state.ean and state.san ~= state.ean then
8039 local d = node.new(DIR)

8040 d.dir = "+4TLT'

8041 _, new = node.insert before(head, state.san, d)

8042 if state.san == state.sim then state.sim = new end

8043 local d = node.new(DIR)

8044 d.dir = '-TLT'

8045 _, new = node.insert after(head, state.ean, d)

8046 if state.ean == state.eim then state.eim = new end

8047 end

8048 new state.san, new state.ean = nil, nil
8049 return head, new state

161

8050 end

8051

8052 Local function glyph not symbol font(node)
8053 1if node.id == GLYPH then

8054 return not Babel.symbol_ fonts[node.font]
8055 else

8056 return false

8057 end

8058 end

8059

8060 -- TODO - \hbox with an explicit dir can lead to wrong results

8061 - - <R \hbox dir TLT{<R>}> and <L \hbox dir TRT{<L>}>. A small attempt
8062 - - was made to improve the situation, but the problem is the 3-dir
8063 - - model in babel/Unicode and the 2-dir model in LuaTeX don't fit
8064 - - well.

8065
8066 function Babel.bidi(head, ispar, hdir)
8067 local d -- d is used mainly for computations in a loop

8068 local prev.d = "'

8069 local new d = false

8070

8071 local nodes = {}

8072 local outer_first = nil

8073 local inmath = false

8074

8075 local glue d = nil

8076 local glue i = nil

8077

8078 local has en = false

8079 local first et = nil

8080

8081 local has hyperlink = false
8082

8083 local ATDIR = Babel.attr dir
8084 local attr d, temp

8085 local locale d

8086

8087 local save outer

8088 local locale d = node.get attribute(head, ATDIR)
8089 if locale_d then

8090 locale d = locale d & 0x3

8091 save outer = (locale d == 0 and 'l') or

8092 (locale d == 1 and 'r') or

8093 (locale d == 2 and 'al')

8094 elseif ispar then -- Or error? Shouldn't happen
8095 -- when the callback is called, we are just _after_ the box,
8096 -- and the textdir is that of the surrounding text
8097 save outer = ('TRT' == tex.pardir) and 'r' or 'l'

8098 else -- Empty box

8099 save outer = ('TRT' == hdir) and 'r' or 'l'

8100 end

8101 local outer = save outer

8102 local last = outer

8103 -- 'al' is only taken into account in the first, current loop
8104 1if save outer == 'al' then save outer = 'r' end

8105

8106 local fontmap = Babel.fontmap

8107

8108 for item in node.traverse(head) do

8109

8110 -- Mask: DxxxPPTT (Done, Pardir [0-2], Textdir [0-2])

8111 locale d = node.get attribute(item, ATDIR)
8112 node.set attribute(item, ATDIR, 0x80)

162

8113

8114 -- In what follows, #node is the last (previous) node, because the
8115 -- current one is not added until we start processing the neutrals.
8116 -- three cases: glyph, dir, otherwise

8117 if glyph not symbol font(item)

8118 or (item.id == 7 and item.subtype == 2) then
8119

8120 if locale_d == 0x80 then goto nextnode end
8121

8122 local d_font = nil

8123 local item_r

8124 if item.id == 7 and item.subtype == 2 then
8125 item r = item.replace -- automatic discs have just 1 glyph
8126 else

8127 item r = item

8128 end

8129

8130 local chardata = characters[item r.char]
8131 d = chardata and chardata.d or nil

8132 if not d or d == 'nsm' then

8133 for nn, et in ipairs(ranges) do

8134 if item r.char < et[1] then

8135 break

8136 elseif item r.char <= et[2] then

8137 if not d then d = et[3]

8138 elseif d == 'nsm' then d_font = et[3]
8139 end

8140 break

8141 end

8142 end

8143 end

8144 d=dor 'V

8145

8146 -- A short 'pause' in bidi for mapfont

8147 -- %%%% TODO. move if fontmap here

8148 d font = d font or d

8149 d font = (d font == 'l' and 0) or

8150 (d font == 'nsm' and 0) or

8151 (d_font == 'r' and 1) or

8152 (d_font == 'al' and 2) or

8153 (d font == 'an' and 2) or nil

8154 if d font and fontmap and fontmap[d font][item r.font] then
8155 item r.font = fontmap[d font][item r.font]
8156 end

8157

8158 if new_d then

8159 table.insert(nodes, {nil, (outer == '1') and 'l' or 'r', nil})
8160 if inmath then

8161 attr d =0

8162 else

8163 attr d = locale d & 0x3

8164 end

8165 if attr d == 1 then

8166 outer first = 'r'

8167 last = 'r'

8168 elseif attr d == 2 then

8169 outer first = 'r'

8170 last = 'al'

8171 else

8172 outer first = 'l'

8173 last = 'l

8174 end

8175 outer = last

163

8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238

has en = false

first_et = nil

new d = false
end

if glue d then
if (d == 'l' and

'I' or 'r') ~= glue d then

table.insert(nodes, {glue i, 'on', nil})

end

glue_d = nil

glue_i = nil
end

elseif item.id == DIR then

d = nil
new d = true

elseif item.id == node.id'glue' and item.subtype == 13 then
glue d = d
glue_i = item
d = nil
elseif item.id == node.id'math' then
inmath = (item.subtype == 0)

elseif item.id == 8 and item.subtype == 19 then
has _hyperlink = true

else
d = nil
end
-- AL <= EN/ET/ES -- W2 + W3 + W6
if last == 'al' and d == 'en' then
d = 'an' -- W3
elseif last == 'al' and (d == 'et' or d == 'es') then
d = 'on' -- W6
end
-- EN + CS/ES + EN -- W4
if d == 'en' and #nodes >= 2 then
if (nodes[#nodes][2] == 'es' or nodes[#nodes][2] == 'cs')
and nodes[#nodes-1][2] == 'en' then
nodes[#nodes][2] = 'en'
end
end
-- AN + CS + AN -- W4 too, because uax9 mixes both cases
if d == 'an' and #nodes >= 2 then

if (nodes[#nodes][2

] == "cs")

and nodes[#nodes-1][2] == 'an' then

nodes[#nodes][2]
end

end

-- ET/EN

if d == 'et' then
first_et = first_et

elseif d == 'en' then

has en = true
first_et = first_et

elseif first et then
if has_en then

= ‘'an'

-- W5 + W7->1 / W6->on

or (#nodes + 1)

or (#nodes + 1)
-- d may be nil here !

164

8239 if last == 'l' then

8240 temp = '’ -- W7

8241 else

8242 temp = 'en’ -- W5

8243 end

8244 else

8245 temp = 'on' -- W6

8246 end

8247 for e = first et, #nodes do

8248 if glyph not symbol font(nodes[e][1]) then nodes[e][2] = temp end
8249 end

8250 first et = nil

8251 has en = false

8252 end

8253

8254 -- Force mathdir in math if ON (currently works as expected only
8255 -- with 'l")

8256

8257 if inmath and d == 'on' then

8258 d = ('TRT' == tex.mathdir) and 'r' or 'l'
8259 end

8260

8261 if d then

8262 if d == 'al' then

8263 d="r'

8264 last = 'al'

8265 elseif d == 'l' or d == 'r' then

8266 last =

8267 end

8268 prev.d = d

8269 table.insert(nodes, {item, d, outer first})
8270 end

8271

8272 outer_first = nil

8273

8274 ::nextnode::

8275

8276 end -- for each node

8277

8278 -- TODO -- repeated here in case EN/ET is the last node. Find a
8279 -- better way of doing things:

8280 1if first et then -- dir may be nil here !
8281 if has_en then

8282 if last == 'l' then

8283 temp = '’ -- W7

8284 else

8285 temp = 'en’ -- W5

8286 end

8287 else

8288 temp = 'on' -- W6

8289 end

8290 for e = first et, #nodes do

8291 if glyph not symbol font(nodes[e][1]) then nodes[e]l[2] = temp end
8292 end

8293 end

8294

8295 -- dummy node, to close things

8296 table.insert(nodes, {nil, (outer == '1') and 'l' or 'r', nil})
8297

8298 --------------- NEUTRAL -----------------

8299

8300 outer = save outer
8301 last = outer

165

8302
8303 local first_on = nil

8304

8305 for q = 1, #nodes do

8306 local item

8307

8308 local outer first = nodes[q][3]

8309 outer = outer first or outer

8310 last = outer first or last

8311

8312 local d = nodes[q][2]

8313 if d == 'an' or d == 'en' thend = 'r' end

8314 if d == 'cs' or d == 'et' or d == 'es' then d = 'on' end --- W6
8315

8316 if d == 'on' then

8317 first_on = first on or q

8318 elseif first on then

8319 if last == d then

8320 temp = d

8321 else

8322 temp = outer

8323 end

8324 for r = first on, q - 1 do

8325 nodes[r][2] = temp

8326 item = nodes[r][1] - - MIRRORING

8327 if Babel.mirroring enabled and glyph not symbol font(item)
8328 and temp == 'r' and characters[item.char] then
8329 local font mode = ''

8330 if item.font > 0 and font.fonts[item.font].properties then
8331 font mode = font.fonts[item.font].properties.mode
8332 end

8333 if font mode ~= 'harf' and font mode ~= 'plug' then
8334 item.char = characters[item.char].m or item.char
8335 end

8336 end

8337 end

8338 first_on = nil

8339 end

8340

8341 if d=="'r" ord=="1" then last = d end

8342 end

8343

8344 m------------- IMPLICIT, REORDER ----------------

8345

8346 outer = save outer
8347 last = outer

8348

8349 local state {}
8350 state.has r = false

8351
8352 for q = 1, #nodes do

8353

8354 local item = nodes[q][1]

8355

8356 outer = nodes[q][3] or outer

8357

8358 local d = nodes[ql[2]

8359

8360 if d == 'nsm' then d = last end -- Wl
8361 if d == 'en' then d = 'an' end

8362 local isdir = (d == 'r' or d == '1")

8363

8364 if outer == 'l' and d == 'an' then

166

8365 state.san = state.san or item

8366 state.ean = item

8367 elseif state.san then

8368 head, state = insert numeric(head, state)

8369 end

8370

8371 if outer == 'l' then

8372 if d == 'an' or d == 'r' then -- im -> implicit
8373 if d == 'r' then state.has r = true end

8374 state.sim = state.sim or item

8375 state.eim = item

8376 elseif d == 'l' and state.sim and state.has r then
8377 head, state = insert implicit(head, state, outer)
8378 elseif d == '1' then

8379 state.sim, state.eim, state.has r = nil, nil, false
8380 end

8381 else

8382 if d == 'an' or d == 'l' then

8383 if nodes[q]l[3] then -- nil except after an explicit dir
8384 state.sim = item -- so we move sim 'inside' the group
8385 else

8386 state.sim = state.sim or item

8387 end

8388 state.eim = item

8389 elseif d == 'r' and state.sim then

8390 head, state = insert implicit(head, state, outer)
8391 elseif d == 'r' then

8392 state.sim, state.eim = nil, nil

8393 end

8394 end

8395

8396 if isdir then

8397 last = d -- Don't search back - best save now
8398 elseif d == 'on' and state.san then

8399 state.san = state.san or item

8400 state.ean = item

8401 end

8402

8403 end

8404

8405 head = node.prev(head) or head

8406 % \end{macrocode}

8407 %

8408% Now direction nodes has been distributed with relation to characters
8409% and spaces, we need to take into account \TeX\-specific elements in
8410% the node list, to move them at an appropriate place. Firstly, with
8411% hyperlinks. Secondly, we avoid them between penalties and spaces, so
8412% that the latter are still discardable.

8413 %
8414% \begin{macrocode}
8415 --- FIXES ---

8416 if has_hyperlink then
8417 local flag, linking = 0, 0

8418 for item in node.traverse(head) do

8419 if item.id == DIR then

8420 if item.dir == '+TRT' or item.dir == '+TLT' then
8421 flag = flag + 1

8422 elseif item.dir == '-TRT' or item.dir == '-TLT' then
8423 flag = flag - 1

8424 end

8425 elseif item.id == 8 and item.subtype == 19 then

8426 linking = flag

8427 elseif item.id == 8 and item.subtype == 20 then

167

8428 if linking > 0 then

8429 if item.prev.id == DIR and

8430 (item.prev.dir == '-TRT' or item.prev.dir == '-TLT') then
8431 d = node.new(DIR)

8432 d.dir = item.prev.dir

8433 node.remove(head, item.prev)
8434 node.insert after(head, item, d)
8435 end

8436 end

8437 linking = 0

8438 end

8439 end

8440 end

8441

8442 for item in node.traverse id(10, head) do
8443 local p = item

8444 local flag = false

8445 while p.prev and p.prev.id == 14 do

8446 flag = true

8447 p = p.prev

8448 end

8449 if flag then

8450 node.insert before(head, p, node.copy(item))
8451 node.remove (head,item)

8452 end

8453 end

8454

8455 return head

8456 end

8457 function Babel.unset atdir(head)

8458 local ATDIR = Babel.attr dir

8459 for item in node.traverse(head) do

8460 node.set_attribute(item, ATDIR, 0x80)

8461 end
8462 return head
8463 end

8464 (/basic)

11. Data for CJK

It is a boring file and it is not shown here (see the generated file), but here is a sample:

o°

[0x0021]={c="ex"'},
[0x0024]={c="pr'},
[0x0025]={c="po"'},
[0x0028]={c='0p'},
[0x0029]={c="cp'},
[0x002B]={c="'pr'},

® o° o° of° o°

o°

For the meaning of these codes, see the Unicode standard.

12. The ‘nil’ language

This language’ does nothing, except setting the hyphenation patterns to nohyphenation. For this
language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than once, checking the
category code of the @ sign, etc.

8465 (*nil)
8466 \ProvidesLanguage{nil}[<@date@> v<@version@> Nil language]
8467 \LdfInit{nil}{datenil}

168

When this file is read as an option, i.e., by the \usepackage command, nil could be an ‘unknown’
language in which case we have to make it known.

8468 \ifx\l@nil\@undefined

8469 \newlanguage\l@nil

8470 \@namedef{bbl@hyphendata@\the\l@nil}{{}{}}% Remove warning
8471 \let\bbl@elt\relax

8472 \edef\bbl@languages{% Add it to the list of languages
8473 \bbl@languages\bbl@elt{nil}{\the\l@nil}{}{}}

8474 \f1i

This macro is used to store the values of the hyphenation parameters \lefthyphenmin and
\righthyphenmin.

8475 \providehyphenmins{\CurrentOption}{\m@ne\m@ne}

The next step consists of defining commands to switch to (and from) the ‘nil’ language.

\captionnil
\datenil

8476 \let\captionsnil\@empty
8477 \let\datenil\@empty

There is no locale file for this pseudo-language, so the corresponding fields are defined here.

8478 \def\bbl@inidata@nil{%

8479 \bbl@elt{identification}{tag.ini}{und}%

8480 \bbl@elt{identification}{load.level}{0}%

8481 \bblEelt{identification}{charset}{utf8}%

8482 \bbl@elt{identification}{version}{1.0}%

8483 \bbl@elt{identification}{date}{2022-05-16}%

8484 \bblEelt{identification}{name.local}{nil}%

8485 \bbl@elt{identification}{name.english}{nil}%

8486 \bbl@elt{identification}{name.babel}{nil}%

8487 \bbl@elt{identification}{tag.bcp47}{und}%

8488 \bbl@elt{identification}{language.tag.bcp47}{und}%
8489 \bbl@elt{identification}{tag.opentype}{dflt}%

8490 \bbl@elt{identification}{script.name}{Latin}%

8491 \bbl@elt{identification}{script.tag.bcp47}{Latn}%
8492 \bbl@elt{identification}{script.tag.opentype}{DFLT}%
8493 \bblEelt{identification}{level}{1}%

8494 \bbl@elt{identification}{encodings}{}%

8495 \bbl@elt{identification}{derivate}{no}}

8496 \@namedef{bbl@tbcp@nil}{und}

8497 \@namedef{bbl@lbcp@nil}{und}

8498 \@namedef{bbl@casing@nil}{und}

8499 \@namedef{bbl@lotf@nil}{dflt}

8500 \@namedef{bbl@elname@nil}{nil}

8501 \@namedef{bbl@lname@nil}{nil}

8502 \@namedef{bbl@esname@nil}{Latin}

8503 \@namedef{bbl@sname@nil}{Latin}

8504 \@namedef{bbl@sbcp@nil}{Latn}

8505 \@namedef{bbl@sotf@nil}{latn}

The macro \ldf@finish takes care of looking for a configuration file, setting the main language to
be switched on at \begin{document} and resetting the category code of @ to its original value.

8506 \ldf@finish{nil}
8507 {/nil)

13. Calendars

The code for specific calendars are placed in the specific files, loaded when requested by an ini file
in the identification section with require.calendars.

Start with function to compute the Julian day. It’s based on the little library calendar. js, by John
Walker, in the public domain.

169

8508 ((x*Compute Julian day)) =
8509 \def\bbl@fpmod#1#2{ (#1-#2*floor (#1/#2))}
8510 \def\bbl@cs@gregleap#1{%

8511
8512

(\bbl@fpmod{#1}{4} == 0) &&

(' ((\bbl@efpmod{#1}{100} == 0) && (\bbl@fpmod{#1}{400} != 0)))}

8513 \def\bbl@cs@jd#1#2#3{% year, month, day

8514
8515
8516
8517

\fpeval{ 1721424.5 + (365 * (#1 - 1)) +
floor((#1 - 1) / 4) + (-floor((#1 - 1) / 100)) +
floor((#1 - 1) / 400) + floor((((367 * #2) - 362) / 12) +
((#2 <= 2) ?2 0 : (\bbl@ecs@gregleap{#1} ? -1 : -2)) + #3) }}

8518 ((/Compute Julian day))

13.1. Islamic

The code for the Civil calendar is based on it, too.

8519 (*ca-islamic)
8520 <@Compute Julian day@>
8521% == islamic (default)

8522 %

Not yet implemented

8523 \def\bbl@ca@islamic#1-#2-#3\Qe#4#5#6{}

The Civil calendar.

8524 \def\bbl@cs@isltojd#1#2#3{ % year, month, day

8525
8526
8527

((#3 + ceil(29.5 * (#2 - 1)) +
(#1 - 1) * 354 + floor((3 + (11 * #1)) / 30) +
1948439.5) - 1) }

8528 \@namedef{bbl@ca@islamic-civil++}{\bbl@ca@islamicvl@x{+2}}

8529 \@namedef{bbl@ca@islamic-civil+}{\bbl@ca@islamicvl@x{+1}}

8530 \@namedef{bbl@ca@islamic-civil}{\bbl@ca@islamicvl@x{}}

8531 \@namedef{bbl@ca@islamic-civil-}{\bbl@ca@islamicvl@x{-1}}

8532 \@namedef{bbl@ca@islamic-civil--}{\bbl@ca@islamicvl@x{-2}}

8533 \def\bbl@ca@islamicv1@x#1#2 - #3 - #4\QQ#5#6#7{%

8534 \edef\bbl@tempa{%

8535 \fpeval{ floor(\bbl@cs@jd{#2}{#3}{#4})+0.5 #1}}%

8536 \edef#5{%

8537 \fpeval{ floor(((30*(\bbl@tempa-1948439.5)) + 10646)/10631) }}%
8538 \edef#6{\fpeval{

8539 min(12,ceil((\bbl@tempa- (29+\bbl@cs@isltojd{#5}{1}{1}))/29.5)+1) }}%
8540 \edef#7{\fpeval{ \bbl@tempa - \bbl@cs@isltojd{#5}{#6}{1} + 1} }}

The Umm al-Qura calendar, used mainly in Saudi Arabia, is based on moment-hijri, by Abdullah
Alsigar (license MIT).

Since the main aim is to provide a suitable \today, and maybe some close dates, data just covers
Hijri ~1435/~1460 (Gregorian ~2014/~2038).

8541 \def\bbl@cs@umalqura@data{56660, 56690,56719,56749,56778,56808,%
8542 56837,56867,56897,56926,56956,56985,57015,57044,57074,57103,%
8543 57133,57162,57192,57221,57251,57280,57310,57340,57369,57399,%
8544 57429,57458,57487,57517,57546,57576,57605,57634,57664,5769

1

o°

8545 57723,57753,57783,57813,57842,57871,57901,57930,57959,5798

o°

8546 58018,58048,58077,58107,58137,58167,58196,58226,58255,5828

o°

’
’
’
’
’

8547 58314,58343,58373,58402,58432,58461,58491,58521,58551,5858

o°

8548 58610,58639,58669,58698,58727,58757,58786,58816,58845,58875,

o°

8549 58905,58934,58964,58994,59023,59053,59082,59111,59141,5917

o°

8550 59200,59229,59259,59288,59318,59348,59377,59407,59436,5946

o°

4
9
5
0
5
0
6
8551 59495,59525,59554,59584,59613,59643,59672,59702,59731,59761,
8552 59791,59820,59850,59879,59909,59939,59968,59997,60027,60056
2
8
2
7
3
8
3

o°

o°

8553 60086,60115,60145,60174,60204,60234,60264,60293,60323,60352,
8554 60381,60411,60440,60469,60499,60528,60558,60588,60618,60648,
8555 60677,60707,60736,60765,60795,60824,60853,60883,60912,6094
8556 60972,61002,61031,61061,61090,61120,61149,61179,61208,6123
8557 61267,61296,61326,61356,61385,61415,61445,61474,61504,61533,
8558 61563,61592,61621,61651,61680,61710,61739,61769,61799,6182
8559 61858,61888,61917,61947,61976,62006,62035,62064,62094,6212

o® o o°

o°

o°

o°

%

170

8560 62153,62182,62212,62242,62271,62301,62331,62360,62390,62419,%
8561 62448,62478,62507,62537,62566,62596,62625,62655,62685,62715,
8562 62744,62774,62803,62832,62862,62891,62921,62950,62980,63009,
8563 63039,63069,63099,63128,63157,63187,63216,63246,63275,63305,
8564 63334,63363,63393,63423,63453,63482,63512,63541,63571,63600,
8565 63630,63659,63689,63718,63747,63777,63807,63836,63866,63895,
0
6
2
6
1

o o° o° o°

o°

8566 63925,63955,63984,64014,64043,64073,64102,64131,64161,64190,
8567 64220,64249,64279,64309,64339,64368,64398,64427,64457,64486,
8568 64515,64545,64574,64603,64633,64663,64692,64722,64752,64782,
8569 64811,64841,64870,64899,64929,64958,64987,65017,65047,65076,
8570 65106,65136,65166,65195,65225,65254,65283,65313,65342,65371,%
8571 65401,65431,65460,65490,65520}

8572 \@namedef{bbl@ca@islamic-umalqura+}{\bbl@ca@islamcuqr@x{+1}}
8573 \@namedef {bbl@ca@islamic-umalqura}{\bbl@ca@islamcuqr@x{}}

8574 \@namedef{bbl@ca@islamic-umalqura-}{\bbl@ca@islamcuqr@x{-1}}
8575 \deT\bbl@ca@islamcuqr@x#1#2 - #3 - #4\QQ#5#6#7 {%

8576 \ifnum#2>2014 \ifnum#2<2038

8577 \bblEafterfilexpandafter\@gobble

8578 \fi\fi

8579 {\bbl@error{year-out-range}{2014-2038}{}{}}%

8580 \edef\bbl@tempd{\fpeval{ % (Julian) day

8581 \bbl@cs@jd{#2}{#3}{#4} + 0.5 - 2400000 #1}}%

8582 \count@\@ne

8583 \bbl@foreach\bbl@cs@umalqura@data{%

o® of o°

o°

8584 \advance\count@\@ne

8585 \ifnum##1>\bbl@tempd\else

8586 \edef\bbl@tempe{\the\count@}%
8587 \edef\bbl@tempb{##1}%

8588 \fi}%

8589 \edef\bbl@templ{\fpeval{ \bbl@tempe + 16260 + 949 }}% month~lunar
8590 \edef\bbl@tempa{\fpeval{ floor((\bbl@templ - 1) / 12) }}% annus
8591 \edef#5{\fpeval{ \bbl@tempa + 1 }}%

8592 \edef#6{\fpeval{ \bbl@templ - (12 * \bbl@tempa) }}%

8593 \edef#7{\fpeval{ \bbl@tempd - \bbl@tempb + 1 }}}

8594 \bbl@add\bbl@precalendar{%

8595 \bbl@replace\bbl@ld@calendar{-civil}{}%

8596 \bbl@replace\bbl@ld@calendar{-umalqura}{}%

8597 \bbl@replace\bbl@ld@calendar{+}{}%

8598 \bbl@replace\bbl@ld@calendar{-}{}}

8599 (/ca-islamic)

13.2. Hebrew

This is basically the set of macros written by Michail Rozman in 1991, with corrections and adaptions
by Rama Porrat, Misha, Dan Haran and Boris Lavva. This must be eventually replaced by
computations with I3fp. An explanation of what’s going on can be found in hebcal.sty

8600 (*ca-hebrew)

8601 \newcount\bbl@cntcommon

8602 \def\bbl@remainder#1#2#3{%

8603 #3=#1\relax

8604 \divide #3 by #2\relax

8605 \multiply #3 by -#2\relax
8606 \advance #3 by #l\relax}%
8607 \newif\ifbbl@divisible

8608 \def\bbl@checkifdivisible#1#2{%
8609 {\countdef\tmp=0

8610 \bbl@remainder{#1}{#2}{\tmp}%
8611 \ifnum \tmp=0

8612 \global\bbl@divisibletrue
8613 \else

8614 \global\bbl@divisiblefalse
8615 \fi}}

8616 \newif\ifbbl@gregleap

171

8617 \def\bbl@ifgregleap#1{%
8618 \bbl@checkifdivisible{#1}{4}%
8619 \ifbbl@divisible

8620 \bbl@checkifdivisible{#1}{100}%
8621 \ifbbl@divisible

8622 \bbl@checkifdivisible{#1}{400}%
8623 \ifbbl@divisible

8624 \bbl@gregleaptrue

8625 \else

8626 \bbl@gregleapfalse

8627 \fi

8628 \else

8629 \bbl@gregleaptrue

8630 \fi

8631 \else

8632 \bbl@gregleapfalse

8633 \fi

8634 \ifbbl@gregleap}
8635 \def\bbl@gregdayspriormonths#1#2#3{%
8636 {#3=\ifcase #1 0 \or 0 \or 31 \or 59 \or 90 \or 120 \or 151 \or

8637 181 \or 212 \or 243 \or 273 \or 304 \or 334 \fi
8638 \bbl@ifgregleap{#2}%

8639 \ifnum #1 > 2

8640 \advance #3 by 1

8641 \fi

8642 \fi

8643 \global\bbl@cntcommon=#3}%

8644 #3=\bbl@cntcommon}

8645 \def\bbl@gregdaysprioryears#1#2{%
8646 {\countdef\tmpc=4

8647 \countdef\tmpb=2

8648 \tmpb=#1\relax

8649 \advance \tmpb by -1

8650 \tmpc=\tmpb

8651 \multiply \tmpc by 365

8652 #2=\tmpc

8653 \tmpc=\tmpb

8654 \divide \tmpc by 4

8655 \advance #2 by \tmpc

8656 \tmpc=\tmpb

8657 \divide \tmpc by 100

8658 \advance #2 by -\tmpc

8659 \tmpc=\tmpb

8660 \divide \tmpc by 400

8661 \advance #2 by \tmpc

8662 \global\bbl@cntcommon=#2\relax}%
8663 #2=\bbl@cntcommon}

8664 \def\bbl@abs fromgreg#1#2#3#4{%

8665 {\countdef\tmpd=0

8666 #4=#1\relax

8667 \bbl@gregdayspriormonths{#2}{#3}{\tmpd}%
8668 \advance #4 by \tmpd

8669 \bbl@gregdaysprioryears{#3}{\tmpd}%
8670 \advance #4 by \tmpd

8671 \global\bbl@cntcommon=#4\relax}%
8672 #4=\bbl@cntcommon}

8673 \newif\ifbbl@hebrleap

8674 \def\bbl@checkleaphebryear#1{%

8675 {\countdef\tmpa=0

8676 \countdef\tmpb=1

8677 \tmpa=#1\relax

8678 \multiply \tmpa by 7

8679 \advance \tmpa by 1

172

8680 \bbl@remainder{\tmpa}{19}{\tmpb}%
8681 \ifnum \tmpb < 7

8682 \global\bbl@hebrleaptrue
8683 \else

8684 \global\bbl@hebrleapfalse
8685 \fi}}

8686 \def\bbl@hebrelapsedmonths#1#2{%
8687 {\countdef\tmpa=0

8688 \countdef\tmpb=1

8689 \countdef\tmpc=2

8690 \tmpa=#1\relax

8691 \advance \tmpa by -1

8692 #2=\tmpa

8693 \divide #2 by 19

8694 \multiply #2 by 235

8695 \bbl@remainder{\tmpa}{19}{\tmpb}% \tmpa=years%19-years this cycle
8696 \tmpc=\tmpb

8697 \multiply \tmpb by 12

8698 \advance #2 by \tmpb

8699 \multiply \tmpc by 7

8700 \advance \tmpc by 1

8701 \divide \tmpc by 19

8702 \advance #2 by \tmpc

8703 \global\bbl@cntcommon=#2}%
8704 #2=\bbl@cntcommon}

8705 \def\bbl@hebrelapseddays#1#2{%
8706 {\countdef\tmpa=0

8707 \countdef\tmpb=1

8708 \countdef\tmpc=2

8709 \bbl@hebrelapsedmonths{#1}{#2}%
8710 \tmpa=#2\relax

8711 \multiply \tmpa by 13753

8712 \advance \tmpa by 5604

8713 \bbl@remainder{\tmpa}{25920}{\tmpc}% \tmpc == ConjunctionParts
8714 \divide \tmpa by 25920

8715 \multiply #2 by 29

8716 \advance #2 by 1

8717 \advance #2 by \tmpa

8718 \bbl@remainder{#2}{7}{\tmpa}%
8719 \ifnum \tmpc < 19440

8720 \ifnum \tmpc < 9924

8721 \else

8722 \ifnum \tmpa=2

8723 \bbl@checkleaphebryear{#1}% of a common year
8724 \ifbbl@hebrleap

8725 \else

8726 \advance #2 by 1
8727 \fi

8728 \fi

8729 \fi

8730 \ifnum \tmpc < 16789

8731 \else

8732 \ifnum \tmpa=1

8733 \advance #1 by -1
8734 \bbl@checkleaphebryear{#1}% at the end of leap year
8735 \ifbbl@hebrleap

8736 \advance #2 by 1
8737 \fi

8738 \fi

8739 \fi

8740 \else

8741 \advance #2 by 1

8742 \fi

173

8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756

\bbl@remainder{#2}{7}{\tmpa}%
\ifnum \tmpa=0
\advance #2 by 1
\else
\ifnum \tmpa=3
\advance #2 by 1
\else
\ifnum \tmpa=5
\advance #2 by 1
\fi
\fi
\fi
\global\bbl@cntcommon=#2\relax}%
#2=\bbl@cntcommon}

8757 \def\bbl@daysinhebryear#1#2{%

8758
8759
8760
8761
8762
8763
8764

8765 \def\bbl@hebrdayspriormonths#1#2#3{%

8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
87717
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805

{\countdef\tmpe=12
\bbl@hebrelapseddays{#1}{\tmpe}%
\advance #1 by 1
\bbl@hebrelapseddays{#1}{#2}%
\advance #2 by -\tmpe
\global\bbl@cntcommon=#2}%

#2=\bbl@cntcommon}

{\countdef\tmpf= 14
#3=\1ifcase #1
0 \or
0 \or
30 \or
59 \or
89 \or
118 \or
148 \or
148 \or
177 \or
207 \or
236 \or
266 \or
295 \or
325 \or
400
\fi
\bbl@checkleaphebryear{#2}%
\ifbbl@hebrleap
\ifnum #1 > 6
\advance #3 by 30
\fi
\fi
\bbl@daysinhebryear{#2}{\tmpf}%
\ifnum #1 > 3
\ifnum \tmpf=353
\advance #3 by -1
\fi
\ifnum \tmpf=383
\advance #3 by -1
\fi
\fi
\ifnum #1 > 2
\ifnum \tmpf=355
\advance #3 by 1
\fi
\ifnum \tmpf=385
\advance #3 by 1
\fi

174

8806 \fi

8807 \global\bbl@cntcommon=#3\relax}%
8808 #3=\bbl@cntcommon}

8809 \def\bbl@absfromheb r#1#2#3#4{%

8810 {#4=#1\relax

8811 \bbl@hebrdayspriormonths{#2} {#3}{#1}%
8812 \advance #4 by #1\relax

8813 \bbl@hebrelapseddays{#3}{#1}%
8814 \advance #4 by #l\relax

8815 \advance #4 by -1373429

8816 \global\bbl@cntcommon=#4\relax}%
8817 #4=\bbl@cntcommon}

8818 \def\bbl@hebrfromgreg#l#2#3#4#5#6{%
8819 {\countdef\tmpx= 17

8820 \countdef\tmpy= 18

8821 \countdef\tmpz= 19

8822 #6=#3\relax

8823 \global\advance #6 by 3761

8824 \bbl@absfromgreg{#1} {#2} {#3}{#4}%
8825 \tmpz=1 \tmpy=1

8826 \bbl@absfromhebr{\tmpz}{\tmpy}{#6}{\tmpx}%
8827 \ifnum \tmpx > #4\relax

8828 \global\advance #6 by -1
8829 \bbl@absfromhebr{\tmpz}{\tmpy}{#6}{\tmpx}%
8830 \fi

8831 \advance #4 by -\tmpx
8832 \advance #4 by 1

8833 #5=#4\relax

8834 \divide #5 by 30

8835 \loop

8836 \bbl@hebrdayspriormonths{#5}{#63}{\tmpx}%
8837 \ifnum \tmpx < #4\relax

8838 \advance #5 by 1

8839 \tmpy=\tmpx

8840 \repeat

8841 \global\advance #5 by -1

8842 \globalladvance #4 by -\tmpy}}

8843 \newcount\bbl@hebrday \newcount\bbl@hebrmonth \newcount\bbl@hebryear
8844 \newcount\bbl@gregday \newcount\bbl@gregmonth \newcount\bbl@gregyear
8845 \def\bbl@ca@hebrew#1-#2 - #3\Qa#4#5#6{%

8846 \bbl@gregday=#3\relax \bbl@gregmonth=#2\relax \bbl@gregyear=#1\relax
8847 \bbl@hebrfromgreg

8848 {\bbl@gregday}{\bbl@gregmonth}{\bbl@gregyear}%

8849 {\bbl@hebrday}{\bbl@hebrmonth}{\bbl@hebryear}s

8850 \edef#4{\the\bbl@hebryear}%

8851 \edef#5{\the\bbl@hebrmonth}%

8852 \edef#6{\the\bbl@hebrday}}

8853 (/ca-hebrew)

13.3. Persian

There is an algorithm written in TeX by Jabri, Abolhassani, Pournader and Esfahbod, created for the
first versions of the FarsiTeX system (no longer available), but the original license is GPL, so its use
with LPPL is problematic. The code here follows loosely that by John Walker, which is free and
accurate, but sadly very complex, so the relevant data for the years 2013-2050 have been
pre-calculated and stored. Actually, all we need is the first day (either March 20 or March 21).

8854 (*ca-persian)

8855 <@Compute Julian day@>

8856 \def\bbl@cs@firstjal@xx{2012,2016,2020,2024,2028,2029,% March 20
8857 2032,2033,2036,2037,2040,2041,2044,2045,2048,2049}

8858 \def\bbl@ca@persian#l-#2-#3\@a#4#5#6{%

8859 \edef\bbl@tempa{#1}% 20XX-03-\bbl@tempe = 1 farvardin:

8860 \ifnum\bbl@tempa>2012 \ifnum\bbl@tempa<2051

175

8861 \bblEafterfilexpandafter\@gobble

8862 \fi\fi

8863 {\bbl@error{year-out-range}{2013-2050}{}{}}%

8864 \bbl@xin@{\bbl@tempa}{\bbl@cs@firstjal@xx}%

8865 \ifin@\def\bbl@tempe{20}\else\def\bbl@tempe{21}\fi

8866 \edef\bbl@tempc{\fpeval{\bbl@cs@jd{\bbl@tempa}{#2}{#3}+.5}}% current
8867 \edef\bbl@tempb{\fpeval{\bbl@cs@jd{\bbl@tempa}{03}{\bbl@tempe}+.5}}% begin
8868 \ifnum\bbl@tempc<\bbl@tempb

8869 \edef\bbl@tempa{\fpeval{\bbl@tempa-1}}% go back 1 year and redo

8870 \bbl@xin@{\bbl@tempa}{\bbl@cs@firstjal@xx}%

8871 \ifin@\def\bbl@tempe{20}\else\def\bbl@tempe{21}\fi

8872 \edef\bbl@tempb{\fpeval{\bbl@cs@jd{\bbl@tempa}{03}{\bbl@tempe}+.5}}%
8873 \fi

8874 \edef#4{\fpeval{\bbl@tempa-621}}% set Jalali year

8875 \edef#6{\fpeval{\bbl@tempc-\bbl@tempb+1}}% days from 1 farvardin

8876 \edef#5{\fpeval{% set Jalali month

8877 (#6 <= 186) ? ceil(#6 / 31) : ceil((#6 - 6) / 30)}}

8878 \edef#6{\fpeval{% set Jalali day

8879 (#6 - ((#5 <= 7) ? ((#5 - 1) * 31) : (((#5 - 1) * 30) + 6)))}}}

8880 (/ca-persian)

13.4. Coptic and Ethiopic

Adapted from jquery.calendars.package-1.1.4, written by Keith Wood, 2010. Dual license: GPL
and MIT. The only difference is the epoch.

8881 (*ca-coptic)

8882 <@Compute Julian day@>

8883 \def\bbl@ca@coptic#l-#2-#3\Qe#4#5#6{%

8884 \edef\bbl@tempd{\fpeval{floor(\bbl@cs@jd{#1}{#2}{#3}) + 0.5}}%
8885 \edef\bbl@tempc{\fpeval{\bbl@tempd - 1825029.5}}%

8886 \edef#4{\fpeval{%

8887 floor((\bbl@tempc - floor((\bbl@tempc+366) / 1461)) / 365) + 1}}%
8388 \edef\bbl@tempc{\fpeval{%

8889 \bbl@tempd - (#4-1) * 365 - floor(#4/4) - 1825029.5}}%

8890 \edef#5{\fpeval{floor(\bbl@tempc / 30) + 1}}%

8391 \edef#6{\fpeval{\bbl@tempc - (#5 - 1) * 30 + 1}}}

8892 (/ca-coptic)

8893 (ca-ethiopic)

8894 <@Compute Julian day@>

8895 \def\bbl@ca@ethiopic#l-#2-#3\QQ#4#5#6{%

8896 \edef\bbl@tempd{\fpeval{floor(\bbl@cs@jd{#1}{#2}{#3}) + 0.5}}%
8897 \edef\bbl@tempc{\fpeval{\bbl@tempd - 1724220.5}}%

8898 \edef#4{\fpeval{%

8899 floor((\bbl@tempc - floor((\bbl@tempc+366) / 1461)) / 365) + 1}}%
8900 \edef\bbl@tempc{\fpeval{%

8901 \bbl@tempd - (#4-1) * 365 - floor(#4/4) - 1724220.5}}%

8902 \edef#5{\fpeval{floor(\bbl@tempc / 30) + 1}}%

8903 \edef#6{\fpeval{\bbl@tempc - (#5 - 1) * 30 + 1}}}

8904 (/ca-ethiopic)

13.5. Julian

Based on [ReinDersh].

8905 (*ca-julian)

8906 <@Compute Julian day@>

8907 \def\bbl@ca@julian#1-#2 - #3\@e#4#5#6{%

8908 \edef\bbl@tempj{\fpeval{floor(\bbl@cs@jd{#1}{#2}{#3}) + .5}}%
8909 \edef\bbl@tempa{\fpeval{\bbl@tempj + 32082.5}}%

8910 \edef\bbl@tempb{\fpeval{floor((4 * \bbl@tempa + 3) / 1461)}}%
8911 \edef\bbl@tempc{\fpeval{\bbl@tempa - floor(1461*\bbl@tempb/4)}}%
8912 \edef\bbl@tempd{\fpeval{floor((5 * \bbl@tempc + 2) / 153)}}%

8913 \edef#6{\fpeval{\bbl@tempc - floor((153*\bbl@tempd+2) / 5) + 1}}%

176

8914 \edef#5{\fpeval{\bbl@tempd + 3 - 12 * floor(\bbl@tempd / 10)}}%
8915 \edef#4{\fpeval{\bbl@tempb - 4800 + floor(\bbl@tempd / 10)}}}
8916 (/ca-julian)

13.6. Buddhist
That’s very simple.

8917 (*ca-buddhist)

8918 \def\bbl@ca@buddhist#1-#2-#3\@e#4#5#6{%

8919 \edef#4{\number\numexpr#l+543\relax}%

8920 \edef#5{#2}%

8921 \edef#6{#3}}

8922 (/ca-buddhist)

8923 %

8924% \subsection{Chinese}

8925 %

8926% Brute force, with the Julian day of first day of each month. The
8927% table has been computed with the help of \textsf{python-lunardate} by
8928% Ricky Yeung, GPLv2 (but the code itself has not been used). The range
8929% 1is 2015-2044.

8930 %

8931 % \begin{macrocode}

8932 (*ca-chinese)

8933 \ExplSyntax0n

8934 <@Compute Julian day@>

8935 \def\bbl@ca@chinese#1-#2 - #3\@a#4#5#6{%

8936 \edef\bbl@tempd{\fpeval{%

8937 \bbl@cs@jd{#1}{#2}{#3} - 2457072.5 }}%

8938 \count@\z@

8939 \@tempcnta=2015

8940 \bbl@foreach\bbl@cs@chinese@data{%

8941 \ifnum##1>\bbl@tempd\else

8942 \advance\count@\@ne

8943 \ifnum\count@>12

8944 \count@\@ne

8945 \advance\@tempcnta\@ne\fi

8946 \bbl@xin@{,##1, }{,\bbl@cs@chinese@leap, }%
8947 \ifin@

8948 \advance\count@\m@ne

8949 \edef\bbl@tempe{\the\numexpr\count@+1l2\relax}%
8950 \else

8951 \edef\bbl@tempe{\the\count@}%

8952 \fi

8953 \edef\bbl@tempb{##1}%

8954 \fi}%

8955 \edef#4{\the\@tempcnta}%

8956 \edef#5{\bbl@tempe}%

8957 \edef#6{\the\numexpr\bbl@tempd-\bbl@tempb+1\relax}}

8958 \def\bbl@cs@chinese@leap{%

8959 885,1920,2953,3809,4873,5906,6881,7825,8889,9893,10778}

8960 \def\bbl@cs@chinese@data{0,29,59,88,117,147,176,206,236,266,295,325,
8961 354,384,413,443,472,501,531,560,590,620,649,679,709,738,%

8962 768,797,827,856,885,915,944,974,1003,16033,1063,1093,1122,%

8963 1152,1181,1211,1240,1269,1299,1328,1358,1387,1417,1447,1477,%

8964 1506,1536,1565,1595,1624,1653,1683,1712,1741,1771,1801,1830,
8965 1860,1890,1920,1949,1979,2008,2037,2067,2096,2126,2155,2185,
8966 2214,2244,2274,2303,2333,2362,2392,2421,2451,2480,2510,2539,
8967 2569,2598,2628,2657,2687,2717,2746,2776,2805,2835,2864,2894,
8968 2923,2953,2982,3011,3041,3071,3100,3130,3160,3189,3219,3248,
8969 3278,3307,3337,3366,3395,3425,3454,3484,3514,3543,3573,3603,
8970 3632,3662,3691,3721,3750,3779,3809,3838,3868,3897,3927,3957,
8971 3987,4016,4046,4075,4105,4134,4163,4193,4222,4251,4281,4311,
8972 4341,4370,4400,4430,4459,4489,4518,4547,4577,4606,4635,4665,%

o® o° o° o° o° o o°

o°

177

8973 4695,4724,4754,4784,4814,4843,4873,4902,4931,4961,4990,5019,%
8974 5049,5079,5108,5138,5168,5197,5227,5256,5286,5315,5345,5374,
8975 5403,5433,5463,5492,5522,5551,5581,5611,5640,5670,5699,5729,
8976 5758,5788,5817,5846,5876,5906,5935,5965,5994,6024,6054,6083,
8977 6113,6142,6172,6201,6231,6260,6289,6319,6348,6378,6408,6437,
8978 6467,6497,6526,6556,6585,6615,6644,6673,6703,6732,6762,6791,
8979 6821,6851,6881,6910,6940,6969,6999,7028,7057,7087,7116,7146,
8980 7175,7205,7235,7264,7294,7324,7353,7383,7412,7441,7471,7500,
8981 7529,7559,7589,7618,7648,7678,7708,7737,7767,7796,7825,7855,
8982 7884,7913,7943,7972,8002,8032,8062,8092,8121,8151,8180,8209,
4
8
2
6
1
7
2
6

o ° ° ° ° ° o° o°

o°

8983 8239,8268,8297,8327,8356,8386,8416,8446,8475,8505,8534,8564,
8984 8593,8623,8652,8681,8711,8740,8770,8800,8829,8859,8889,8918,
8985 8948,8977,9007,9036,9066,9095,9124,9154,9183,9213,9243,9272,
8986 9302,9331,9361,9391,9420,9450,9479,9508,9538,9567,9597,9626,
8987 9656,9686,9715,9745,9775,9804,9834,9863,9893,9922,9951, 9981,
8988 10010,10040,10069,10099,10129,10158,10188,10218,10247,10277,
8989 10306,10335,10365,10394,10423,10453,10483,10512,10542,10572,
8990 10602,10631,10661,10690,10719,10749,10778,10807,10837,10866,%
8991 10896,10926,10956,10986,11015,11045,11074,11103}

8992 \ExplSyntax0ff

8993 (/ca-chinese)

® o® o° o o° o°

o°

14. Support for Plain TgX (plain.def)

14.1. Not renaming hyphen. tex

As Don Knuth has declared that the filename hyphen. tex may only be used to designate his version of
the american English hyphenation patterns, a new solution has to be found in order to be able to load
hyphenation patterns for other languages in a plain-based TgX-format. When asked he responded:

That file name is “sacred”, and if anybody changes it they will cause severe
upward/downward compatibility headaches.

People can have a file localhyphen.tex or whatever they like, but they mustn’t diddle with
hyphen.tex (or plain.tex except to preload additional fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers around plain.tex
and lplain.tex to achieve the desired effect, based on the babel package. If you load each of them
with iniTgX, you will get a file called either bplain. fmt or blplain. fmt, which you can use as
replacements for plain.fmt and lplain. fmt.

As these files are going to be read as the first thing iniTgX sees, we need to set some category codes
just to be able to change the definition of \input.

8994 (*bplain | blplain)

8995 \catcode \{=1 % left brace is begin-group character
8996 \catcode \}=2 % right brace is end-group character
8997 \catcode \#=6 % hash mark is macro parameter character

If a file called hyphen.cfg can be found, we make sure that it will be read instead of the file
hyphen. tex. We do this by first saving the original meaning of \input (and I use a one letter control
sequence for that so as not to waste multi-letter control sequence on this in the format).

8998 \openin @ hyphen.cfg
8999 \ifeofO

9000 \else

9001 \let\a\input

Then \input is defined to forget about its argument and load hyphen. cfg instead. Once that’s done
the original meaning of \input can be restored and the definition of \a can be forgotten.

9002 \def\input #1 {%
9003 \let\input\a
9004 \a hyphen.cfg

9005 \let\a\undefined
9006 }
9007 \ fi

9008 (/bplain | blplain)

178

Now that we have made sure that hyphen. cfg will be loaded at the right moment it is time to load
plain.tex.

9009 (bplain)\a plain.tex
9010 (blplain)\a lplain.tex

Finally we change the contents of \ fmtname to indicate that this is not the plain format, but a
format based on plain with the babel package preloaded.

9011 (bplain)\def\fmtname{babel-plain}
9012 (blplain)\def\fmtname{babel-lplain}

When you are using a different format, based on plain.tex you can make a copy of blplain.tex,
rename it and replace plain.tex with the name of your format file.

14.2. Emulating some ETgX features

The file babel.def expects some definitions made in the ITgX 2¢ style file. So, in Plain we must
provide at least some predefined values as well some tools to set them (even if not all options are
available). There are no package options, and therefore and alternative mechanism is provided. For
the moment, only \babeloptionstrings and \babeloptionmath are provided, which can be defined
before loading babel. \BabelModifiers can be set too (but not sure it works).

9013 ((*Emulate LaTeX)) =
9014 \def\@empty{}

9015 \def\loadlocalcfg#1{%
9016 \openin0#1l.cfg

9017 \ifeof0

9018 \closein0

9019 \else

9020 \closein®

9021 {\immediate\write16{*************************************}%
9022 \immediate\writel6{* Local config file #1l.cfg used}%

9023 \immediate\writel6{*}%

9024 }

9025 \input #1.cfg\relax

9026 \fi

9027 \@endofldf}

14.3. General tools

A number of KTgX macro’s that are needed later on.

9028 \long\def\@firstofone#1{#1}

9029 \long\def\@firstoftwo#1#2{#1}

9030 \long\def\@secondoftwo#1#2{#2}

9031 \def\@nnil{\@nil}

9032 \def\@gobbletwo#1#2{}

9033 \def\@ifstar#l{\@ifnextchar *{\@firstoftwo{#1}}}
9034 \def\@star@or@long#1{%

9035 \@ifstar

9036 {\let\l@ngrel@x\relax#1}%

9037 {\let\l@ngrel@x\long#1}}

9038 \let\l@ngrel@x\relax

9039 \def\@car#1#2\@nil{#1}

9040 \def\@cdr#1#2\@nil{#2}

9041 \let\@typeset@protect\relax

9042 \let\protected@edef\edef

9043 \long\def\@gobble#1{}

9044 \edef\@backslashchar{\expandafter\@gobble\string\\}
9045 \def\strip@prefix#1>{}

9046 \def\g@addto@macro#1#2{{%

9047 \toks@\expandafter{#1#2}%

9048 \xdef#1{\the\toks@}}}

9049 \def\@namedef#1{\expandafter\def\csname #1l\endcsname}
9050 \def\@nameuse#1{\csname #1l\endcsname}

179

9051 \def\@ifundefined#1{%
9052 \expandafter\ifx\csname#1l\endcsname\relax

9053 \expandafter\@firstoftwo
9054 \else

9055 \expandafter\@secondoftwo
9056 \fi}

9057 \def\@expandtwoargs#1#2#3{%
9058 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}
9059 \def\zap@space#l #2{%

9060 #1%
9061 \ifx#2\@empty\else\expandafter\zap@space\fi
9062 #2}

9063 \let\bbl@trace\@gobble

9064 \def\bbl@error#1{% Implicit #2#3#4
9065 \begingroup

9066 \catcode '\\=0 \catcode'\==12 \catcode '\ =12
9067 \catcode \""M=5 \catcode \%=14
9068 \input errbabel.def

9069 \endgroup

9070 \bbl@error{#1}}

9071 \def\bbl@warning#1{%

9072 \begingroup

9073 \newlinechar="\""J]

9074 \def\\{*"J(babel) }%

9075 \message{\\#1}%

9076 \endgroup}

9077 \let\bbl@infowarn\bbl@warning

9078 \def\bbl@info#1{%

9079 \begingroup

9080 \newlinechar="\""J

9081 \def\\{""J}%

9082 \wlog{#1}%

9083 \endgroup}

ETEX 2¢ has the command \@onlypreamble which adds commands to a list of commands that are
no longer needed after \begin{document}.

9084 \1fx\@preamblecmds\@undefined

9085 \def\@preamblecmds{}

9086 \ f1i

9087 \def\@onlypreamble#1{%

9088 \expandafter\gdef\expandafter\@preamblecmds\expandafter{%
9089 \@preamblecmds\do#1}}

9090 \@nlypreamble\@onlypreamble

Mimic ETgX’s \AtBeginDocument; for this to work the user needs to add \begindocument to his file.

9091 \def\begindocument{%

9092 \@begindocumenthook

9093 \global\let\@begindocumenthook\@undefined
9094 \def\do##1{\global\let##1\@undefined}%
9095 \@preamblecmds

9096 \global\let\do\noexpand}

9097 \1fx\@begindocumenthook\@undefined

9098 \def\@begindocumenthook{}

9099 \ fi

9100 \@onlypreamble\@begindocumenthook

9101 \def\AtBeginDocument{\g@addto@macro\@begindocumenthook}

We also have to mimic ETgX’s \AtEnd0fPackage. Our replacement macro is much simpler; it stores
its argument in \@endofldf.

9102 \def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}
9103 \@nlypreamble\AtEndOfPackage

9104 \def\@endofldf{}

9105 \@nlypreamble\@endofldf

180

9106 \let\bbl@afterlang\@empty
9107 \chardef\bbl@opt@hyphenmap\z@

KTEX needs to be able to switch off writing to its auxiliary files; plain doesn’t have them by default.
There is a trick to hide some conditional commands from the outer \ifx. The same trick is applied
below.

9108 \catcode \&=\z@

9109 \ifx&if@filesw\@undefined

9110 \expandafter\let\csname if@filesw\expandafter\endcsname
9111 \csname iffalse\endcsname

9112\ fi

9113 \catcode " \&=4

Mimic ETEX’s commands to define control sequences.

9114 \def\newcommand{\@star@or@long\new@command}
9115 \def\new@command#1{%

9116 \@testopt{\@newcommand#1}0}

9117 \def\@newcommand#1[#2]{%

9118 \@ifnextchar [{\@xargdef#1[#2]}%
9119 {\@argdef#1[#2]1}}
9120 \long\def\@argdef#1[#2]1#3{%

9121 \@yargdef#l\@ne{#2}{#3}}

9122 \long\def\@xargdef#1[#2] [#3]#4{%

9123 \expandafter\def\expandafter#l\expandafter{%

9124 \expandafter\@rotected@testopt\expandafter #1%
9125 \csname\string#l\expandafter\endcsname{#3}}%
9126 \expandafter\@yargdef \csname\string#l\endcsname
9127 \tw@{#2}{#4}}

9128 \long\def\@yargdef#1#2#3{%

9129 \@tempcnta#3\relax

9130 \advance \@tempcnta \@ne

9131 \let\@hash@\relax

9132 \edef\reserved@a{\ifx#2\tw@ [\@hash@l]\fi}%

9133 \@tempcntb #2%

9134 \@whilenum\@tempcntb <\@tempcnta

9135 \do{%

9136 \edef\reserved@a{\reserved@a\@hash@\the\@tempcntb}%
9137 \advance\@tempcntb \@ne}%

9138 \let\@hash@##%

9139 \l@ngrel@x\expandafter\def\expandafter#l\reserved@a}
9140 \def\providecommand{\@star@or@long\provide@command}
9141 \def\provide@command#1{%

9142 \begingroup

9143 \escapechar\m@ne\xdef\@gtempa{{\string#1}}%
9144 \endgroup

9145 \expandafter\@ifundefined\@gtempa

9146 {\def\reserved@a{\new@command#1}}%
9147 {\let\reserved@a\relax
9148 \def\reserved@a{\new@command\reserved@a}}%

9149 \reserved@al}%

9150 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}
9151 \def\declare@robustcommand#1{%

9152 \edef\reserved@a{\string#1}%

9153 \def\reserved@b{#1}%

9154 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}%
9155 \edef#1{%

9156 \ifx\reserved@a\reserved@b

9157 \noexpand\x@protect

9158 \noexpand#1%

9159 \fi

9160 \noexpand\protect

9161 \expandafter\noexpand\csname

9162 \expandafter\@gobble\string#1l \endcsname

181

9163 }%

9164 \expandafter\new@command\csname

9165 \expandafter\@gobble\string#1l \endcsname
9166 }

9167 \def\x@protect#1{%

9168 \ifx\protect\@typeset@protect\else

9169 \@x@protect#1%

9170 \fi

9171 }

9172 \catcode \&=\z@ % Trick to hide conditionals
9173 \def\@x@protect#1&fi#2#3{&fi\protect#1}

The following little macro \in@ is taken from latex. 1tx; it checks whether its first argument is
part of its second argument. It uses the boolean \in@; allocating a new boolean inside conditionally
executed code is not possible, hence the construct with the temporary definition of \bbl@tempa.

9174 \def\bbl@tempa{\csname newif\endcsname&ifin@}
9175 \catcode " \&=4

9176 \ifx\in@\@undefined

9177 \def\in@#1#2{%

9178 \def\1in@e##1#1##2##3\1n@a{%

9179 \ifx\in@##2\in@false\else\in@true\fi}%
9180 \in@@#2#1\in@\in@@}

9181 \else

9182 \let\bbl@tempa\@empty

9183 \ fi

9184 \bbl@tempa

KTEX has a macro to check whether a certain package was loaded with specific options. The
command has two extra arguments which are code to be executed in either the true or false case.
This is used to detect whether the document needs one of the accents to be activated (activegrave and
activeacute). For plain TgX we assume that the user wants them to be active by default. Therefore the
only thing we do is execute the third argument (the code for the true case).

9185 \def\@ifpackagewith#1#2#3#4{#3}

The ETEX macro \@ifl@aded checks whether a file was loaded. This functionality is not needed for
plain TgX but we need the macro to be defined as a no-op.

9186 \def\@ifl@aded#1#2#3#4{}

For the following code we need to make sure that the commands \newcommand and
\providecommand exist with some sensible definition. They are not fully equivalent to their ETgX 2¢
versions; just enough to make things work in plain TgXenvironments.

9187 \ifx\@tempcnta\@undefined

9188 \csname newcount\endcsname\@tempcnta\relax
9189 \ fi

9190 \ifx\@tempcntb\@undefined

9191 \csname newcount\endcsname\@tempcntb\relax
9192 \ fi

To prevent wasting two counters in ETgX (because counters with the same name are allocated later
by it) we reset the counter that holds the next free counter (\count10).

9193 \ifx\bye\@undefined

9194 \advance\countl0 by -2\relax

9195 \ f1i

9196 \ifx\@ifnextchar\@undefined

9197 \def\@ifnextchar#l#2#3{%

9198 \let\reserved@d=#1%

9199 \def\reserved@a{#2}\def\reserved@b{#3}%
9200 \futurelet\@let@token\@ifnch}

9201 \def\@ifnch{%

9202 \ifx\@let@token\@sptoken

9203 \let\reserved@c\@xifnch

9204 \else

9205 \ifx\@let@token\reservedad
9206 \let\reserved@c\reserved@a

182

9207 \else

9208 \let\reserved@c\reserved@b
9209 \fi

9210 \fi

9211 \reserved@c}

9212 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token
9213 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}
9214 \fi

9215 \def\@testopt#1#2{%

9216 \@ifnextchar[{#1}{#1[#21}}

9217 \def\@protected@testopt#1{%

9218 \ifx\protect\@typeset@protect

9219 \expandafter\@testopt

9220 \else

9221 \@x@protect#1%

9222 \fi}

9223 \long\def\@whilenum#1l\do #2{\ifnum #l\relax #2\relax\@iwhilenum{#1\relax
9224 #2\relax}\fi}

9225 \long\def\@iwhilenum#1{\ifnum #1l\expandafter\@iwhilenum

9226 \else\expandafter\@gobble\fi{#1}}

14.4. Encoding related macros

Code from ltoutenc.dtx, adapted for use in the plain TgX environment.

9227 \def\DeclareTextCommand{%

9228 \@dec@text@cmd\providecommand
9229 }

9230 \def\ProvideTextCommand{%

9231 \@dec@text@cmd\providecommand
9232 }

9233 \def\DeclareTextSymbol#1#2#3{%

9234 \@dec@text@cmd\chardef#1{#2}#3\relax
9235 }

9236 \def\@dec@text@cmd#1#2#3{%

9237 \expandafter\def\expandafter#2%

9238 \expandafter{%

9239 \csname#3-cmd\expandafter\endcsname
9240 \expandafter#2%

9241 \csname#3\string#2\endcsname

9242 }%

9243% \let\@ifdefinable\@rc@ifdefinable

9244 \expandafter#l\csname#3\string#2\endcsname
9245 }

9246 \def\@current@cmd#1{%

9247 \ifx\protect\@typeset@protect\else

9248 \noexpand#1\expandafter\@gobble

9249 \fi

9250 }

9251 \def\@changed@cmd#1#2{%

9252 \ifx\protect\@typeset@protect

9253 \expandafter\ifx\csname\cf@encoding\string#l\endcsname\relax
9254 \expandafter\ifx\csname ?\string#l\endcsname\relax
9255 \expandafter\def\csname ?\string#l\endcsname{%
9256 \@changed@x@err{#1}%

9257 }%

9258 \fi

9259 \global\expandafter\let

9260 \csname\cf@encoding \string#l\expandafter\endcsname
9261 \csname ?\string#l\endcsname

9262 \fi

9263 \csname\cf@encoding\string#1%

9264 \expandafter\endcsname

9265 \else

183

9266 \noexpand#1%

9267 \fi

9268 }

9269 \def\@changed@x@err#1{%

9270 \errhelp{Your command will be ignored, type <return> to proceed}%
9271 \errmessage{Command \protect#l undefined in encoding \cf@encoding}}

9272 \def\DeclareTextCommandDefault#1{%

9273 \DeclareTextCommand#1?%

9274 }

9275 \def\ProvideTextCommandDefault#1{%

9276 \ProvideTextCommand#17%

9277 }

9278 \expandafter\let\csname 0T1l-cmd\endcsname\@current@cmd
9279 \expandafter\let\csname?-cmd\endcsname\@changed@cmd
9280 \def\DeclareTextAccent#1#2#3{%

9281 \DeclareTextCommand#1{#2}[1]{\accent#3 ##1}

9282 }

9283 \def\DeclareTextCompositeCommand#1#2#3#4{%

9284 \expandafter\let\expandafter\reserved@a\csname#2\string#l\endcsname
9285 \edef\reserved@b{\string##1}%

9286 \edef\reserved@c{%

9287 \expandafter\@strip@args\meaning\reserved@a: -\@strip@args}%
9288 \ifx\reserved@b\reserved@c

9289 \expandafter\expandafter\expandafter\ifx

9290 \expandafter\@car\reserved@a\relax\relax\@nil

9291 \@text@composite

9292 \else

9293 \edef\reserved@b##1{%

9294 \def\expandafter\noexpand

9295 \csname#2\string#l\endcsname####1{%

9296 \noexpand\@text@composite

9297 \expandafter\noexpand\csname#2\string#l\endcsname
9298 ###1\noexpand\@empty\noexpand\@text@composite
9299 {##1}%

9300 }%

9301 }%

9302 \expandafter\reserved@b\expandafter{\reserved@a{##1}}%
9303 \fi

9304 \expandafter\def\csname\expandafter\string\csname

9305 #2\endcsname\string#l-\string#3\endcsname{#4}

9306 \else

9307 \errhelp{Your command will be ignored, type <return> to proceed}%
9308 \errmessage{\string\DeclareTextCompositeCommand\space used on
9309 inappropriate command \protect#1}

9310 \fi

9311 }

9312 \def\@text@composite#1#2#3\@text@composite{%
9313 \expandafter\@text@composite@x

9314 \csname\string#l-\string#2\endcsname
9315 }

9316 \def\@text@composite@x#1#2{%

9317 \ifx#1\relax

9318 #2%
9319 \else
9320 #1%
9321 \fi
9322 }

9323 %

9324 \def\@strip@args#1l:#2-#3\@strip@args{#2}

9325 \def\DeclareTextComposite#1#2#3#4{%

9326 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}}%
9327 \bgroup

9328 \lccode" \@=#4%

184

9329 \lowercase{%

9330 \egroup

9331 \reserved@a @%

9332 }%

9333 }

9334 %

9335 \def\UseTextSymbol#1#2{#2}

9336 \def\UseTextAccent#1#2#3{}

9337 \def\@use@text@encoding#1{}

9338 \def\DeclareTextSymbolDefault#1#2{%

9339 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}%
9340 }

9341 \def\DeclareTextAccentDefault#1#2{%

9342 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}%
9343 }

9344 \def\cf@encoding{0T1}

Currently we only use the BIgX 2¢ method for accents for those that are known to be made active in
some language definition file.

9345 \DeclareTextAccent{\"}{0T1}{127}
9346 \DeclareTextAccent{\'}{0T1}{19}
9347 \DeclareTextAccent{\"}{0T1}{94}
9348 \DeclareTextAccent{\ }{0T1}{18}
9349 \DeclareTextAccent{\~}{0T1}{126}

The following control sequences are used in babel. def but are not defined for PLAIN TgX.

9350 \DeclareTextSymbol{\textquotedblleft}{0T1}{92}
9351 \DeclareTextSymbol{\textquotedblright}{0T1}{ \"}
9352 \DeclareTextSymbol{\textquoteleft}{0T1}{ \ "}

9353 \DeclareTextSymbol{\textquoteright}{0T1}{ \'}
9354 \DeclareTextSymbol{\1}{0T1}{16}

9355 \DeclareTextSymbol{\ss}{0T1}{25}

For a couple of languages we need the KTgX-control sequence \scriptsize to be available. Because
plain TgX doesn’t have such a sophisticated font mechanism as EIgX has, we just \let it to \sevenrm.

9356 \1fx\scriptsize\@undefined
9357 \let\scriptsize\sevenrm
9358 \ fi

And a few more “dummy” definitions.

9359 \def\languagename{english}%

9360 \let\bbl@opt@shorthands\@nnil

9361 \def\bbl@ifshorthand#1#2#3{#2}%

9362 \let\bbl@language@opts\@empty

9363 \let\bbl@provide@locale\relax

9364 \1fx\babeloptionstrings\@undefined

9365 \let\bbl@opt@strings\@nnil

9366 \else

9367 \let\bbl@opt@strings\babeloptionstrings

9368 \ f1

9369 \def\BabelStringsDefault{generic}

9370 \def\bbl@tempa{normal}

9371 \ifx\babeloptionmath\bbl@tempa

9372 \def\bbl@mathnormal{\noexpand\textormath}
9373\ f1i

9374 \def\AfterBabelLanguage#1#2{}

9375 \1fx\BabelModifiers\@undefined\let\BabelModifiers\relax\fi
9376 \let\bbl@afterlang\relax

9377 \def\bbl@opt@safe{BR}

9378 \1fx\@uclclist\@undefined\let\@uclclist\@empty\fi
9379 \1fx\bbl@trace\@undefined\def\bbl@trace#1{}\fi
9380 \expandafter\newif\csname ifbbl@single\endcsname
9381 \chardef\bbl@bidimode\z@

9382 ((/Emulate LaTeX))

185

A proxy file:

9383 (*plain)
9384 \input babel.def
9385 (/plain)

15. Acknowledgements

In the initial stages of the development of babel, Bernd Raichle provided many helpful suggestions
and Michel Goossens supplied contributions for many languages. Ideas from Nico Poppelier, Piet van
Oostrum and many others have been used. Paul Wackers and Werenfried Spit helped find and repair
bugs.

More recently, there are significant contributions by Salim Bou, Ulrike Fischer, Loren Davis and Udi
Fogiel.

Barbara Beeton has helped in improving the manual.

There are also many contributors for specific languages, which are mentioned in the respective
files. Without them, babel just wouldn’t exist.

References

[1] Huda Smitshuijzen Abifares, Arabic Typography, Saqi, 2001.

[2] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of national ETgX styles,
TUGboat 10 (1989) #3, pp. 401-406.

[3] Yannis Haralambous, Fonts & Encodings, O’Reilly, 2007.

[4] Donald E. Knuth, The TgXbook, Addison-Wesley, 1986.

[5] Jukka K. Korpela, Unicode Explained, O’Reilly, 2006.

[6] Leslie Lamport, BTgX, A document preparation System, Addison-Wesley, 1986.
[7] Leslie Lamport, in: TgXhax Digest, Volume 89, #13, 17 February 1989.

[8] Ken Lunde, CJKV Information Processing, O’Reilly, 2nd ed., 2009.

[9] Edward M. Reingold and Nachum Dershowitz, Calendrical Calculations: The Ultimate Edition,
Cambridge University Press, 2018

[10] Hubert Partl, German TgX, TUGboat 9 (1988) #1, pp. 70-72.
[11] Joachim Schrod, International ETEX is ready to use, TUGboat 11 (1990) #1, pp. 87-90.

[12] Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniu, Digital typography using ETgX,
Springer, 2002, pp. 301-373.

[13] KF. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst, SDU Uitgeverij
(’s-Gravenhage, 1988).

186

	Contents
	1 Identification and loading of required files
	2 locale directory
	3 Tools
	3.1 A few core definitions
	3.2 LaTeX: babel.sty (start)
	3.3 base
	3.4 key=value options and other general option
	3.5 Post-process some options
	3.6 Plain: babel.def (start)

	4 babel.sty and babel.def (common)
	4.1 Selecting the language
	4.2 Errors
	4.3 More on selection
	4.4 Short tags
	4.5 Compatibility with language.def
	4.6 Hooks
	4.7 Setting up language files
	4.8 Shorthands
	4.9 Language attributes
	4.10 Support for saving and redefining macros
	4.11 French spacing
	4.12 Hyphens
	4.13 Multiencoding strings
	4.14 Tailor captions
	4.15 Making glyphs available
	4.15.1 Quotation marks
	4.15.2 Letters
	4.15.3 Shorthands for quotation marks
	4.15.4 Umlauts and tremas

	4.16 Layout
	4.17 Load engine specific macros
	4.18 Creating and modifying languages
	4.19 Main loop in ‘provide’
	4.20 Processing keys in ini
	4.21 French spacing (again)
	4.22 Handle language system
	4.23 Numerals
	4.24 Casing
	4.25 Getting info
	4.26 BCP 47 related commands

	5 Adjusting the Babel behavior
	5.1 Cross referencing macros
	5.2 Layout
	5.3 Marks
	5.4 Other packages
	5.4.1 ifthen
	5.4.2 varioref
	5.4.3 hhline

	5.5 Encoding and fonts
	5.6 Basic bidi support
	5.7 Local Language Configuration
	5.8 Language options

	6 The kernel of Babel
	7 Error messages
	8 Loading hyphenation patterns
	9 luatex + xetex: common stuff
	10 Hooks for XeTeX and LuaTeX
	10.1 XeTeX
	10.2 Support for interchar
	10.3 Layout
	10.4 8-bit TeX
	10.5 LuaTeX
	10.6 Southeast Asian scripts
	10.7 CJK line breaking
	10.8 Arabic justification
	10.9 Common stuff
	10.10 Automatic fonts and ids switching
	10.11 Bidi
	10.12 Layout
	10.13 Lua: transforms
	10.14 Lua: Auto bidi with basic and basic-r

	11 Data for CJK
	12 The `nil' language
	13 Calendars
	13.1 Islamic
	13.2 Hebrew
	13.3 Persian
	13.4 Coptic and Ethiopic
	13.5 Julian
	13.6 Buddhist

	14 Support for Plain TeX (plain.def)
	14.1 Not renaming hyphen.tex
	14.2 Emulating some LaTeX features
	14.3 General tools
	14.4 Encoding related macros

	15 Acknowledgements
	References

